ESCOLA TECNOLOGICA E PROFISSIONAL DA ZONA DO PINHAL

o

Sistema de envio de SMS com interface web

LUIGI MATTEO GIRKE

Relatdrio Final da Prova de Aptidao Profissional do
Curso Profissional de

Técnico de Gestao de Equipamento Informatico B
Pedrogao Grande | Maio 2025 ‘!2030
ciQr,"ai;[ljzss[JSOAs



ESCOLA TECNOLOGICA E PROFISSIONAL DA ZONA DO PINHAL

) CURSO PROFISSIONAL DE ,
TECNICO DE GESTAO DE EQUIPAMENTO INFORMATICO

Sistema de envio de SMS com interface web
LuiGI MATTEO GIRKE

ALUNO N° 2812
TURMA E-22/25

Relatorio Final da Prova de Aptidao Profissional
Professor Orientador Eng® Rui Verissimo

Diretor de Curso Eng® Vitor Monteiro

Cofinanciado
pela
Unido Europeia
” RPORTUGAL
= 2030

Pedrogao Grande | Maio 2025 & PESSOAS
29 2030



AGRADECIMENTOS

Em primeiro lugar, gostaria de agradecer ao Rui Verissimo, orientador do projeto PAP, e ao
Vitor Monteiro, diretor do curso de Engenharia. A sua orientacao, paciéncia, apoio e
disponibilidade constante foram fundamentais ao longo dos trés anos de formacao e
durante o desenvolvimento deste projeto.

Um agradecimento especial aos meus amigos e familia pelo apoio e incentivo
incondicionais ao longo do meu percurso académico, especialmente durante este projeto.
Por fim, gostaria de agradecer a ETPZP por ter disponibilizado todas as ferramentas
essenciais para a realiza¢cao deste projeto.



Sistema de envio de SMS com interface web

INDICE
AGRADECIMENTOS . ccuttttiitititttttttttttetietieietteeeeeeeereeeeeeeesesssssssssssssssssssssssssssssssssssses 3
INDICE wviuvetierierieseesieseestetetestestessessessessessessessessessessessesssonsonsensonsessensessessessessessessens 4
INTRODUGAO .ecevrienemreireecuessaseeaeseaseeesessaseaesesessesassesssstassssessensassesssseassssesssncns 6
FERRAMENTAS UTILIZADAS ....ovvrittiiiiiiininiririiiiiiiciseeeneeeenessssassicsssssesenns 7
Aplicagdes € Servigos @XTerNOS ... .uuuuuiiiiiiiiiiiiiieiieeeeeeeee 7
[D2=]0T=] oL [<] g Lol = PP PPRRPPPPPRRTPPPR 8
TIPOEIatia .ceueeiiiiiiiiiii e 10
ESTRUTURA DO FICHEIROQ uuuuuutittvtvttiieiiiiiiiiiiiiiiiiiiiiiriineinnininnnnsnsssssssssssssssssssssnes 11
Encaminhamento baseado em ficheiros Next.jS......ccccevveiiiiiiiiiiiiiiiiiiiiiiiiiiieenee 11
DIrEEOMIO /PP -ueeeenueetne et e ettt e et et e e et e eta e et e e et e etaaeeenaeeenneeennnnas 13
Diretdrio / COMPONENTES ....un ettt e e it e et e et e eene e 16
FRONT-END cetttttttttttttttttttertetrrteeereceereer e eeessss s s s s s s s s ssssssssssssssssssnssnnes 19
EStil0 ettt 19
ShadCN com temas diNAMICOS. .....uiiiiiiiiiiiiiiiie ettt e 19
Painéis redimensiondveis @m React ..........cviiiiiiiiiiiiiiiiiiiiiiiiciii e 20
PAGINAS ..ottt a e 21
INICIar SESSA0 (/LOZIN) ittt 21
Nova mensagem (/NEW-MESSAGE) .cccceuurrrummrrrrereeeeeeeeniiirrrrrreeeeeeeseeesennrranereees 21
Definiches (/SETTINGS) ccuuriiiiiiiiiiiiiii e 25
Painel de controlo do administrador (/dashboard) ........cccccceveeeeeiiiiiiiiiiininnneeeen. 26
OULras PAZINAS ...uuuuueeeeiiiiiiiiiiee e 30
REGRAS DE COERENCIA ....eeieveveeeteteteeeteteresetesesesesesesssesesessssesesssssesesssssssesn 35
Utilizagdo de acgOes do Servidor... ittt 35
Utilizagdo de contextos REACt.....cuvueeeueerirtintititeicictictectettctcc et 35
Configuragdes de fOrmMUIArIOS .....cveveieietieiiiiicicctctce e 36
Obtencao de componentes do Servidor .......ieieieiciiniiieieicecceeee e 36
Obtencdo conservadora de dados .......ceeeeveieieieieiictintitiieicccce e 36
Ficheiros de capa de Pagina......ccucucieeiiiiiiiiiiiciictccc s 37
LTS3 =T = o o L= 38
BASE DE DADOS...uutttttttttttttttttttttnrtreteereeeeeeeeeeeeeeeeseesessessssssssssssssssssssssssssnnns 39
Ligacdo a base de dados .......cueeeeeeereeriniiniiieiciccit e 39
Esquema da base de dados........ccouuiiiiiiiiniiiiiiiicc 41
AUTENTICAGAO E AUTORIZAGAOD ...vuureeemcreineneeneisaneseaesesseseeseseaseeaesessaneaens 43
D= o o N 4 Y o L PR 43
Implementacdo do Active DIretory ...t 43

Luigi Matteo Girke 4 Maio 2025



Sistema de envio de SMS com interface web

GESTAOD U@ SESSOCS wevrerrrerrrreerieerireeeeeeerssreeeeeesssseeesssssssstesesssssssssssssssssssesssssssssessssssssssssssnns 44
Implementagao da gesta0 de SESSOES ...uumiriiiieintirtiniititercrccc s 44
Fluxo de autentiCag@o .uueeueeuereieietietieiiieicictcccctecce e 45
Autenticacdo baseada em sessao vs. autenticacdo baseada em token........................ 48
lNTERNACIONALIZA(;AO (181N ettt 51
IMPIEMENLACA0 «eovitiitiititict s 51
L U 53
INtEZragao dO IMBNEXUS ...cvevereeierietieticiitetetetcce e ns 54
AUTO-HOSPEDAGEM E lMPLANTAgAO ............................................................ 55
DYl = SRS 55
Explicacdo do docker-compose.yaml .......iiiiniinirniininninninnennnennnecnnecneennennes 57
Sem IP e reencaminhamento de POrtas...c..cceeveevicieinniinicniinnieniennieineenennesssesaesnens 58
= S 59
CONCLUSAD .eeirruricnereacrisesestaesssesesseasssesssesstasssssssssstasssssssssssasssssssssseassssacses 62
AITEPENAIMENTOS .eeiieiiiiiiiiiiiitie ettt ettt st st sae s s st s sae s ae s sae s ae s nnas 62
Carateristicas OMItIdAs .....ccceereeiriiiiiiiieeete e 62
ANEXO | - MANUAL DO UTILIZADOR...itttueeeiriirinicirnnirnnncesneernnessssssennssssssssnnns 64
€03 3 0T el 0] § 0TS o 64
GIEHUD ettt ettt e e e e e s ase e e e e e s sa e e e e s s e sasaa e e e s s ssaaasessssssaaeeessssssaaassnns 64
Trabalhar num ambiente de desenvolvimMeNtO.....cccccccveeeiiicciiieecccceeeecccrre e, 64
Trabalhar num ambiente de produc¢do (implantagao) .......ccceeeveuceiricuciniciccnsiciccnnee 65
Depuragao dO DOCKET .....ccuiveriieietierietiteteieictceeeete ettt se s essens 66
Trabalhar COM @ MBNEXUS..c...ciieiiiiiiiciieeeteeccc ettt 66
ANEXO 11 - FICHEIROS DE CODIGO a.cuuieverererererererereresresessesessesessssesesesessesessens 67

Luigi Matteo Girke 5 Maio 2025



Sistema de envio de SMS com interface web

INTRODUCAO

Esta aplicacao foi criada para substituir o elevado custo das mensagens de texto para a
escola, fornecendo uma solu¢do de comunicacao rapida, facil e econdmica através de SMS.
O facto de estar na Web tornou-a acessivel a todos, independentemente do seu sistema
operativo.

A aplica¢ao permitia aos utilizadores enviar mensagens para varios destinatarios,
programar envios para entrega futura, cancelar mensagens programadas e gerir
mensagens enviadas através de uma interface de facil utilizag¢do inspirada nos clientes de
correio eletrdnico. A autenticacao foi efetuada localmente utilizando o servidor Active
Diretory (AD) local da escola.

Foi construido com Next.js, tirando partido do seu App Router, juntamente com uma base
de dados Postgres, componentes ShadCN e outros pacotes. O envio de SMS foi possivel
através da Interface de Programacao de Aplicativos (API) REST (Representational State
Transfer) da GatewayAPI. Durante a implementacdo, a aplicacdo foi executada num
contentor Docker, com o Nginx configurado para encaminhar o trafego do router para a
porta exposta do contentor adequado.

Sugestdo: Utilize a funcionalidade Localizar para facilitar a navegagao neste PDF.
Pode aceder-lhe premindo Ctrl + F (no Windows), Command + F (no macOS),
ou / atalho na maioria das aplicagGes.

Luigi Matteo Girke 6 Maio 2025



Sistema de envio de SMS com interface web

FERRAMENTAS UTILIZADAS

Aplicacées e servicos externos
¢ Visual Studio Code (VSCode): Ambiente de desenvolvimento integrado (IDE)
utilizado para escrever todo o cédigo do projeto. Para além disso, foram utilizados
os seguintes plugins:
Suporte a JavaScript EJS: Fornece suporte para modelos EJS (JavaScript incorporado) no
Visual Studio Code.
Prettier - Formatador de cédigo: Um formatador de cédigo opinativo para muitas
linguagens e integra-se com o VSCode.
ESLint: Uma ferramenta para identificar e relatar padrées encontrados no cddigo
ECMAScript/JavaScript, ajudando a manter a qualidade do cddigo.
Snippets ES7 React/Redux/React-Native: Fornece snippets JavaScript e React para um
desenvolvimento mais rapido.
Importacdo automatica: Localiza e importa automaticamente componentes, funcdes e
outros mddulos React no seu cddigo.
Preservacao de maiusculas e minisculas com varios cursores: Preserva as mailsculas e
minusculas do texto quando se utiliza a edicao com varios cursores no VSCode.
Erros bonitos do TypeScript: Melhora as mensagens de erro do TypeScript para que sejam
mais legiveis e informativas.
icones do VSCode: Adiciona icones a ficheiros e pastas no explorador do VSCode para uma
melhor organizagao visual.
Docker: Fornece suporte para desenvolver e gerenciar contéineres Docker diretamente no
VSCode.
Corretor ortografico de cédigo: Um verificador ortogréfico basico para cédigo e
comentarios, ajudando a detetar erros de digitacao.
Tailwind CSS IntelliSense: Fornece sugestdes inteligentes e preenchimento automatico
para as classes CSS do Tailwind no seu cédigo.
e APIREST da Gateway API: Utilizada para enviar, programar e cancelar mensagens
SMS programadas e obter estatisticas sobre SMSs enviados.
PostgreSQL: Sistema de gestdo de bases de dados relacionais utilizado para armazenar e
gerir dados de aplicagdes.
No macOS, foi utilizado o Postgres.app
No Windows, o PostgreSQL foi descarregado do sitio Web oficial

Luigi Matteo Girke 7 Maio 2025


https://code.visualstudio.com/
https://gatewayapi.com/docs/apis/rest/
https://postgresapp.com/
https://www.postgresql.org/download/

Sistema de envio de SMS com interface web

e Figma: Programa de design utilizado para criar protétipos de design de aplicacdes,
wireframes e interfaces de utilizador de brainstorming.

e Obsidiana: Aplicacao de anota¢des baseada em Markdown utilizada para escrever
os relatdrios e tomar notas ao longo do projeto.

e Microsoft Word: Software de processamento de texto utilizado para a formatacao
e finalizagdo dos relatdrios.

e Git: Sistema de controlo de versdes utilizado para acompanhar as altera¢des de
cddigo ao longo do tempo. Nos sistemas operativos baseados em UNIX, vinha pré-
instalado. No Windows, no entanto, precisava de ser instalado separadamente.

e GitHub: Plataforma baseada na Web para alojar e colaborar em repositérios Git,
utilizada para sincronizar cédigo entre diferentes dispositivos.

e Bun: Gerenciador de pacotes usado para instalar as dependéncias do projeto e os
componentes do ShadCN

e Docker: Plataforma de contentorizac¢do utilizada para criar, implementar e gerir
aplicagbes em ambientes isolados.

e Nginx: Servidor Web de elevado desempenho e servidor proxy inverso utilizado
para servir aplicacdes Web e gerir o equilibrio de carga.

e dbdiagram.io: Gerador de diagramas de bases de dados baseado na Web utilizado
para visualizar esquemas de bases de dados.

e ChatGPT: Modelo de linguagem de IA utilizado numa interface baseada na Web
para ajudar a encontrar e corrigir erros de cddigo.

Deepl: Ferramenta de traducao com recurso a A utilizada na interface baseada na Web
para traduzir relatdrios para portugués.

No macOS, as aplicagdes foram instaladas utilizando o homebrew se o respetivo cask
estivesse disponivel.

Dependéncias

Dependéncias

Luigi Matteo Girke 8 Maio 2025


https://www.figma.com/downloads/
https://obsidian.md/download
https://www.microsoft.com/en-us/microsoft-365/download-office#download
https://git-scm.com/downloads
https://github.com/
https://bun.sh/
https://www.docker.com/get-started/
https://nginx.org/en/download.html
https://dbdiagram.io/home
https://duck.ai/
https://brew.sh/

Sistema de envio de SMS com interface web

e @hookform/resolvers: Integracdao do resolvedor para react-hook-form.

e (@radix-ui/react-*@~1: Componentes de IU acessiveis, personalizaveis e sem
estilo.

e (@svgr/webpack: Transforma SVGs em componentes React.

e activedirectory2: biblioteca cliente do Active Diretory.

e class-variance-authority: Utilitario para gerir nomes de classes CSS.

e clsx@"2: Utilitario para aplicar condicionalmente nomes de classes CSS.

e cmdk: Componente de menu de comandos acessivel.

e date-fns@"4: Biblioteca abrangente de utilitarios de data.

e i18next@~"24: Estrutura de internacionalizacao para browser e Node.js.

e 1i18next-resources-to-backend: Adaptador de backend parai18next.

e iron-session@”"8: Gerenciamento seguro de sessdes para aplicagdes Next.js.

e libphonenumber-js: Biblioteca JavaScript para analise, formatacdo e validacao de
ndmeros de telefone.

e lucide-react: Biblioteca de icones React.

e next-il8n-router: Roteamento internacionalizado para Next.js.

e next-themes: Suporte de temas para Next.js.

e next@15: Estrutura React para criar aplica¢des renderizadas no servidor.

e né: Tempo de execuc¢do do JavaScript.

e pg: Cliente PostgreSQL para Node.js.

e react-day-picker: Componente de selecdao de datas acessivel.

e react-hook-form@*7: Formuldrios extensiveis e de alto desempenho com
validagao facil.

e react-il8next: Internacionaliza¢do para React.

e react-loading-skeleton: Carregadores de esqueleto para React.

e react-resizable-panels: Layout de painel redimensiondvel para React.

e react@19: biblioteca JavaScript para a construcao de interfaces de utilizador.

e recharts@"2: Biblioteca de graficos compostdvel construida sobre componentes
React.

e sonner: Sistema de notificacdo para React.

e tailwind-merge: Utilitario para mesclar classes CSS do Tailwind.

e tailwindcss-animate: Utilitario para adicionar animagdes as classes CSS do
Tailwind.

e zod@"3:Valida¢ao de esquemas com inferéncia estatica de tipos.

Dependéncias de desenvolvimento

Luigi Matteo Girke 9 Maio 2025



Sistema de envio de SMS com interface web

typescript@”5: Superconjunto de JavaScript para tipagem estdtica opcional.
tailwindcss@*3: Estrutura CSS de primeira utilidade para criar rapidamente

designs personalizados.

eslint@"8: Linter JavaScript plugavel.

postcss@~8: Ferramenta para transformar CSS com JavaScript.
@types/react@19: Definicdes TypeScript para React.

@types/node@”~20: Definicdes TypeScript para Node.js.
eslint-config-next@15: Configuracdo do ESLint para projectos Next.js.
@types/react-dom@19: Defini¢bes TypeScript para React DOM.

@types/validator@~13: Definicdes TypeScript para a biblioteca validator.js.

il8nexus-cli@"3: Ferramenta CLI para gerir recursos i18n.

Uma lista de todas as dependéncias e suas versdes exatas pode ser encontrada no
package.json.

Tipografia

O TypeScript era um superconjunto de JavaScript com tipagem estatica, que ajudava os
programadores a detetar erros precocemente e a melhorar a qualidade do cédigo.
Melhorou a experiéncia de desenvolvimento com funcionalidades como o preenchimento
automatico e a inferéncia de tipos, tornando-o ideal para o projeto.

O TypeScript quase ndo foi alterado, mas algumas regras foram modificadas. As
configuragcdes podem ser vistas e modificadas no tsconfig.json localizado em /.

Durante o tempo de compila¢dao, o comando a seguir foi util. Ele usou o compilador
TypeScript para verificar todo o projeto em busca de erros de tipo, que precisavam ser
corrigidos para executar uma compilagao.

tsc --noEmit

Para obter mais informagdes sobre o TypeScript, foi consultada a documentacao oficial.
Para a sua utilizagdo no contexto do Next.js, foi consultada esta documentacao.

Luigi Matteo Girke 10

Maio 2025


https://www.scaler.com/topics/typescript/static-typing-vs-dynamic-typing/
https://www.typescriptlang.org/docs/
https://nextjs.org/docs/pages/api-reference/config/typescript

Sistema de envio de SMS com interface web

ESTRUTURA DO FICHEIRO

Muita da estrutura de ficheiros existente foi escolhida por ser obrigatdria no Next.js ou por
ser uma conven¢ao comum. Algumas pessoas colocam /1ib, /components, /contexts e
/hooks dentro do diretério /app. No entanto, para manter o diretério app o mais limpo
possivel, esses diretdrios foram colocados fora.

e /app/ continha todas as paginas e estilos da aplicagdo, bem como tipos de letra e
uma fungdo de internacionaliza¢dao para carregar tradugdes do lado do servidor.

e /components/ contém todos os componentes React.

e /contexts/ contém todos os contextos React.

e /hooks/ contém todos os hooks personalizados do React.

e /lib/ continha todas as fun¢es utilitarias, esquemas zod e a maior parte do
cddigo do lado do servidor.

e /locales/ continha todas as tradug¢des i18next.

e /node_modules/ continha todos os mdédulos do né (esta pasta nunca foi tocada).

e /public/ erauma convencdo de ficheiros Next.js para activos estaticos como
imagens e icones.

e /types/ contém todos os tipos de TypeScript.

e / contém todos os ficheiros de configuragao.

e /.next erauma pasta oculta gerada pelo Next.js sempre que um servidor de
compilagao ou desenvolvimento era iniciado.

e /.vscode: era especifico do Visual Studio Code e continha algumas defini¢des de
espaco de trabalho para um plug-in de correcao ortografica.

Encaminhamento baseado em ficheiros Next.js

Na seccdo "/app diretory", muitas convencdes de ficheiros Next.js foram mencionadas
com ligacdes para a documentacao Next.js, mas os principios basicos e as razdes para a
estrutura de ficheiros escolhida foram explicados aqui.

Convengdes da pasta Next.js:

Os diretdrios envoltos em parénteses rectos como /app/[locale] representavam
segmentos de rota dinamicos, permitindo que as paginas e os componentes no seu
interior recuperassem os seus valores (neste caso, o locale atual). Todas as paginas
estavam localizadas em /app/[locale], uma vez que toda a aplicagdo necessitava de
acesso ao idioma atual para que a internacionalizacdo funcionasse.

Os diretdrios entre parénteses rectos como /app/(root) serviam como grupos derotas e
eram invisiveis para o utilizador final. Funcionavam como diretdrios normais para agrupar
paginas diferentes. Neste projeto, foram utilizados para agrupar paginas com o mesmo
layout, garantindo que o layout.tsx nesse diretdrio se aplicava a todas as outras paginas
sem criar um segmento de rota real como etpzp-sms.com/(root).

Os diretdrios com nomes padrao contendo um page.tsx representavam os nomes dos
segmentos de rota. Por exemplo, /app/contacts/page.tsx estava acessivel em etpzp-
sms.com/contacts.

Luigi Matteo Girke 11 Maio 2025



Sistema de envio de SMS com interface web

Os diretdrios que comecavam por um sublinhado indicavam rotas desactivadas (ndo
acessiveis ao utilizador final). Funcionam como comentdrios de cédigo. Neste projeto,
/_seed/page.tsx foi utilizado apenas durante o desenvolvimento.

Convengdes do ficheiro Next.js:
Os ficheiros page.tsx representam paginas acessiveis pelo nome do diretdrio acima.

Os ficheiros layout.tsx servem como esquemas aplicados a todas as paginas no mesmo
diretdrio e diretdrios aninhados.

o loading.tsx utilizou o React Suspense nos bastidores para exibir uma IU
de fallback enquanto a pagina estava sendo carregada.

Os ficheiros error.tsx implementaram limites de erro que capturaram erros inesperados
no mesmo diretdrio, tratando erros inesperados ao fornecer uma IU de recurso.

Luigi Matteo Girke 12 Maio 2025



Sistema de envio de SMS com interface web

not-found.tsx eraapresentado sempre que ocorria um erro 404.

0
A maioria destas carateristicas foi escolhida por melhorar drasticamente a

experiéncia do utilizador.

Diretoério /app

EXPLORER: ETP2ZP.SMS

loading tsx
pPage.tsx
- sent
loading tsx
page tsx
& trash
loading tsx
pPage.tsx
QTOr.ERX

layout tsx

layout. tsx
page.tax
Byout.tex
page tsx
& dashboard

As Disket-Mono-Regular. ttf

As Luthier-Bold.ttf

ayout.tsx

not-found tax

o scattered-profies. module css

/app/favicon.ico (convencdo do ficheiro Next.js): Ficheiro de imagem para

definir o icone da aplicacdo no separador do browser
/app/globals.css: Ficheiro CSS para varidveis css utilizadas globalmente

Luigi Matteo Girke 13 Maio 2025


https://nextjs.org/docs/app/api-reference/file-conventions/metadata/app-icons#image-files-ico-jpg-png

Sistema de envio de SMS com interface web

e /app/il8n.js (convencao de ficheiro i18next): ficheiro de configura¢do i18next
para carregar tradu¢des do lado do servidor. Contém o cddigo deste tutorial

e /app/layout.tsx (convencdo do ficheiro Next.js): Layout raiz da aplicacdo

e /app/not-found.tsx (convencdo do ficheiro Next.js): Pagina global 404 ndo
encontrada

e /app/scattered-profiles.module.css: Mddulos CSS utilizados no componente
message-display.tsx

e /app/[locale] (convencdo do ficheiro Next.js): Segmento de rota dindmico para o
idioma atual

o /app/[locale]/(root) (convencao do ficheiro Next.js): Grupo de rotas
para paginas que utilizam o painel de navegacao redimensiondvel (ver
/app/[locale]/(root)/layout.tsx).

= /app/[locale]/(root)/(message-layout) (convencao do ficheiro
Next.js): Grupo de rotas para paginas semelhantes que usavam as
mesmas traducdes e precisavam de acesso aos contactos (ver
/app/[locale]/(root)/(message-layout)/layout.tsx),
partilhando a mesma pagina de erro. Até a data, todas estas paginas
utilizavam o layout de trés colunas com painéis redimensionaveis.

= /app/[locale]/(root)/(other) (convencao do ficheiro Next.js):
Grupo de rotas para paginas especiais que nao partilhavam as
mesmas carateristicas. Uma vez que este diretdrio nao tinha um
layout, os ficheiros aderiram ao layout acima (ver
/app/[locale]/(root)/layout.tsx).

e /app/fonts: Diretdrio para fontes locais, importadas no layout raiz
(/app/layout.tsx). Para obter informacdes sobre tipos de letra locais, foi
consultada a documentacao Next.js.

As diretorias normais nao mencionadas aqui sao as paginas, que foram explicadas
no capitulo "PAGES".

/ 1lib diretoério

Luigi Matteo Girke 14 Maio 2025


https://i18nexus.com/tutorials/nextjs/react-i18next
https://nextjs.org/docs/app/getting-started/layouts-and-pages#creating-a-layout
https://nextjs.org/docs/app/api-reference/file-conventions/not-found
https://nextjs.org/docs/app/building-your-application/routing/dynamic-routes
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/getting-started/images-and-fonts#local-fonts

Sistema de envio de SMS com interface web

EXPLORER: ETPZP-SMS
v & lib
& actions
M _testing
contact.actions.ts
message.actions.ts
message.create.ts
user.actions.ts
v @a auth
& activedirectory
authenticate.ts
group.ts
user.ts
config.ts
index.ts
sessions.ts

8 db

€ _seed-data.sql

contact.ts
dashboard.ts
Dockerfile
general.ts
index.ts
message.ts
recipients.ts
seed.sql
form.schemas.ts
theme.colors.ts

utils.ts

A pasta lib armazenava fungdes utilitarias reutilizaveis e a maior parte do cédigo do lado
do servidor. Isso inclui 0 arquivo semente do banco de dados e as func¢des de busca,
configuracao de autenticacao, a¢des do servidor de autenticacao e a¢6es do servidor para
alterar dados e fazer chamadas de API, compartilhadas entre diferentes componentes e
paginas. Embora o cédigo de autenticacao contenha ac¢bes do servidor, foi colocado no
seu préprio diretdrio (/1ib/auth) para separar o tépico e manter o diretdrio de ac¢des
(/1ib/actions) menos confuso.

e /lib/:
o form.schemas paraesquemas zod
o theme.colors paraa configuragao do tema Tailwind e Next.js

Luigi Matteo Girke 15 Maio 2025



Sistema de envio de SMS com interface web

o utils.ts parafuncgdes utilitarias utilizaveis em qualquer lugar
O diretdrio /1ib/actions continha ac¢bes do servidor e um diretdrio de teste para efeitos
de teste de desenvolvimento para simular chamadas API.
[l /lib/auth tinha cédigo de autenticagdo e um diretdrio chamado
activedirectory, que incluia fun¢bes que envolviam o pacote activedirectory?2.
71 0 /1lib/db tinha um ficheiro para semear a base de dados (/1ib/db/seed.sql)
com o esquema inicial da base de dados, funcdes de obtencao da base de dados e
um Dockerfile para semear a base de dados Postgres executada dentro do
contentor Docker durante a produgao.

Diretdrio /componentes

Este diretdrio continha todos os componentes React organizados em subdirectdrios e os
componentes ShadCN.

Luigi Matteo Girke 16 Maio 2025



Sistema de envio de SMS com interface web

e /components/admin-dashboard: Contém os componentes utilizados no painel de
controlo administrativo e foram colocados numa diretoria separada para separar o
topico

e /componentes/modais: Contém os componentes modais/popup e foram colocados
numa diretoria separada para separar o topico

e /components/shared: Contém componentes partilhados que foram muito
utilizados

e /components/ui: Componentes ShadCN mantidos: Os ficheiros no seu interior
permaneceram praticamente inalterados, exceto no que diz respeito a pequenos
ajustes de cor, que envolveram a substituicao de cores codificadas por varidveis
CSS.

/ diretério (ficheiros de configuracao)
e components.json foiusado para a configuracao do ShadCN para adicionar
componentes no mesmo estilo sempre que um novo fosse adicionado a partir da
CLI.
e tsconfig.json era o ficheiro de configuracao TypeScript.
e tailwind.config.ts eraparaas CSS do Tailwind.
e .dockerignore foi utilizado para especificar ficheiros a ignorar durante as
implementacdes do Docker.
e .env erao ficheiro da varidvel de ambiente.
e .env.docker era o ficheiro de varidveis de ambiente especifico do Docker.
e .env.example serviu como um exemplo de varidveis de ambiente.
e eslintrc.json era o ficheiro de configuracao do ESLint.
e .gitignore foiusado para especificar ficheiros a ignorar no Git.
e .prettierignore foiutilizado para especificar ficheiros a ignorar no Prettier.
e .bun.lock erao ficheiro de bloqueio para o gestor de pacotes Bun.
e docker-compose.yaml foiusado para a configuracao do Docker Compose.
e Dockerfile era o ficheiro para construirimagens Docker.
e eslint.config.mjs era o ficheiro de configuracao do ESLint em formato de
mddulo.
e global.config.ts foi utilizado para definicdes de configuracao global; foi
adicionado para constantes JavaScript utilizadas em varios componentes.
e 118n.config.ts erao ficheiro de configura¢dao para a internacionalizagao.
e middleware.ts foi utilizado para as fun¢bes de middleware.
e next.config.ts erao ficheiro de configura¢ao para Next.js com trés
modificacdes:
o output: standalone foi utilizado para otimizar o tamanho da compilagao,
filtrando ficheiros desnecessarios.
o compress: false foidefinido para as definicbes de compressao.
Foi adicionada uma configuragao do webpack para carregar SVGs locais para estilizagao
dinamica.

Luigi Matteo Girke 17 Maio 2025


https://ui.shadcn.com/docs/components-json

Sistema de envio de SMS com interface web

e nginx.conf era o ficheiro de configuracao para o Nginx.

e package.json era o ficheiro para gerir as dependéncias do projeto.

e README.md era o ficheiro de documentacao.

e postcss.config.mjs foiincluido para a configuracao do PostCSS e ndo foi
modificado.

e next-env.d.ts erao ficheiro de definicao TypeScript para Next.js e ndo foi
modificado.

Luigi Matteo Girke 18 Maio 2025



Sistema de envio de SMS com interface web

FRONT-END
Estilo

Para além dos componentes ShadCN pré-estilizados, foi utilizado o Tailwind CSS - uma
estrutura CSS de utilidade primaria que permitiu um desenvolvimento rapido da IU -
juntamente com o CSS padrdo. Os estilos em linha também foram usados em alguns casos,
particularmente porque as classes Tailwind geradas dinamicamente, como bg-
${chosenColor}, ndo funcionariam devido ao facto de o Tailwind purgar classes nao
utilizadas na producdo e nao reconhecer nomes de classes criados dinamicamente.

CSS padrao
o globals.css continha classes CSS e varidveis CSS utilizadas globalmente.
o scattered-profiles.module.css eram mddulos CSS utilizados no painel
de visualizagao de mensagens nas paginas de visualizacdo de mensagens.
Foram fornecidas mais informac¢6es no capitulo "PAGES".

O TailwindCSS foi utilizado durante todo o projeto. Serviu como a principal fonte de
verdade e foi recomendada a utilizacao do Tailwind sempre que possivel.

O Inline-CSS foi utilizado minimamente nos casos em que ndo existia outra op¢ao ou em
que o estilo era muito especifico e seria anulado se fosse utilizado o CSS padrao.

ShadCN com temas dinamicos

A ShadCN era uma biblioteca de componentes de IU concebida para a criacao de
aplicagdes Web modernas com temas personalizdveis e centrada na experiéncia do
utilizador.

Inicializar o projeto:

Foi criado um novo projeto Next.js com o Shad CN Ul.

Instalar dependéncias:
o next-themes foiinstalado para alternar entre os modos claro e escuro.
o O Lucide React foiinstalado para osicones.

Foram adicionados os plugins Tailwind e Prettier VSCode para formatagao.
Configurar CSS global (/app/globals.css):

As varidveis CSS da pagina de temas do Shad CN Ul foram copiadas para o ficheiro CSS
global.

Definir as cores do tema (theme.colors.ts):

Foi criada uma interface para cores tematicas e as cores disponiveis foram definidas com
base nos temas do Shad CN Ul.

Converter variaveis CSS (/1ib/theme.colors.ts):
As varidveis CSS da cor do tema do Shad CN Ul foram convertidas num objeto JavaScript.
Criar funcdo de tema (/1ib/theme.colors.ts):

Foi desenvolvida uma fun¢ao para substituir varidveis CSS globais para alteracdes de cor
do tema em tempo real.

Contexto e fornecedor de dados tematicos (theme-data-provider.tsx):

Foi implementado um estado para evitar a oscilagao entre as cores predefinidas e as cores
guardadas no carregamento inicial.

Luigi Matteo Girke 19 Maio 2025



Sistema de envio de SMS com interface web

Foi exportada uma funcao auxiliar para aceder ao contexto do tema em toda a drvore de
componentes.

Foi criado um componente Theme Data Provider para gerir o estado do temae o
armazenamento local.

Envolvimento com o fornecedor do tema seguinte (theme-data-provider.tsx):

O fornecedor de dados do tema foi encapsulado dentro de um fornecedor do tema
seguinte no esquema de nivel superior.

Com a configuragao basica implementada, foi criado um botdo para alternar entre os
modos claro e escuro, ligando-o a func¢ao setTheme. Foi desenvolvido um menu pendente
para selecionar as cores do tema, utilizando as cores definidas nos temas.

Para mais informagdes sobre estes comutadores de ajuste frontal, consultar a pagina de
ajuste no capitulo "PAGINAS".

Painéis redimensionaveis em React

Esta biblioteca foi criada para componentes React para grupos de painéis
redimensionaveis/layouts. Foi utilizada para obter um layout com 2 ou 3 painéis
horizontais, e foi escolhida pela sua facilidade de utilizacao e boa integracao com o
ShadCN.

Os cdlculos para manter os tamanhos das diferentes colunas foram dificeis mas
necessarios. Foi feito armazenando a contribui¢ao percentual de cada coluna como uma
matriz nos cookies e recuperando-a no esquema de raiz para a transmitir aos
componentes. O painel mais a esquerda dos 3 foi o mais dificil de configurar, uma vez que
também tinha a funcionalidade de colapsar quando era atingida uma determinada largura.

Componentes personalizados relevantes incluidos:

e resizable-panel-wrapper, que envolveu todos os componentes ResizablePanel
ShadCN, s6 foi utilizado uma vez no componente app-1layout.tsx.

e 0 painel infantil tratava ele préprio da sualdgica de dimensionamento e era
utilizado em quase todas as paginas que utilizavam a disposicao baseada em varios
painéis.

Havia também a op¢do de fazer um esquema de 2 colunas sem painéis redimensionaveis,
mas a empresa quis aceitar o desafio deste esquema Unico, que raramente era visto na
Web.

Luigi Matteo Girke 20 Maio 2025



Sistema de envio de SMS com interface web

PAGINAS
Iniciar sessdo (/login)

A pagina de inicio de sessdo foi facil e rapida de implementar. Foi colocada fora dos grupos
de layout principais, mas dentro de /app/[locale]/, 0 que era necessario para que tivesse
o locale atual.

A pagina continha um formuldrio simples gerido principalmente por um componente
(/components/login-form.tsx). Utilizava o componente de cartdo ShadCN e incluia 2
campos: um para o e-mail e outro para a palavra-passe. A entrada da palavra-passe
continha um botdo para alternar o seu tipo entre "texto" e "palavra-passe", fornecendo o
comportamento cldssico dos botdes de mostrar palavra-passe em formuldrios Web.

Envio de formulario no cliente

Uma vez que o redireccionamento em caso de sucesso do lado do servidor causava
problemas, foi decidido utilizar o redireccionamento do router do lado do cliente, levando
a implementacao do "Cendrio 2" encontrado na sec¢do "Configuracdes de formularios" do
capitulo "REGRAS PARA A CONSISTENCIA". Primeiro, mostrava os erros através de
brindes. Depois, se a resposta do servidor fosse bem sucedida, sincronizava o
armazenamento local com as defini¢6es da base de dados do utilizador e redireccionava
programaticamente para /. Também mantinha um estado pendente para desativar
elementos durante a submissao.

Submissao do formulario no servidor

O formuldrio chamou a acdo do servidor de inicio de sessdo (/lib/auth/index.ts),
cuja légica foi explicada na sec¢do "Fluxo de autenticacdo" do capitulo "AUTENTICACAO E
AUTORIZAGCAO".

Nova mensagem (/new-message)

A nova pagina de mensagens foi, de longe, a pagina mais complicada de construir. Para
navegar até ela, basta clicar no grande botao de cor primaria na barra lateral esquerda. O
formuldrio em si na pagina foi tratado em /components/new-message-form.tsx e
/components/recipients-input.tsx. No entanto, a légica principal e os estados foram
armazenados num contexto dedicado em /contexts/use-new-message.tsx para
separacdes.

O formuldrio de nova mensagem era composto por quatro campos principais visiveis:

Campo do remetente: Campo estatico desativado que foi codificado para ser "ETPZP".
Campo Destinatarios: componente de entrada personalizada complexa.

Campo Assunto: este campo também altera o titulo quando este é alterado.

Campo de mensagem: Area de texto utilizada para guardar o contetido da mensagem.

A pagina também continha alguns outros botdes:

O botao Guardar rascunho foi utilizado para mostrar o estado atual do rascunho
(guardado ou ndo, com os respectivos erros na dica de ferramenta) e também permitiu ao
utilizador guardar o rascunho manualmente.

Luigi Matteo Girke 21 Maio 2025



Sistema de envio de SMS com interface web

O ecra completo disponivel no ambiente de trabalho permitia ao utilizador ocultar outros
elementos da pagina.

Fechar era uma ligagdo para /sent.

Descartar (no canto inferior esquerdo) era uma ligacdo para /enviar que também
apagava o rascunho quando era clicado.

Enviar (no canto inferior direito) mostrava se a mensagem estava agendada ou se devia
ser enviada agora e submetia o formuldrio. Também tinha um pequeno menu lateral que
permitia ao utilizador agendar o envio da mensagem.

Apresentacdo do formulario no cliente

Seguiu o0 "Cenario 2" encontrado na sec¢ao "Configuragdes de formularios" no capitulo
"REGRAS DE CONSISTENCIA". Toda a valida¢do do lado do cliente e a exibi¢do de erros do
servidor foram tratadas na fun¢do handleSubmit com brindes para mensagens de erro. O
servidor retornou varios sinalizadores, strings de traducao e dados que decidiram como os
erros foram exibidos e traduzidos no front-end. No caso de erros zod, os erros eram
repetidos e exibidos como mensagens de brinde separadas. Cada entrada também tinha
certas animag6es como vermelho a piscar ou apenas um sublinhado vermelho ou um
espaco reservado vermelho para mostrar aos utilizadores o que causou o erro. Também
mantém um estado pendente para desativar elementos durante a submissdo do
formulario.

Envio de formulario no servidor

Existia uma agdo do servidor para enviar mensagens chamada sendMessage localizada em
lib/actions/message.create.ts. Afungdo comecou por efetuar um par de verificagbes
de seguranga que, quando falhavam, faziam com que a fun¢ao saisse mais cedo:

A autenticacdo do utilizador foi verificada (linha 22 - 30)

A validacdo do campo foi efectuada com zod (linhas 32 -48)

Foi efectuada uma validacdo personalizada mais aprofundada para os destinatdrios (linhas
50 - 60 e linhas 259 - 276)

Em seguida, os dados foram preparados para a chamada da APl e a API foi chamada
utilizando fetch (linha 62 - 100).

Depois disso, comecou a légica da base de dados.

Foi feita uma verificacdo principal para ver se a mensagem ja tinha sido guardada na base
de dados como rascunho, caso em que o rascunho foi atualizado (linha 103 - 157). Caso
contrdrio, era inserida uma nova mensagem (158 - 200). Foi guardado o maximo de
informac¢des sobre a mensagem, incluindo os erros da API, caso existissem.

Apds a insercao da mensagem, os destinatarios foram tratados separadamente (202 - 225).
Os destinatdrios antigos existentes eram primeiro eliminados e, em seguida, eram
inseridos novos destinatarios.

As respostas eram enviadas de volta ao cliente com cadeias de tradugao especificas para
cada caso, que eram traduzidas no lado do cliente (linhas 228 - 257).

Entrada de destinatarios personalizada

O componente em /components/recipients-input.tsx era mais do que um simples
input, era um componente personalizado. Como primeira funcionalidade, permitia ao
utilizador escrever qualquer cadeia de caracteres e premir enter ou tab para a adicionar

Luigi Matteo Girke 22 Maio 2025



Sistema de envio de SMS com interface web

como novo destinatario. O sistema fazia uma validacao do lado do cliente para detetar o
que poderia estar errado com o nimero.

Como segunda grande carateristica, aparecia uma janela quando o utilizador comecava a
escrever, mostrando os destinatarios que podia inserir. Este elemento personalizado
absolutamente posicionado comportava-se da seguinte forma:

Nem sequer era apresentado se ndo existissem destinatarios ou contactos.

Se a entrada estivesse vazia mas focada, a janela continha "destinatarios recomendados"
que eram calculados com base na utilizacdo na dltima semana, bem como se tinham sido
guardados como contactos ou ndo. Se nao existirem destinatdrios suficientes que tenham
sido utilizados nas mensagens, o resto foi preenchido com contactos nao utilizados, caso
existissem.

Se a entrada ndo estivesse vazia e focada, a janela continha os "resultados da pesquisa”,
que eram os destinatdrios filtrados e os contactos baseados no valor que o utilizador
colocou na entrada.

O utilizador pode adicionar estes destinatarios/contactos a partir do seu teclado,
navegando com as setas para cima e para baixo e inserindo-os utilizando enter ou tab. Ou
pode simplesmente clicar no destinatdrio da sua escolha.

Ao adicionar um, este era removido dos resultados de pesquisa ou recomendacgdes
simultaneas, uma vez que o utilizador nao deveria poder adicionar o mesmo destinatario
duas vezes. No entanto, se o utilizador tentasse introduzir um niimero de telefone que ja
existisse nos destinatarios, este caso também era tratado e era apresentada uma
mensagem de erro como brinde.

Sistema de rascunho automatico

Optou-se por que, apds um periodo de arrefecimento, o rascunho fosse automaticamente
guardado, desde que pelo menos um campo tivesse um valor. Se 0os campos estivessem
todos vazios, o rascunho existente era novamente eliminado da base de dados.

Aldgica de gravacao do rascunho foi tratada na funcdao handleSaveDraft em

Luigi Matteo Girke 23 Maio 2025



Sistema de envio de SMS com interface web

/components/new-message-form.tsx

handleSavedraft =

save =

JSON . stringify v yft) Iem

JSON . stringify v ftRef . current

setDraft((prev) ({ ...prev, pending
aftid
setDraft((prev) ({ . v, pending

setDraft((prev
prev,
id f1 L
LastSaveSuccessful
)

discard = QO

t deleteMessage

toString());
.delete

.replace(pat . toString());

(messagelsEmpty()) {
discerd

} {

vel);

useEffect(()

handleSaveDraft

}

Se o componente estivesse montado, era chamado a partir de um useEffect que era
acionado por uma constante que recebia altera¢bes apds o debounce sem alteracdes,
accionando o useEffect apenas apds esse useDebounce. Foi criado um gancho
personalizado para este comportamento em /hooks/use-debounce.tsx (linha 252 -255).
A func¢do verificou entao se a mensagem estava vazia e chamou a fun¢do correta em
conformidade (linhas 245 - 250).

Afungao de guardar verificou se o rascunho atual tinha sido alterado em relagao ao
rascunho anterior, guardou-o se o tivesse feito, actualizou o ID e o0 estado do rascunho
com base no resultado de guardar e modificou o URL para refletir o novo ID do rascunho
enquanto revalidava o servidor (208 - 231).

A funcdo de eliminac¢do eliminou o rascunho atual da base de dados, caso tivesse um ID,
e actualizou o URL para remover o ID do rascunho, o que revalidou o servidor e voltou a
renderizar o componente (234 - 243).

Modais
Esta pagina utilizou os seguintes modais:

Luigi Matteo Girke 24 Maio 2025



Sistema de envio de SMS com interface web

e schedule-modals.tsx continha um modal para selecionar uma data de calenddrio
e outro para avisar o utilizador de que a data era invalida.

e recipient-info.tsx era mostrado quando um utilizador clicava numa ficha de
destinatdrio, apresentando informacdes adicionais sobre o destinatario (ou
contacto) selecionado.

Desafios

Em primeiro lugar, havia um problema com a gravagao do projeto. Sempre que o URL era
atualizado (mesmo que apenas com os parametros de pesquisa do URL), fazia com que
todos os componentes dessa pagina fossem novamente renderizados, uma vez que o
componente do servidor de nivel superior recuperava o parametro message_id do URL
para ir buscar os dados do rascunho. Esta nova apresentacao levou a que todos os campos
perdessem os seus valores, incluindo popups ou menus popover anteriormente abertos,
que também ficavam ocultos. Para resolver este problema, foi criado um contexto que
mantinha todos os valores durante as novas apresentacdes.

Além disso, a criagao da janela de destinatarios sugeridos com todas as suas
funcionalidades e a garantia de que ndo tinha erros demorou muito tempo. Era dificil
encontrar uma configuracao que tivesse sempre os valores mais actualizados e, a medida
que o new-message-context aumentava, tornava-se cada vez mais dificil trabalhar com ele.

Definicoes (/settings)

Determinar a arquitetura do cédigo para as defini¢des foi um desafio devido a falta de
orientagOes claras. Preferindo actualiza¢des automaticas sempre que uma defini¢ao era
modificada, os botdes de guardar foram evitados. A pagina de defini¢bes apresentava uma
configuracao personalizada em que algumas defini¢Ges eram geridas por bibliotecas e
outras com uma implementag¢do personalizada.

Embora a maioria das configuracdes tenha sido salva no armazenamento local, os dados
do tema e o idioma atual foram armazenados em cookies devido a forma como as
bibliotecas os manipularam. No entanto, a atualiza¢ao direta do armazenamento local nao
actualizava os componentes React. Para resolver isso, um contexto de configura¢des foi
criado (/contexts/use-settings.tsx), que gerenciava o estado das configuracdes e
inclufa varias fun¢bes auxiliares.

Foi criada uma agao de servidor chamada updateSetting que actualizava as definices
individuais uma de cada vez (/1ib/actions/user.actions.ts), o que levou a criacdo de
varios formuldrios. Esta abordagem, embora resultasse em mais formuldrios, permitia uma
gestao mais facil através de uma légica centralizada (/components/settings-item.tsx).

Componentes reutilizaveis

Devido a natureza repetitiva das definicbes, foram desenvolvidos componentes
reutilizaveis: um SectionHeader para as categorias de defini¢bes e um SettingsItem
para as defini¢des individuais.

O componente SectionHeader (/components/headers.tsx) era mais simples, uma vez
que era necessario passar o titulo e a legenda a apresentar, juntamente com o nome da
etiqueta de ancoragem.

Luigi Matteo Girke 25 Maio 2025



Sistema de envio de SMS com interface web

O componente SettingsItem (/components/settings-item.tsx) era mais complexo,
pois continha todo o tratamento de erros e a lIdgica pendente. Tornou-se personalizavel
adicionando uma prop renderInput, que permitia a passagem de HTML completamente
personalizado para entrada, enquanto ainda fornecia acesso aos manipuladores de envio
do banco de dados e outros dados importantes. Cada um destes formularios aderiu ao
"Cendrio 2" encontrado na seccao "Configura¢des de formuldrios" do capitulo "REGRAS
DE CONSISTENCIA".

Vale a pena mencionar que o alterador de idioma utilizava a fung¢ao
updatelLanguageCookie, que ndo podia ser implementada sem utilizar o router Next.js
para substituir e atualizar internamente. Devido a este refrescamento interno, causava um
reset, necessitando de um componente prdprio devido ao aumento da complexidade da
alteragdo da lingua.

Consideracoes

Inicialmente, considerou-se a possibilidade de utilizar um Unico formulario para todas as
defini¢Ges, mas este foi rejeitado devido a problemas de desempenho e legibilidade. Um
unico formuldrio complicaria o tratamento, exigindo que todo o conjunto de defini¢es
fosse enviado para o servidor para cada modificacao, o que dificultaria a validacao e o
tratamento de erros.

Painel de controlo do administrador (/dashboard)

O painel de controlo administrativo foi construido em ultimo lugar e inclufa informacgdes
estatisticas. Foi colocado fora dos grupos de apresentacao principais, mas dentro de
/app/[locale]/, o0 que era necessdrio para que tivesse a localiza¢ao atual.

A pagina so estava acessivel aos administradores, tal como explicado na sec¢do "Fluxo de
autenticacdo" do capitulo "AUTENTICACAO E AUTORIZAGCAQ". A biblioteca ReCharts foi
usada para os graficos de drea e de pizza responsivos. Para colorir o grafico de drea, ela
recuperou a cor primdria do tema e a cor do perfil. Para colorir o grafico de pizza, foi usada
a cor primdria de cada tema. A ordem foi aleatdria e as cores foram guardadas num estado
para que se alterassem durante as novas renderizacdes de componentes causadas por
utilizadores que modificassem a data.

A pagina inclufa:

3 cartdes na parte superior que mostram o nimero de mensagens enviadas em
comparagao com o passado.

Um grafico de drea que mostra as mensagens e o custo desde um determinado momento.
Uma opgao que alterava a data de inicio dos outros graficos.

Uma tabela de utilizadores classifica os utilizadores registados com base nas mensagens
enviadas desde a data de inicio selecionada. O parametro de pesquisa end_date também
poderia ser injetado no URL e a aplicagao aplicaria o filtro para uma data final.

Luigi Matteo Girke 26 Maio 2025



Sistema de envio de SMS com interface web

Um grafico circular que apresenta informagdes sobre os paises dos nimeros de telefone
dos destinatarios, obtidas a partir da API de estatisticas de etiquetas.

Adrren Danhbosrd s 4 o

Nty Yot e oen Yot B

0 9 34

St e 9

Filtragem de datas
A alternancia da data de inicio, encontrada em /components/admin-dashboard/message-
area-chart.tsx, era um menu pendente Selecionar que substituia o URL atual por um

Luigi Matteo Girke 27 Maio 2025


https://gatewayapi.com/docs/apis/statistics/

Sistema de envio de SMS com interface web

novo URL com parametros de pesquisa actualizados sempre que o seu valor era alterado.

<Select
defaultValue={searchParams.get("start_date") || DEFAULT_START_DATE
onValueChange={(value) => {
const params = new URLSearchParams(searchParams);

if (value) {
params.set("start_date", value);

} else {
params.delete("start_date");
}
if (params.has("end_date")) params.delete("end_date");
router.replace( ${pathname}?${params.toString()}", {

scroll: false, // persist current scroll for better v

B;

H

<SelectTrigger
className={cn(
buttonVariants({ variant: "outline" }),
"w-min appearance-none font-normal justify-between"
)}
f/ className="w-[160px] rounded-1g sm:ml-auto'

aria-label={t("common:aria_label-select")!}

<SelectValue placeholder={t("area_chart-3_months")} />
</SelectTrigger>
<SelectContent align={onMobile ? "center" : "end"}>
{selectItems.map((item) => (
<SelectItem key={item.date.getTime()} value={toISO(item.date)!>
{item.label}
</SelectItem>
)]
{selectedStartDate.IS0_date &%
IselectItems.some(
(item) => toISO(item.date) === selectedStartDate.ISO_date
) && (
<SelectItem value={selectedStartDate.IS0_date} disabled-
{selectedStartDate.isValid
? format!
new Date(selectedStartDate.ISO_date),
PT_DATE_FORMAT_NO_TIME

: selectedStartDate.ISO_date}

</SelectItem>
)}
</SelectContent>
159 'NSelectﬂ
Obtenc¢do de dados

Uma vez que se esperavam conjuntos de dados maiores apds algum tempo de
implementacao da aplicacao, foi utilizado o "Cenario 2" da seccao "Obtencao
conservadora de dados" em "REGRAS PARA A CONSISTENCIA". Isto significava que os
dados eram obtidos no componente de servidor de nivel superior, onde o parametro URL
era recuperado e passado para as fun¢des de obtencao de backend. Sempre que os
parametros do URL eram alterados, era feita uma nova renderiza¢ao, fazendo com que os

Luigi Matteo Girke 28 Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

dgglos fossem actualizados.

12 export default async function Dashboard({

13 searchParams,

A HE

15 searchParams?: Promise<{

16 // We expect both of these to be in IS0 8601 format (YYYY-MM-DD)
17 start_date?: string;

18 end_date?: string;

19 o

20 A

21 const s = await searchParams;

22 const dateRange = {

23 startDate: s?.start_date || format(DEFAULT_START_DATE, IS08601_DATE_FORMAT),
24 endDate: s?.end_date || format(new Date(), IS08601_DATE_FORMAT),
25 i

26 const messages = await fetchMessagesInDateRange(dateRange);

27 const users = await fetchUsers();

28 const countryData = await fetchCountryStats(dateRange);

29

30 return (

31 <AdminDashboard

32 messages={messages || []}

33 vsers={users || []}

34 countryStats={countryData}l

35 />

36 i

37 }

Os dados do componente do servidor de nivel superior foram entdo passados para o
componente do cliente AdminDashboard, onde foram efectuados calculos e formatacao de
dados adicionais.

export default function AdminDashboard({
messages,
users,
countryStats,
F: A
messages: LightDBMessagel[];
users: DBUser[];
countryStats: CountryStat[] | undefined;
B A
const { t } = useTranslation(["dashboard-page", "errors", "common"]);
const messageCounts = countMessages(messages);
const { settings } = useSettings();
const onMobile = useIsMobile();
const onBigScreen = false;

“J O

O o

(o]

N Gl N =

o

o~

~J

Il G G G N NN
0 o

return (

wrdasr AlTanalMamAaal£T Aav £T Aav AsT o

~ N
) b

Luigi Matteo Girke 29 Maio 2025



Sistema de envio de SMS com interface web

Desafios

Um dos desafios foi conseguir que o grafico circular funcionasse. Por vezes, nao era
apresentado. Mais tarde, descobriu-se que isso se devia a uma altura demasiado pequena,
pelo que foi adicionada uma altura fixa ao seu contentor principal.

Além disso, teve de ser implementada uma dica de ferramenta personalizada para o
grafico circular, que foi inspirada na dica de ferramenta do grafico de drea para manter a
coeréncia do design.

Outras paginas
Estas paginas eram muito semelhantes:

e /sent paramensagens enviadas

e /scheduled para mensagens agendadas com uma hora de envio no futuro. Uma
vez atingida a hora agendada, ela aparecia em /sent

e /failed para mensagens de falha em que ocorreu um erro do lado da API ou foi
cancelado pelo utilizador

e /drafts para mensagens em rascunho que tinham sido guardadas mas nao
enviadas, permitindo aos utilizadores edita-las ou finaliza-las antes de as enviar

e /trash paraas mensagens no lixo, onde é possivel recupera-las ou apaga-las
permanentemente

e /contacts paracontactos - os contactos continham informagdes adicionais, como
o nimero de telefone, 0 nome e uma descricao. Esta pagina era ligeiramente
diferente das outras, mas era suficientemente semelhante para ser colocada no
mesmo esquema.

Layout partilhado

As paginas deste capitulo viviam no mesmo grupo de rotas devido a sua semelhanga
(/app/[locale]/(root)/(message-layout)/) que partilhava o mesmo layout e ficheiros
de tratamento de erros. O layout envolveu as paginas filhas com um provedor para o
contexto de traducdo enquanto carregava os namespaces necessarios. Uma vez que as
paginas necessitavam de acesso aos contactos, as paginas-filhas foram agrupadas com um
fornecedor para o contexto de contactos, passando alguns contactos iniciais (linhas 34-

Luigi Matteo Girke 30 Maio 2025



Sistema de envio de SMS com interface web

36).
import initTranslations from "@/app/il8n";
import TranslationsProvider from "@/contexts/translations-provider";
import { ContactsProvider } from "@/contexts/use-contacts";
import { fetchContacts } from "@/lib/db/contact";

type LayoutProps = Readonly<{
children: React.ReactNode;
params: Promise<{ locale: string }>;

5>

export default async function TranslationLayout({
children,
params,

}: LayoutProps) {

const il8nNamespaces = [
"messages-page”,
"contacts-page"”,
"modals"”,
"common",
"errors",
1;
const { locale } = await params;
const { resources } = await initTranslations(locale, il8nNamespaces);

return (
TranslationsProvider

resources={resources
locale={locale
namespaces={il8nNamespaces

ContactsProvider initialContacts={(await fetchContacts()) || []
children
ContactsProvider
TranslationsProvider

40
Arquitetura da pagina

® messages-page.tsx como suporte para os outros componentes

e messages-list.tsx que apresentava os resultados da pesquisa de contactos
(coluna do meio)

e message-display.tsx que exibia a mensagem em si e também estava envolvida
no componente de painel filho. Mais detalhes sobre isso foram fornecidos na secao
"Painéis redimensiondveis React" do capitulo "FRONT-END".

Pesquisa/filtragem

O componente search.tsx eraainterface de utilizador da barra de pesquisa utilizada
para pesquisar mensagens e contactos. Chamava a func¢do passada (onSearch) apds as
altera¢des de entrada e mantinha a consulta do utilizador no URL para poder ser marcada
e actualizada acidentalmente. Esta atualizacdo do URL ndo actualizou os componentes do
servidor, uma vez que ndo foram utilizados os ganchos Next.js.

Luigi Matteo Girke 31 Maio 2025



Sistema de envio de SMS com interface web

"use client";

import { Input } from "@/components/ui/input";
import { Search as SearchIcon } from "lucide-react";

type SearchProps = React.InputHTMLAttributes<HTMLInputElement> & {

onSearch: (term: string) => void;
H
export default function Search({ onSearch, ...props }: SearchProps) {

const url = new URL(window.location.href);
const params = new URLSearchParams(url.search);
nst handleSearch = (term: string) => H

onSearch(term);

19

if (term
params.set("query", term);
else
params.delete("query");

url.search = params.toString();
window.history.pushState({}, "", url);

Hi
return (
iiv className="p-4"
div className="relative"

SearchIcon className="absolute left-2 top-2.5 h-4 w-4 text-muted-foreground”

Input
onChange={(e) => {
handleSearch(e.target.value);
}
className="focus-visible:ring-1 focus-visible:ring-primary"
defaultValue={params.get("query")?.toString()
...props

}

As func¢des searchMessages e searchContacts filtraram as respectivas matrizes com
base num termo de pesquisa fornecido pelo utilizador, permitindo a pesquisa no lado do

cliente. Ambas as fun¢des converteram o termo de pesquisa para minudsculas para

comparagao sem distingdo entre mailsculas e mindsculas. searchMessages procurou
correspondéncias no assunto, corpo ou estado da mensagem, enquanto searchContacts
procurou o termo no nome ou nimero de telefone do contacto. Se nao for fornecido

Luigi Matteo Girke 32

Maio 2025



Sistema de envio de SMS com interface web

nenhum termo de pesquisa em searchContacts, é devolvida a lista original de contactos.

export function searchMessages(
messages: DBMessage[],
searchTerm: string,
currentPage?: number

) 1

onst lowerCaseSearchTerm = searchTerm.toLowerCase();

nst filteredMessages = messages.filter(
message
message.subject?.toLowerCase().includes(lowerCaseSearchTerm) ||
message.body.toLowerCase().includes(lowerCaseSearchTerm) ||
message.status.tolLowerCase === lowerCaseSearchTerm

return filteredMessages;

}

export function searchContacts(
contacts: DBContact[],
searchTerm: string | null,
currentPage?: number

) 1

if (1searchTerm) return contacts;

const lowerCaseSearchTerm = searchTerm.toLowerCase().trim();

const filteredContacts = contacts.filter(
contact
contact.name &&
contact.name.toLowerCase().includes(lowerCaseSearchTerm)) ||
contact.phone.toLowerCase().includes(lowerCaseSearchTerm

return filteredContacts;

}

Ecra de mensagens
Estas paginas deste capitulo, exceto os contactos, tinham estes botdes no visor de
mensagens:

O botao Reenviar servia para pegar em todos 0os campos de uma mensagem e inseri-los
novamente no formuldrio de nova mensagem. Funcionava criando primeiro um novo
rascunho na base de dados e depois passando o ID para o parametro message_id na
pagina /new-message.

O botao Mover para o lixo servia para mover mensagens para o lixo. Na prépria pagina do
lixo, a mensagem era eliminada da base de dados.

O botao Fechar serve para anular a selecao do item atualmente selecionado, apresentado
na coluna da extrema direita. Botdes especificos da pagina:

A pagina agendada também tinha um botao para cancelar a mensagem agendada, que
cancelava o SMS e obtinha um reembolso através da APl, movendo a mensagem para
falhada. Isto foi util para testar a aplicacao sem custos.

A pagina do lixo também tinha um botdo de recuperar mensagem, que movia a
mensagem de volta para a sua localizagdo original, recuperando-a do lixo.

Foi decidido que cada mensagem apresentaria os seus destinatarios em formato de fichas,

Luigi Matteo Girke 33 Maio 2025



Sistema de envio de SMS com interface web

que, ao serem clicadas, abririam o modal recipient-info.tsx para mostrar mais
informacdes sobre o destinatdrio (ou contacto). Por defeito, os destinatarios estavam
colapsados, podendo ser expandidos clicando na pequena seta a direita.

Vale a pena mencionar o esfor¢o para apresentar os perfis dos contactos de forma
agraddvel. Os primeiros cinco destinatarios/contactos foram apresentados num pequeno
elemento de visdo geral com os circulos dos seus perfis. O seu estilo foi tratado no ficheiro
scattered-profiles.module.css utilizando médulos CSS. Os tamanhos e posi¢oes
foram codificados, mas as cores foram randomizadas armazenando um array embaralhado
em um estado, e cada vez que uma nova mensagem era selecionada, o procedimento era
repetido.

Pagina de contactos
Embora também fosse muito semelhante, tinha os seus préprios componentes porque os
dados eram completamente diferentes e o cédigo precisava de ser mantido limpo:

e contacts-page.tsx emvez de messages-page.tsx.

e contacts-list.tsx emvez de messages-list.tsx.

e contact-display.tsx emvez de message-display.tsx.
Decidiu-se que esta pagina inclui um botao para criar, editar e apagar contactos na
base de dados.

Modais

Decidiu-se que todas as paginas mencionadas envolvem a sua componente de visualiza¢ao
num fornecedor de modais, um fornecedor de um contexto para gerir os modais que estao
atualmente abertos.

As paginas de contacto utilizam estes modais:

e edit-contact.tsx continha um formuldrio para editar um contacto com uma
configuracao useActionState

e create-contact.tsx continha um formuldrio para criar um contacto com uma
configuracao useActionState
As outras paginas utilizam este modal:

e recipient-info.tsx apresentou maisinformacdes sobre um destinatério (ou
contacto)

Luigi Matteo Girke 34 Maio 2025



Sistema de envio de SMS com interface web

REGRAS DE COERENCIA

Utilizacao de ac¢des do servidor

A partir do Next.js 15 com o router de aplica¢des, foi recomendada a utiliza¢do de accoes
de servidor para obter dados ou efetuar pedidos de APl no backend. As ac¢6es do servidor
simplificaram o desenvolvimento, permitindo aos programadores definir funcdes do lado
do servidor invocadas diretamente a partir de componentes do cliente, fazendo
automaticamente pedidos POST no backend quando a a¢ao é chamada.

Anteriormente, os programadores tinham de criar rotas de AP| separadas para a obtencao
de dados, o que era complicado e moroso. Na maioria dos casos, ¢ melhor utilizar ac¢bes
do servidor em vez de rotas da API. O guia a seguir foi consultado sempre que havia
incerteza sobre qual deles usar.

Scenario APl route / Route handler Server action
Fetching data from a server v

component .

Al data streaming (i.e. openai) V)

Fetching data from a client component V|

Webhooks (i.e. stripe payment flow) (V)

API request from external app V| A

Uma vez que o Next.js recomendava tratar as ac¢des de servidor como rotas de API
publicas, era altamente recomendavel verificar a autenticacao do utilizador em cada agao
de servidor para fins de seguranca.

Utilizacao de contextos React

Introducao: O React Contexts permitiu que os desenvolvedores gerenciassem o estado
global e compartilhassem dados entre componentes sem prop drilling. Isso se mostrou util
para aplicativos em que varios componentes exigiam acesso aos mesmos dados, como
autenticacdo de usudrio, temas ou configura¢des, levando a uma abordagem de
gerenciamento de estado mais eficiente.

Como funcionou: O React Context criou um objeto de contexto para guardar dados
partilhados. Um componente Provider envolveu partes da aplica¢do, tornando o valor do
contexto acessivel aos componentes aninhados. Os componentes que precisavam do
contexto usavam o gancho useContext para acessar os dados, garantindo que apenas
esses componentes fossem renderizados novamente quando o valor do contexto fosse
alterado.

Quando foi aplicado: A regra para usar React Contexts foi estabelecida durante a fase de
configuragao inicial para criar uma estratégia clara de gerenciamento de estado. Como
orientagdo, os contextos foram criados quando os dados precisavam de ser acedidos por
mais de quatro componentes ou quando a perfuracao de aderecos se estendia para além
de trés camadas na drvore de componentes.

Luigi Matteo Girke 35 Maio 2025


https://nextjs.org/docs/app/building-your-application/data-fetching/server-actions-and-mutations
https://nextjs.org/docs/app/building-your-application/data-fetching/server-actions-and-mutations

Sistema de envio de SMS com interface web

Configuragoes de formularios

Havia dois cendrios diferentes para os formularios. Com base na complexidade, foi
necessario escolher uma das seguintes op¢6es para manter uma base de cddigo
consistente:

Cenario 1: Em situa¢des simples, recomendou-se que o formulario fosse enviado
diretamente para o servidor sem alterar o processo de envio.

Implementacao: Esta configuracdo envolveu a utiliza¢do do gancho React
useActionState, com a acdo passada paraa action da etiqueta do formulario.
Resposta do servidor: Se a resposta da acdo fosse necessdria, era necessdrio criar um
useEffect com o estado do servidor na matriz de dependéncias.

Exemplo: Um exemplo deste cenario pode ser encontrado em
/components/modals/create-contact.tsx.

Cenario 2: Se fosse necessario executar cddigo aquando da submissao do formulario,
interrompendo o comportamento natural de submissao, este cenario teria de ser utilizado.
Implementagao: Em primeiro lugar, foi necessario criar uma fun¢do (normalmente
designada handleSubmit) para passar para a propriedade onSubmit da etiqueta do
formuldrio. Na funcdo handleSubmit, a [égica especial poderia ser escrita e a agao do
servidor poderia ser chamada.

Resposta do servidor: Se o HTML exigisse a resposta da acao, era necessario criar um
useState que seria definido na fun¢do handleSubmit.

Exemplo: Um exemplo deste cenario pode ser encontrado em /components/login-
form.tsx.

Estes cendrios foram desenvolvidos através de experiéncias, pesquisas e testes exaustivos
e provaram ser os mais legiveis, eficazes e eficientes.

Obtencao de componentes do servidor

O Next.js incentivou a obtencao de dados de componentes de servidor de nivel superior,
uma pratica que foi amplamente implementada na aplicacao. Ao tirar partido dos
componentes do servidor para a obten¢ao de dados, tirou partido da renderizacao do lado
do servidor, o que melhorou o desempenho e garantiu que todos os componentes
aninhados tivessem acesso aos dados necessarios sem a necessidade de obter dados
adicionais do lado do cliente.

Quando foram necessarias actualizagbes dos dados, foi utilizada a fungao
revalidatePath() da API Next.js. Ao chamar esta fun¢ao no caminho especifico, o
componente do servidor é re-renderizado, o que, por sua vez, reenvia os dados mais
recentes. Ao utilizar sempre as APIs Next.js, foi possivel evitar a atualizacao da pagina
(apenas a atualizacdo interna), o que fez com que se parecesse mais com uma aplica¢do.

Obtencao conservadora de dados

Havia muitas formas de obter dados no Next.js. Apds extensa pesquisa e testes, 2 métodos
foram considerados:

Luigi Matteo Girke 36 Maio 2025



Sistema de envio de SMS com interface web

Método 1: Este método envolveu a obtencao de dados do componente do servidor uma
vez e, em seguida, a utilizacao de JavaScript do lado do cliente para efetuar a filtragem.
Minimizou a carga do servidor ao executar a consulta a base de dados apenas durante o
carregamento inicial da pagina, resultando em resultados de filtragem instantaneos.

Vantagem: Reduziu a carga do servidor devido a uma unica extragao de dados no
carregamento da pagina e proporcionou uma filtragem muito rapida para conjuntos de
dados de dimensao média ou inferior.

Desvantagem: Pode tornar-se lento se o conjunto de dados for demasiado grande ou se a
filtragem for demasiado complexa para o JavaScript do lado do cliente, especialmente se o
utilizador tiver um computador antigo.

Método 2: Este método envolveu a passagem de parametros de pesquisa actualizados do
componente cliente para as consultas dinamicas da base de dados. Quando os parametros
de pesquisa eram alterados, o componente do servidor voltava automaticamente a
renderizar e a atualizar a base de dados.

Vantagem: ndo dependia do computador do utilizador, uma vez que a filtragem era feita
no servidor na consulta SQL.

Desvantagem: Aumentava a carga do servidor devido as frequentes recolhas de dados
(sempre que um filtro era atualizado), bem como ao atraso na consulta da base de dados.

Devido a dimensdo média do conjunto de dados (menos de 1000 mensagens por
utilizador), o método 1 foi a abordagem mais adequada para a maioria dos casos de
utilizagao.

Ficheiros de capa de pagina

Cada pagina criada tinha de conter pelo menos um loading.tsx e um error.tsx, sendo o
layout opcional.

Luigi Matteo Girke 37 Maio 2025



Sistema de envio de SMS com interface web

e error.tsx eraum arquivo em Next.js que servia como um apanhado para erros
inesperados. Ele criava um limite de erro do React que impedia que o aplicativo
falhasse quando ocorriam excecbes inesperadas.

e loading.tsx eraum ficheiro mostrado enquanto a pagina estava a carregar,
contendo todo o esqueleto da IU para essa pagina.

e layout.tsx eraum layout em torno da pagina. Para manter o page.tsx mais
limpo, era aconselhdvel colocar tudo o que fosse desnecessario no layout.tsx,
incluindo o fornecedor de traducdes e outros fornecedores, se possivel.

e page.tsx eraa pagina em si, que deveria ser mantida o mais limpa possivel, com
um componente de servidor para buscar dados mais tarde, se necessario.
Inicialmente, tinha tudo configurado com um limite de suspense React.Suspense
usado para carregar. Essa abordagem foi benéfica para implementar a pré-
renderizag¢do parcial, permitindo que algumas partes da pagina carregassem mais
rapido do que outras com um indicador de carregamento separado. No entanto,
descobriu-se rapidamente que usar apenas um poderia muito bem seguir a
convencao de arquivo Next.js, que mantinha os arquivos mais organizados.

Metadados

Os metadados basicos, como titulos de separadores, icones e descri¢c6es, melhoraram a
capacidade de partilha e de marcag¢ao. Como resultado, ajudou os utilizadores a identificar
rapidamente o sitio Web.

Os metadados foram gerados no lado do servidor utilizando a fungdo generateMetadata
da API Next.js, que foi essencial para a tradu¢ao de metadados.
export async function generateMetadata({
params,

params: Promise<{ locale: string }>;

) o
const { locale } = await params;

const { t } = await initTranslations(locale, ["metadata"]);

return 1
title: METADATA_APP_NAME + t("sent-title"),

description: t("sent-description"),

} )

O logdtipo da aplicacao foi apresentado com o nome favicon.ico e colocado em /app,
que o Next.js reconheceu automaticamente e utilizou para os metadados.

Também era possivel exportar os metadados de forma estatica, mas, nesse caso, teria sido
impossivel traduzir para diferentes linguas.

Luigi Matteo Girke 38 Maio 2025



Sistema de envio de SMS com interface web

BASE DE DADOS

O PostgreSQL foi escolhido pela sua fiabilidade e capacidades ricas em funcionalidades.
Sendo uma base de dados relacional de cédigo aberto, oferecia uma integridade de dados
robusta e fortes carateristicas de seguranca. A conexao foi estabelecida usando pg, com o
ambiente de produc¢do sendo executado em um contéiner Docker na porta 5432. Mais
informac¢des podem ser encontradas no capitulo "DEPLOYMENT".

Inicialmente, considerou-se que o Prisma, um conjunto de ferramentas de base de dados e
uma camada de mapeamento objeto-relacional (ORM), era utilizado juntamente com a
base de dados PostgreSQL. Simplificou o acesso a base de dados, fornecendo uma API de
seguranca de tipo. No entanto, foi rejeitado para manter o projeto leve e minimizar as
dependéncias.

Ligacdo a base de dados

Foi utilizada a biblioteca node-postgres, devido a sua forma eficiente de executar
consultas SQL e obter resultados.

Ao conectar-se ao PostgreSQL usando pg, havia 2 op¢des: pool ou cliente. Um pool era um
grupo de conexdes reutilizaveis ideal para consultas concorrentes, que era utilizado devido
a multiplas consultas ao mesmo tempo. Um cliente, por outro lado, representava uma
Unica conexao por interagao.

Para simplificar a consulta, foi criada uma funcdo auxiliar (/1ib/db/index.ts) que recebia
a consulta SQL e os valores a inserir. Comegava por criar uma nova pool, ligava-se a essa
pool para criar um novo cliente, e depois consultava-o enquanto detectava erros
inesperados, e por fim libertava o cliente de volta para a pool.

Luigi Matteo Girke 39 Maio 2025



O

Sistema de envio de SMS com interface web

1 import { Pool, QueryResult } from "pg";

2

3 const pool = new Pool({

4 host: process.env.POSTGRES_HOST,

5 port: Number(process.env.POSTGRES_PORT),

6 user: process.env.POSTGRES_USER,

7 password: process.env.POSTGRES_PASSWORD,

8 database: process.env.POSTGRES_DB,

R,

10
11 async function db(query: string, params?: any[]): Promise<QueryResult> {
12 const client = await pool.connect();

13 try {

14 const res = await client.query(query, params);

15 return res;

16 } catch (err) {

17 console.error("Database query error", err);

18 throw err; // Rethrow the error for handling in the calling function
19 } finally {

20 client.release(); // Always release the client back to the pool
21 }

22 }

23

24 export default db;
Agora era tao facil quanto importar a fun¢ao auxiliar db e passar a consulta SQL e os
valores. Para obter informacg6es sobre o pg, foi consultada a documentacao.

Luigi Matteo Girke 40 Maio 2025


https://node-postgres.com/

EhF | . H 1
L Sistema de envio de SMS com interface web

Esquema da base de dados

O esquema da base de dados, definido no ficheiro seed (/1ib/db/seed.sql), criou quatro
tabelas:

1. 0 utilizador detinhatodos os dados dos utilizadores, incluindo dados e
defini¢6es da conta.

2. 0 contacto continhatodos os contactos, incluindo os seus dados importantes,
como o nome, o numero de telefone, a descricao, a data de criacdo e a data da
ultima atualizagao.

3. A tabela de mensagens contém todas as mensagens, sendo que cada mensagem
faz referéncia a chave primaria da tabela do utilizador. Além disso, cada
mensagem continha dados importantes, como o remetente, o assunto, o corpo
(contetdo do SMS), a data de envio, o estado (enviado, agendado, falhado ou
rascunhado) e outros dados devolvidos pela API quando a mensagem foi enviada.

4. recipient continhatodos os destinatdrios das mensagens, com cada destinatdrio
a fazer referéncia a chave primaria da tabela de mensagens. Além disso, cada
destinatdrio era constituido por um ndmero de telefone Unico e um indice utilizado
para apresentar o destinatdrio pela mesma ordem definida pelo utilizador na pagina
de novas mensagens durante as rendicdes de componentes.

Além disso, todas as tabelas mencionadas utilizavam um campo de chave primaria
em série denominado id, utilizado para distinguir os diferentes itens.

Consideracoes
Uma considerag¢ao no inicio do projeto era ter tabelas separadas para os tipos de

Luigi Matteo Girke 41 Maio 2025



Sistema de envio de SMS com interface web

mensagens (rascunhos, lixo, etc.), mas percebeu-se que era desnecessariamente
complexo. Por fim, todas as mensagens foram armazenadas na mesma tabela, com cada
mensagem tendo campos como status e in_trash, que determinavam em qual categoria
ela seria mostrada no front-end.

Durante muito tempo, durante o desenvolvimento da aplicagao, os contactos foram
ligados aos destinatdrios utilizando a chave primaria. No entanto, apds trés quartos do
projeto, foi necessdria uma migra¢ao devido a problemas de consulta e insercao, bem
como a falhas gerais na arquitetura. A nova solucao envolvia a verificagao de contactos no
front-end, passando pelos destinatarios para verificar se os seus nimeros de telefone
correspondiam aos de um contacto.

Embora funcionasse desta forma, outro aspeto a melhorar era o tratamento diferente das
mensagens agendadas. A partir desse momento, as mensagens agendadas permaneciam
com o estado "AGENDADO" mesmo quando a data de entrega era atingida, o que nao era
logicamente exato. Para resolver este problema I4gico, poderia ser sugerido mudar o
nome do campo para outra coisa ou atualizar o estado para "ENVIADO" quando a data de
entrega fosse atingida.

Luigi Matteo Girke 42 Maio 2025



Sistema de envio de SMS com interface web

AUTENTICACAO E AUTORIZACAO

A aplica¢do utilizou uma combina¢do de Active Diretory (AD) e Iron Session para efeitos de
autenticagdo e autorizagao.

Diretdrio Ativo

Uma vez que a escola ja utilizava um servidor AD para gerir as contas informaticas dos
alunos, este foi integrado na aplica¢do. Esta combinac¢ao tornou a gestdo do acesso dos
utilizadores muito mais facil mais tarde, uma vez que as contas dos utilizadores eram
geridas num unico local.

O AD funcionava de forma semelhante a uma base de dados, armazenando informacgdes
sobre todos os utilizadores e respectivos dados. Neste caso, a aplicacao tinha 2 grupos
especificos configurados no AD: "Utilizadores-SMS" e "Administradores-SMS". Estes
grupos foram utilizados para determinar as permissées que cada utilizador tinha na
aplicagao.

Se um utilizador fizesse parte do grupo "Utilizadores-SMS", era-lhe concedido acesso
basico a aplica¢ao, permitindo-lhe enviar mensagens SMS e gerir as suas proprias
mensagens. Por outro lado, se um utilizador pertencesse ao grupo "Administradores-
SMS", tinha todas as mesmas permissdes que o primeiro grupo, juntamente com acesso a
um painel de administracao que oferecia estatisticas detalhadas sobre todos os
utilizadores e mensagens enviadas.

Implementacao do Active Diretory

Para ligar ao servidor AD a partir do interior da aplicacao, foram considerados 2 pacotes
diferentes: activedirectory e activedirectory2. O pacote activedirectory2 acabou
por ser escolhido por ser o mais atualizado, e o outro ndo funcionou.

Este pacote utilizava consultas LDAP (Lightweight Diretory Access Protocol) e fornecia um
invélucro JavaScript (JS) que permitia a passagem do e-mail e da palavra-passe de uma
conta AD valida e ja registada, juntamente com alguns outros argumentos. Primeiro, foi
criado um objeto de instancia do AD, como se mostra abaixo:
const ad = new ActiveDirectory({
url: process.env.AD_URL!,
baseDN: process.env.AD_BASE_DN!,
username: process.env.AD_EMAIL!, // what they call username is actually an email
password: process.env.AD_PASSWORD!,
b);
Depois disso, os métodos dessa instancia podem ser usados como mostrado abaixo:
await ad.isUserMember0f(
username,
group,
(err: object | null, isMember: boolean) => {}
)|
As fungbes utilizadas podem ser encontradas em /1ib/auth/activedirectory. Para obter
informagdes sobre activedirectory2, foi consultada a documentacao.

Luigi Matteo Girke 43 Maio 2025


https://www.okta.com/identity-101/what-is-ldap/
https://www.npmjs.com/package/activedirectory2

Sistema de envio de SMS com interface web

Gestao de sessoes

A gestao de sessOes era o processo de tratamento de sessdes de utilizador em aplica¢bes
Web, em que os dados da sess@ao eram normalmente armazenados como um cookie. Uma
biblioteca de gestdo de sessdes fornecia ferramentas para criar, manter e terminar sessées
de utilizador (cookies de autenticacdo), simplificando a autenticacdo e a gestao do estado.

Como a configuracao do AD ja tratava da maior parte da autenticagao, ndo era necessaria
uma biblioteca de autenticacao completa. Na verdade, uma biblioteca leve de
gerenciamento de sessao fez o trabalho. O pacote iron-session foi escolhido devido a
sua natureza baseada em sessdes e aos seus recursos leves, seguros e faceis de
implementar.

Outra biblioteca de gestao de sessdes chamada jose também foi considerada. No
entanto, foi rapidamente rejeitada, uma vez que a autenticacao baseada em tokens nao
era necessdria para o projeto. Além disso, iron-session era mais leve e facil de usar. Mais
informacdes sobre os tipos de autenticacdo podem ser encontradas na seccao
"Autenticacdo baseada em sessdo vs. autenticacao baseada em token".

Além disso, foram exploradas diferentes op¢des de armazenamento do navegador para
manter os dados de autenticacao do utilizador. No entanto, a utilizagdo desta opcao de
armazenamento para dados de autenticacdo do utilizador era inadequada, uma vez que o
armazenamento da sessdo expirava quando o separador era fechado, ao contrario dos
cookies, que eram normalmente utilizados para persistir os dados da sessao.

Implementacao da gestao de sessdes

Quando um utilizador é autenticado com sucesso, a sua informag¢ao € armazenada na base
de dados e, subsequentemente, num cookie de id de sessao encriptado gerado pelo iron-
session.

Configuracao
As sessdes iron-session foram personalizadas através da modificacao de um objeto de
configuracao:

O nome e a palavra-passe podem ser qualquer coisa, mas para maior seguranca a palavra-
passe foi gerada utilizando openssl

A sessao expirou apds 24 horas em vez dos 14 dias predefinidos.

v export const sessionOptions: SessionOptions = {
cookieName: "my-etpzp-app-session”,
password: process.env.SESSION_SECRET!,

ttl: 60 * 60 * 24,
v | cookieOptions: {
httpOnly: true,
secure: process.env.NODE_ENV === “production",

31 k1
Ficheiro de configuracdo de autenticacdo localizado em /Lib/auth/config.ts

Luigi Matteo Girke 44 Maio 2025



Sistema de envio de SMS com interface web

Fung6es auxiliares

Uma func¢do auxiliar simples chamada getSession foi criada para envolver a APl Iron
Session, que no lado do servidor recuperava a sessao ativa do cookie ou criava uma nova
se nao existisse nenhuma. O objeto de configuracao sessionOptions previamente
personalizado foi utilizado como um dos argumentos passados para a funcao
getIronSession.

8 // helper function for getting the current session
9 export async function getSession(req?: NextRequest, res?: NextResponse) E]

10 const session =

11 req & res

12 ? await getIronSession<SessionData>(req, res, m)

13 : await getIronSession<SessionData>(await cookies(), sessionOptions);

14

15 // For security, you can double-check the user's existence in the database or AD server, but this slows down the app.
16 return session;

17

Funcdo auxiliar getSession localizada em /Lib/auth/sessions. ts

Foi criada outra fun¢ao auxiliar com o objetivo de criar uma nova sessao. Esta utilizou a
funcdo getSession para obter primeiro a sessdao atual e, em seguida, anexou a sessao
informacoes Uteis sobre o utilizador e se este estava ou ndo autenticado e se era ou ndo

um administrador. Por fim, as modificacdes a sessdo eram aplicadas (linha 29).
19 export async function createSession(user: SessionData) @

20 const session = await getSession();

21

22 // Store user data in the cookie by mapping over each of the object's property
23 Object.entries(user).forEach(([key, valuel) => {
24 if (!(key in session)) {

25 (session as any)[key] = value;

26 }

27 Dk

28

29 await session.save();

30

Funcado auxiliar createSession localizada em /Llib/auth/sessions. ts

Para obter informacdes sobre o pacote iron-session, foi consultada a documentacao.

Fluxo de autenticacao

Com o Active Diretory inicial e a configura¢ao da sessao de ferro fora do caminho, a
implementacao final pode ser escrita.

Em resumo, o fluxo de autenticacdo envolveu as seguintes etapas:

Inicio de sessdo do utilizador: Os utilizadores introduziram as suas credenciais (nome de
utilizador e palavra-passe) no cliente e enviaram o formulario para o servidor.

Autenticacdo AD: A aplicacdo verificou estas credenciais com o servidor do Active Diretory.
Criacao da sessdo de ferro: Se for bem sucedida, a Sessdo de Ferro cria um novo cookie de
sessao e as informacgdes do utilizador sao guardadas na base de dados PostgreSQL.
Recuperacao da sessao: Nos pedidos subsequentes, a aplicacao verificou se a sessao do
utilizador ainda era valida, desencriptando o cookie no servidor e verificando se a
propriedade isAuthenticated estava definida como verdadeira.

Luigi Matteo Girke 45 Maio 2025


https://www.npmjs.com/package/iron-session

Sistema de envio de SMS com interface web

Aldgica geral foi tratada na fungao de inicio de sessao, que comegou por obter os valores
apresentados, validou-os utilizando zod (linhas 18 e 19), chamou a fun¢ao de autenticacao
e, por ultimo, devolveu a resposta adequada ao cliente, criando uma nova sessao se o
utilizador tiver sido autenticado com éxito.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28}

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

export async function login(
formData: FormData
): Promise<ActionResponse<Login>> @
// 1. Type validation
const email = formData.get("email") as string;
const password = formData.get("password") as string;

const validatedData = LoginSchema.safeParse({ email, password });
if (lvalidatedData.success) {
return {
success: false,
message: ["common:fix_zod_errors"],
inputs: { email, password },
errors: validatedData.error.flatten().fieldErrors,
g
}

// 2. Authenticate user using AD and save to db
const user: SessionData = await authenticate({
email,
password,

B}

if (luser.isAuthenticated) {
return {
success: false,
message: ["server-wrong_credentials"],
inputs: { email, password },
g
}

// 3. Create new session cookie
await createSession(user);
return {
success: true,
message: [
"server-auth_success_header",
"server-auth_success_header_caption",
1g
7

H

Fﬁngdo de inicio de sessdo localizada em /Lib/auth/index. ts

A funcgao de autentica¢ado continha a [6gica importante para autenticar o utilizador com o
servidor AD e guardar o resultado na base de dados. Primeiro, a existéncia da conta no
servidor AD era verificada e, em caso negativo, a resposta correspondente era devolvida
mais cedo. Se existisse, os privilégios da conta eram inspeccionados e, por ultimo, os
resultados destas consultas eram guardados na base de dados e devolvidos a funcao de
inicio de sessao.

Luigi Matteo Girke 46 Maio 2025



Sistema de envio de SMS com interface web

10 export default async function authenticate({

11 email,

12 password,

13} {

14 email: string;

15 password: string;

16 }): Promise<SessionData & { errors: string[] }> E

17 const ad = new ActiveDirectory(activeDirectoryConfig);

18

19 // 1. Check if user even exists in the active directory server
20 const exists = await userExists(ad, email, password);

21 if (lexists.success) {

22 return {

23 isAuthenticated: false,

24 isAdmin: false,

25 errors: [exists.error ? exists.error : ""],

26 i

27 }

28 // 2. Check if user is allowed to use the app

29 const userGroup = "Utilizadores-SMS";

30 const hasAppPermission = await userInGroup(ad, email, userGroup);
31

32 // 3. Check if user has admin privileges

33 const adminGroup = "Administradores-SMS";

34 const hasAdminPermission = await userInGroup(ad, email, adminGroup);
35

36 // 4. Sync all of this with the database

37 const userResult = await saveUser(ad, email, hasAdminPermission.success);
38

39 return {

40 user: userResult.success ? userResult.data : undefined,

41 isAuthenticated: hasAppPermission.success,

42 isAdmin: hasAdminPermission.success,

43 errors: [

44 exists.error !== null

45 ? exists.error

46 : "An error occurred while checking if user exists",

47 hasAppPermission.error !== null

48 ? hasAppPermission.error

49 : "An error occurred while checking if user is allowed to use the app",
50 hasAdminPermission.error !== null

51 ? hasAdminPermission.error

52 : "An error occurred while checking if user is an admin",
53 P

54 e

55

A funcdo Authenticate estd localizada em /Lib/auth/activedirectory/authenticate. ts

Para verificar se o utilizador existia (linha 20), foi utilizado o método ad.authenticate()
e para verificar se a conta existia no grupo AD especifico (linhas 30 e 34), o método
ad.isUserMemberOf(). O cddigo detalhado paraisto estava localizado nos ficheiros em
lib/auth/activedirectory/.

Solicitag6es subsequentes

Em cada solicitagao, o Next.js reconheceu automaticamente o arquivo /middleware.ts e
executou a exportacao padrao desse arquivo antes que qualquer pagina fosse servida. Isto
tornou-o o local perfeito para verificar a autentica¢ao do utilizador. O cédigo incluia o
redireccionamento de utilizadores autenticados em /login para /, enquanto os
utilizadores nao autenticados eram redireccionados para /login se ainda ndo estivessem
ER

Luigi Matteo Girke 47 Maio 2025



Sistema de envio de SMS com interface web

export default async function middleware(request: NextRequest) @
// Handle i18n routing
const il8nResponse = il8nRouter(request, il8nConfig);
const session = await getSession(request, il8nResponse);
const { pathname } = request.nextUrl;
const locale = request.cookies.get("NEXT_LOCALE")?.value || "en";

// name checks use ".includes() 1instea ) f .startsWith() ", be e of possible ycale between url segments.
if (session.isAuthenticated &% pathname.includes("/login")) {

// Redirect logged in users to home

return NextResponse.redirect(new URL( /${locale}/', request.url));
}

if (!session.isAuthenticated &% !pathname.includes("/login")) {
/ Redirect unauthorized users to login
return NextResponse.redirect(new URL( /${locale}/login’, request.url));
}

// n the il8n-router response for all other cases
return il8nResponse;
26

Como o Next.js recomendava tratar as a¢des do servidor como rotas de API publicas, a
autenticagdo do usudrio também era verificada em cada agao do servidor.

Além disso, as verificagdes das permissdes de administrador foram distribuidas pela
aplicagao para lhes mostrar certas coisas que os utilizadores normais nao deveriam ver,
sendo o ponto mais critico um redireccionamento programatico no layout do painel de

administracdo.

export default async function DashboardLayout({
children,
params,

}: LayoutProps) f
const il8nNamespaces = ["dashboard-page", "errors", "common", "navigation"];
const { locale } = await params;
const { resources } = await initTranslations(locale, il8nNamespaces);

// Prevent non-admins from viewing the admin-dashboard and display an authorization message
const session = await getSession();
if (!session?.isAdmin) return <UnauthorizedPage />;

24

Layout do painel de controlo localizado em /app/[ Locale]/dashboard/Layout. tsx
Autenticacao baseada em sessao vs. autenticacao baseada em token

Foram examinados dois métodos para manter as sess6es de utilizador em seguranca:

Autenticacdo baseada na sessdo: Foi gerado um ID de sessao Unico aquando do inicio de
sessao, armazenado no servidor. O ID da sessdo era enviado para o cliente como um
cookie para verificar a identidade do utilizador em pedidos subsequentes, com

Luigi Matteo Girke 48 Maio 2025



cosTecnoligese

Sistema de envio de SMS com interface web

mecanismos de expiracdo e invalidagao.

header
Browser(Client) | Server
\ J data

POST flogin
LOGIN >

Creates a session

for the user
Cookie containing sessionid

i
-
Data
Authentication -
request
Cookie containing sessionid
AUTH >
Uses sessionid to
Response get session data
data{.) and verity the user
P, )
-

Autenticacdo baseada em token: Um JSON Web Token (JWT) foi gerado apds o inicio de
sessdo, contendo informag6es do utilizador e um carimbo de data/hora de expiragdo. O
cliente armazenava o token e enviava-o no cabec¢alho de autoriza¢do com cada pedido.
Este método permitiu a autenticagdo sem estado, uma vez que o servidor ndo manteve o

estado da sessao, e suportou a autenticacao entre dominios e a integracao de aplica¢des
moveis.

/—
| header
Browser(Client) | Server
\ — J data
POST Mogin
LOGIN >
Create JWT using
secret key
JWT token jwtsign{)
<
header
JWT token
Authentication
request
(mid@eware) data
AUTH > Verify JWT
signature, and get
Response user information
P data { ) jwi.verify()
)

Luigi Matteo Girke 49 Maio 2025



Sistema de envio de SMS com interface web

Dado o escopo limitado da aplicacao e a hospedagem em um Unico servidor, a
autenticacdo baseada em sessdo foi considerada apropriada.

Fontes:

1. https://dev.to/fidalmathew/session-based-vs-token-based-authentication-which-is-
better-2270
2. https://www.geeksforgeeks.org/session-vs-token-based-authentication/

Luigi Matteo Girke 50 Maio 2025


https://dev.to/fidalmathew/session-based-vs-token-based-authentication-which-is-better-227o
https://dev.to/fidalmathew/session-based-vs-token-based-authentication-which-is-better-227o
https://www.geeksforgeeks.org/session-vs-token-based-authentication/

Sistema de envio de SMS com interface web

INTERNACIONALIZACAO (i18n)

A internacionalizacdo (i18n) era o processo de concecdo e desenvolvimento de software
que podia ser facilmente adaptado a diferentes linguas, contextos culturais e regides sem
grandes alteracdes a base de cddigo principal. Incluia a tradugao da interface do utilizador,
o tratamento do Unicode e a separa¢do do conteudo do cddigo, garantindo que a
aplicacao era acessivel e utilizavel por um publico global.

A 118next foi escolhida como a biblioteca de base para a i18n, juntamente com pacotes
adicionais. Foi incluido um servico externo chamado i18nexus, que fornece uma interface
grafica do utilizador (GUI) para gerir traducdes e a capacidade de traduzir
automaticamente cadeias de caracteres da lingua de base para outras linguas.

Os termos especiais deste capitulo incluem:

espac¢o de nomes: Uma forma de organizar as chaves de traducao em grupos separados,
permitindo uma melhor gestao e estruturacao das traducdes no i18next.

cadeia de tradu¢ao: Um par chave-valor em que a chave era um identificador tnico para
uma cadeia de texto especifica e o valor era o texto efetivamente traduzido na lingua de
destino.

interpolador: Uma funcionalidade do i18next que permitia a insercao dinamica de varidveis
nas cadeias de traducao, possibilitando a criagao de traducdes mais flexiveis e conscientes
do contexto.

Implementacao

No inicio, o React-Intl foi considerado como uma biblioteca i18n. No entanto, o i18next foi
considerado a melhor escolha para internacionalizagdo em aplicativos React devido ao seu
conjunto abrangente de recursos, integracao mais facil, APl mais intuitiva, comunidade
maior e mais ativa e melhor desempenho, tornando-o a solugao preferivel para o projeto.

Para além do i18next, foram utilizados outros pacotes:

A i18next era a biblioteca de internacionaliza¢ao principal que fornecia a funcionalidade
basica para gerir traducdes e localizagao.

react-it8next foi o pacote que integrou o i18next com o React, fornecendo ganchos e
componentes que facilitaram o trabalho com tradu¢des em componentes React.
it8next-resources-to-backend foi o plugin que permitiu o carregamento de recursos de
traducado a partir de um servidor backend. Era particularmente util para a renderiza¢ao do
lado do servidor (SSR), permitindo que a aplicacdo fosse buscar tradu¢ées dinamicamente
com base na localidade do utilizador.

next-i18n-router foi projetado especificamente para projetos de roteadores de aplicativos
Next.js. Ele implementou o roteamento internacionalizado e a dete¢do de localidade,
permitindo que os desenvolvedores gerenciem facilmente as rotas com base no idioma
selecionado sem ter que construir a légica de roteamento do zero.

Configuracao

Os pacotes foram instalados.

Luigi Matteo Girke 51 Maio 2025



- R Sistema de envio de SMS com interface web

Foi criado um ficheiro de configuracdo (/118n.config.ts)
1 export const il8nConfig = {

2 locales: ["pt", "de", "en"],

3 defaultLocale: "pt",

4

S // Set to "true’ if you want the default locale to be included in the url
6 prefixDefault: false,

7 k

Especificou uma propriedade locales, que era um conjunto de idiomas que a aplicacdo iria
suportar.

A propriedade defaultLocale era o idioma para o qual os visitantes voltariam se a
aplicacdo ndo suportasse o seu idioma.

Foi criado um segmento dinamico dentro do diretdrio /app para conter todas as paginas e
esquemas, denominado [locale].

O middleware foi atualizado (/middleware.ts)

1 import { il8nRouter } from "next-il8n-router";

2 import { il8nConfig } from "./il8n.config";

3 import { NextRequest, NextResponse } from "next/server";

4 import { getSession } from "./lib/auth/sessions";

)

6 export default async function middleware(request: NextRequest) {

7 // Handle il18n routing

8 const il8nResponse = il8nRouter(request, il8nConfig);

9 const session = await getSession(request, il8nResponse);

10 const { pathname } = request.nextUrl;

11 const locale = request.cookies.get("NEXT_LOCALE")?.value || "en";
12

13 // Pathname checks use ".includes()  instead of ".startsWith()',
14 > if (session.isAuthenticated && pathname.includes("/login")) {--
17 }

18

19 > if (!session.isAuthenticated &% !pathname.includes("/login™)) {-
22 }

23

24 // Return the il18n-router response for all other cases

25 return il18nResponse;

26 }

27

28 // applies this middleware only to files in the app directory

29 export const config = {

30 matcher: "/((?!api|static|.*\\..x|_next).*x)",

31
32 |

Luigi Matteo Girke 52 Maio 2025



Sistema de envio de SMS com interface web

O pacote next-18n-router facilitou o processo, uma vez que devolveu o valor da fun¢ao
it8nRouter, tratando de toda a Iégica de encaminhamento de localidades.

Foi criada a funcdo initTranslations (/app/i18n. js), que utilizou o i18next-resources-to-
backend para carregar as tradu¢des do lado do servidor, com cddigo copiado do tutorial.
Foi adicionado o TranslationsProvider (/contexts/translations-provider.jsx), que
envolveu os componentes onde foi utilizada a funcdo t do react-i18next, com cédigo
copiado do tutorial.

A fungdo generateStaticParams da API Next.js foi adicionada ao layout raiz para gerar
estaticamente rotas no momento da constru¢ao, em vez de sob demanda no momento da
solicitacdo.

A aplicacdo foi ligada a plataforma i18nexus, com mais pormenores disponiveis nas sec¢des
"i18nexus" e "integracdo i18nexus".

Para a configuracao, foram consultados os tutoriais da i18nexus:

e Tutorial escrito
e Tutorial em video (30 min)

Utilizacdo
Num componente cliente, a funcdo de traducdo (chamada t) foi obtida através da sua
desestruturacao a partir do hook useTranslation do react-it8next.

import { useTranslation } from "react-il8next";
const { t } = useTranslation(["dashboard-page"”, "errors", "common"]);

Numa componente de servidor, a funcdo de traducdo (chamada t) foi obtida através da
sua desestruturacdo a partir da fungdo initTranslations criada na configuracao, passando o
locale atual e um conjunto de espacos de nomes.

const { t, resources } = await initTranslations(locale, il8nNamespaces);
Depois disso, a funcao t pode ser utilizada em qualquer parte do componente, passando a
cadeia de traducgao e, se aplicavel, o interpolador.

t("header_long", {
first_name: "Peter",
r)

O i18next incluia uma série de outras funcionalidades, mas estas foram as unicas utilizadas
neste projeto.

i18nexus

A i18nexus era uma plataforma que simplificava a internacionalizacdo (i18n) e a localizacao
(I1on) de aplica¢des de software. O método antigo envolvia a criacdo manual de varios
ficheiros JSON para cada espago de nome e idioma. No entanto, as tradu¢des eram
escritas e geridas na Interface Grafica do Utilizador (GUI) fornecida pelo i18nexus. As
traducdes eram primeiro escritas numa lingua base (Inglés) e depois traduzidas
automaticamente para outras linguas.

Luigi Matteo Girke 53 Maio 2025


https://nextjs.org/docs/app/building-your-application/rendering/server-components#static-rendering-default
https://nextjs.org/docs/app/building-your-application/rendering/server-components#static-rendering-default
https://i18nexus.com/tutorials/nextjs/react-i18next
https://www.youtube.com/watch?v=J8tnD2BWY28

Sistema de envio de SMS com interface web

Um aspeto notavel foi o facto de a aplicagao nao depender de um servico externo. Foi
possivel puxar todos os ficheiros JSON de tradugao para o projeto utilizando um comando
no terminal.

Inicialmente, foi utilizado apenas o plano gratuito, mas mais tarde foi adquirido o plano
basico devido ao facto de as cadeias de traducdo se terem esgotado. Depois de terminar a
aplicacao, este plano foi cancelado e a aplica¢ao continuou a funcionar.

Um problema detectado foi o facto de a plataforma utilizar a APl do Google Translate nos
planos gratuito e basico, que apenas suportava o portugués do Brasil. Apds contactar o
suporte, foi possivel implementar rapidamente uma correcao em que a plataforma
utilizava o tradutor DeepL para o portugués europeu, mesmo nos niveis inferiores.

Ao utilizar o Roteador de aplicativos com o i18next, era uma boa pratica "namespace" as
cadeias de caracteres por pagina. Esta abordagem permitiu evitar o carregamento de
todas as cadeias de caracteres de toda a aplicacao ao visualizar uma pagina, permitindo-lhe
carregar apenas as cadeias de caracteres dessa pagina especifica de cada vez.

Integracao do i18nexus
Para ligar a aplica¢dao ao i18nexus, foram seguidos estes passos:

O i18nexus-cli foi instalado globalmente (bun i i18nexus-cli -g)e como uma
dependéncia de desenvolvimento (bun i il8nexus-cli --save-dev), que era ainterface
de linha de comandos utilizada para puxar os ficheiros de traducado para o projeto.

A chave da API do projeto foi adicionada ao ficheiro .env com a varidvel denominada
I18NEXUS_API_KEY.

O comando i18nexus pull foi executado a partir do terminal no diretdrio raiz do projeto
para extrair ou atualizar as localidades.

Por conveniéncia, este comando também foi adicionado aos scripts package. json, de
modo a que as tradug¢bes mais actualizadas fossem automaticamente retiradas sempre
que um servidor fosse ativado.

"scripts": [
"dev": "i18nexus pull && next dev",
"build": "il8nexus pull && next build",
"start": "118nexus pull && next start",

Luigi Matteo Girke 54 Maio 2025



Sistema de envio de SMS com interface web

AUTO-HOSPEDAGEM E IMPLANTAGCAO

A aplicagao foi implementada num computador da escola num contentor Docker. Para
simplificar o acesso, obteve um nome de dominio gratuito do No-IP, um fornecedor de
DDNS. O trafego fluia da seguinte forma:

Um cliente solicitou etpzp-sms.ddns.net.

O router recebeu o pedido e encaminhou-o para o Nginx.

O Nginx redireccionou para HTTPS, se necessario, e encaminhou o pedido para o contentor
Docker.

O servidor Node.js no contentor processou o pedido.

Esta configuracdo permitiu um acesso facil a aplicacao através de um nome de dominio
simples, garantindo simultaneamente o encaminhamento e a seguranca adequados.

Docker

O Docker foi escolhido como uma plataforma de cédigo aberto que permite aos
programadores empacotar aplica¢des e as suas dependéncias em contentores leves e
portateis, simplificando a implementacao e melhorando a portabilidade em diferentes
ambientes.

Durante a producao, havia dois contentores Docker separados: um para a aplicagao Web
com o proprio servidor Node.js e outro para a base de dados PostgreSQL. Qualquer um
deles executava o Alpine Linux, que era um sistema operativo Linux muito leve.

Outros ficheiros relacionados com o Docker que ndo foram explicados incluem
.env.docker e .dockerignore, que foram utilizados para gerir varidveis de ambiente e
especificar ficheiros e diretdrios que devem ser excluidos do contexto de compila¢ao do
Docker, respetivamente.

Dockerfile explicado

Um Dockerfile era um ficheiro de texto que continha uma série de instru¢des para
construir uma imagem Docker, especificando o ambiente da aplicacao, as dependéncias e a
configuracao necessdria para executar a aplica¢ao. Havia 2 Dockerfiles na aplicagao.

Luigi Matteo Girke 55 Maio 2025



Sistema de envio de SMS com interface web

Dockerfile do Node.js
Este foi o Dockerfile mais importante localizado em /Dockerfile:

FROM oven/bun:alpine AS base

RUN apk add --no-cache nodejs npm
RUN bun i -g il8nexus-cli

FROM base AS deps

WORKDIR /app

COPY package.json bun.lock ./
RUN bun install

FROM base AS builder

WORKDIR /app

COPY --from=deps /app/node_modules ./node_modules
COPY . .

RUN bun run build

FROM base AS runner

WORKDIR /app

ENV NODE_ENV=production

COPY --from=builder /app/public ./public

COPY --from=builder /app/.next/standalone ./
COPY --from=builder /app/.next/static ./.next/static

COPY --from=builder /app/package.json ./
COPY --from=builder /app/node_modules ./node_modules

EXPOSE 3000

CMD ["bun", "run", "start"]
Imagem de base: Foi definida uma imagem de base utilizando um ambiente leve Alpine
Linux com Bun (linha 1).
Instalar o Node.js e 0 i18nexus: O Node.js e o npm foram instalados, juntamente com o
i18nexus CLI para traduc¢ées (linhas 4-5).
Estagio de Dependéncias: Um novo estdgio chamado deps foi criado para instalar as
dependéncias do aplicativo. Ele definiu o diretdrio de trabalho, copiou os arquivos
necessdrios e executou o comando de instalacdo (linhas 8-12).
Estagio de construcao: A fase de construcdo foi iniciada, onde definiu o diretdrio de
trabalho, copiou as dependéncias instaladas da fase anterior e construiu a aplicacdo (linhas
15-19).
Etapa do servidor de producao: A fase final, runner, definiu o diretdrio de trabalho e
definiu a varidvel de ambiente para producao. Os ficheiros da aplicagao compilados na fase
anterior foram copiados (linhas 22-28).
Copiando arquivos adicionais: O cddigo também copiou o package.json e node_modules
do estagio anterior para garantir que todos os arquivos necessdrios estivessem disponiveis
(linhas 33-34).
Expor porta: O Dockerfile exp0s a porta 3000, permitindo o acesso externo ao aplicativo
(linha 36).
Comando de inicio: Finalmente, foi especificado um comando para iniciar a aplicacdo (linha
37)-

Dockerfile do banco de dados
Esta foi a configuragao mais simples localizada em /1ib/db/Dockerfile para configurar e
propagar a base de dados:

Luigi Matteo Girke 56 Maio 2025



Sistema de envio de SMS com interface web

Imagem de base: A imagem de base foi definida usando uma versdo especifica do
PostgreSQL, que foi baseada numa variante leve do Alpine Linux (linha 1).

Copiar script de seed: Um arquivo SQL chamado seed.sql foi copiado para um diretdrio
designado dentro do container do PostgreSQL usado para semear o banco de dados
quando o container foi iniciado (linha 2).

Explicacao do docker-compose.yaml

Um arquivo docker-compose.yaml era um arquivo de texto que definia um aplicativo
Docker com varios contéineres. Ele especificava os servicos (contéineres) que compunham
o aplicativo, suas configuracdes e como eles interagiam uns com os outros. Esse arquivo
permitia a definicao e o gerenciamento de toda a pilha de aplicativos, incluindo rede,
volumes e varidveis de ambiente, em um Unico arquivo.

Teria sido possivel alcancar os mesmos resultados sem o Docker Compose, criando e
gerindo os contentores Docker individuais, redes, volumes e outros recursos necessarios
para a aplicagdo. No entanto, isso teria sido mais complexo e demorado.

O ficheiro Docker Compose, localizado em /docker-compose.yaml, definiu 2 servicos: web
e base de dados.

Run Service

e: Dockerfile
le: .env.docker

- "3000:3000"
depends ne
gatabase

: service_healthy

t: ./lib/db
le: Dockerfile
container_name: postgres
file: .env.docker

- ${POSTGRES_PORT}:${POSTGRES_PORT}

- database-v:/var/lib/postgresql/data

[
"CMD-SHELL",
"pg_isready -p ${POSTGRES_PORT} -U ${POSTGRES_USER} -d ${POSTGRES_DB}",
]
start_period: Os
: 58

e: "database-v"

O servico Web:
Ele construiu aimagem do Docker usando o Dockerfile no diretdrio atual.
Carregou varidveis de ambiente a partir do ficheiro .env.docker.

Luigi Matteo Girke 57 Maio 2025



Sistema de envio de SMS com interface web

Expds a porta 3000 no anfitrido e mapeou-a para a porta 3000 no contentor.

Dependia do servico de base de dados e aguardava que este estivesse operacional antes
de iniciar.

O servico de base de dados:

Construiu a imagem do Docker usando o Dockerfile no diretdrio . /1ib/db.

Definiu 0 nome do contentor para postgres.

Carregou varidveis de ambiente a partir do ficheiro .env.docker.

ExpOs a varidvel de ambiente POSTGRES_PORT no anfitrido e mapeou-a para a mesma porta
no contentor.

Montou um volume chamado database-v no diretério /var/lib/postgresql/data no
contentor.

Ele definiu um healthcheck que verificava se o PostgreSQL estava pronto para aceitar
conexdes a cada 5 segundos, com um timeout de 5 segundos e um maximo de 5
tentativas.

O volume database-v foi definido para manter os dados PostgreSQL.

Sem IP e reencaminhamento de portas

Para simplificar o acesso dos utilizadores, foi obtido um nome de dominio gratuito junto do
No-IP, um fornecedor dinamico de servicos de nomes de dominio (DNS). Isto permitiu aos
utilizadores ligarem-se a aplicagao utilizando um nome de dominio memoravel em vez do
endereco IP do router, que pode ter mudado frequentemente.

O No-IP actualizava automaticamente o nome de dominio para refletir o endereco IP atual
do router, garantindo um acesso consistente. Este recurso era particularmente util em
ambientes onde o enderecamento IP dinamico era comum. Por outras palavras,
basicamente fazia com que o IP dinamico se comportasse como um IP estatico.

Para configurar o No-IP, foi consultado este guia que explica o que foi feito para configurar
o No-IP:

Criar uma conta: Foi criada uma nova conta no sitio Web do No-IP e foram preenchidas as
informacgodes necessarias.

Confirmar a conta: Foi verificada a existéncia de uma ligagao de confirmag¢ao no correio
eletrénico e clicou-se nela.

Iniciar sessao: Acedeu a conta utilizando o e-mail e a palavra-passe.

Adicionar um nome de anfitrido: Foi criado um nome de anfitrido para o servidor
(Opcional) Criar uma chave DNS dindmica: Foi criada uma chave DNS dindmica para maior
seguranca e compatibilidade.

Tornando o host dindamico: O Cliente de Atualizacdo Dindmica (DUC) do No-IP foi instalado
e configurou o dispositivo para actualiza¢bes.

Configuracao do router: O encaminhamento de portas foi configurado para os servicos
necessarios (por exemplo, web, FTP).

Execucdo dos servicos: A configuracdo foi verificada com uma ferramenta de verificacao
de portas e comecou a utilizar os servigos.

Luigi Matteo Girke 58 Maio 2025


https://www.noip.com/support/knowledgebase/free-dynamic-dns-getting-started-guide-ip-version

Sistema de envio de SMS com interface web

O encaminhamento de portas foi configurado no router para direcionar o trafego de
entrada para a porta especifica do contentor Docker que executa a aplicagao. Esta
configuracao permitiu que os utilizadores acedessem a aplicag¢do facilmente e a partir de
redes que ndo apenas a rede da escola. Para a configuracao, este guia foi referenciado.

Nginx

O Nginx forneceu varios recursos, servindo principalmente como um servidor web e
funcionando como um proxy reverso para redirecionar o trafego para outros servidores.
Neste projeto, foi utilizado para configurar certificados SSL, redirecionar o trafego http
para https e redirecionar o trafego para a aplicagido executada no Docker. Para aprender
os conceitos basicos do Nginx, foi consultado este tutorial.

O Nginx foi bastante facil de configurar:
1. O Nginx foi instalado.
2. Ele foi iniciado usando o comando nginx.

3. Primeiro foi gerado um certificado SSL auto-assinado usando este comando: openssl
req -x509 -nodes -days 365 -newkey rsa:2048 -keyout nginx-selfsigned.key -
out nginx-selfsigned.crt

4. Em seguida, foi feita uma tentativa de usar um comando do Certbot para gerar um
certificado SSL assinado por autoridade gratuitamente. No entanto, este processo
deparou-se com um problema porque o Certbot ndo era compativel com o computador da
escola com Windows.

5. O resto do trabalho consistiu em editar o ficheiro nginx. conf, onde foi definido todo o
comportamento do Nginx.

Luigi Matteo Girke 59 Maio 2025


https://www.noip.com/support/knowledgebase/general-port-forwarding-guide
https://www.youtube.com/watch?v=q8OleYuqntY

nginx.conf

Sistema de envio de SMS com interface web

Apesar de o ficheiro de configuracdo do Nginx (/nginx. conf) ter sido enviado para o
repositdrio, ndo foi lido a partir deste ficheiro. Ele existia para garantir a disponibilidade
quando necessario. A localizagdo real do arquivo de configuracao pode ser verificada
executando nginx -V, permitindo que o caminho que contém o arquivo de configuracao

nginx.conf seja copiado

worker_processes 1

events {
worker_connections 1024

}
http {

include mime.types

server {
listen 80
server_name localhost

return 301 https://\$

. Aqui estava a configuracdo basica:

host\$request_uri

server {
listen 443 ssl
server_name localhost

ssl_certificate /User
ssl_certificate_key /I

location /

proxy_pass http:/

s/<your_user>/nginx-certs/nginx-selfsigned.crt
Users/<your_user>/nginx-certs/nginx-selfsigned.key

/localhost:3000

proxy_set_header
proxy_set_header
proxy_set_header
proxy_set_header
proxy_set_header
proxy_set_header
40 proxy_set_header

}

Host $host

X-Real-IP $remote_addr

X-Forwarded-For $proxy_add_x_forwarded_for
X-Forwarded-Proto $scheme

X-Forwarded-Host $host

X-Forwarded-Port $server_port

Cookie $http_cookie

Ele configurou o Nginx com 1 processo de trabalho e 1024 conexdes.
Redireccionou todo o trafego HTTP (porta 80) para HTTPS (porta 443).

Utilizava certificados SSL

Fazia proxy de pedidos para um servico de backend executado na porta 3000.

auto-assinados para HTTPS.

Transmitia informacg6es do cliente através de cabecalhos para o backend.

Comandos uteis

Luigi Matteo Girke

60

Maio 2025



Sistema de envio de SMS com interface web

1. nginx -s reload recarregou a configuracao sem deixar cair as conexdes.

2. nginx -s stop pdragraciosamente o servidor.

3. nginx -s quit parou o servidorimediatamente apds fechar as liga¢bes actuais.
Para obter mais informagdes sobre 0 nginx, a documentacao foi referenciada.

Certificados SSL

Obter um certificado SSL auto-assinado foi feito facilmente usando o seguinte comando.
Ele gerou uma chave auto-assinada, que foi colocada em ~/nginx-certs/ e entdo
referenciada a partir do arquivo de configuracao do Nginx usando o caminho absoluto. Ele
mudou para esse diretdrio recém-criado:

opensslreq -x509 -nodes -days 365 -newkey rsa:2048 -keyout nginx-selfsigned.key -out
nginx-selfsigned.crt

A obtencdo de um certificado SSL assinado por uma autoridade foi feita usando o Certbot,
completando um "desafio". Para isso, foi necessario o nome de dominio, leia mais aqui:

sudo certbot --nginx -d< your_domain_name> .com

Depois disso, ele ainda tinha que fazer mais tarefas, como gerar um link simbdlico. Ele
seguiu este tutorial para todas as etapas.

Luigi Matteo Girke 61 Maio 2025


https://nginx.org/en/docs/
https://youtu.be/BeafoOFxIcI?si=TqB9XVm-e6TdVPJE&t=301

Sistema de envio de SMS com interface web

CONCLUSAO

Em conclusdo, foi determinado que a aplicacao abordou eficazmente os elevados custos
das mensagens de texto para a escola, oferecendo uma solu¢ao de comunicagdo SMS
eficiente e econdmica, acessivel a todos os utilizadores. O projeto era totalmente reativo e
utilizavel em dispositivos mdveis, com todas as funcionalidades planeadas implementadas
e outras adicionais incluidas. Com capacidades como o envio de mensagens para varios
destinatarios, envios programados e uma interface de facil utilizacao, simplificou a
comunicagdo e integrou-se perfeitamente no Active Diretory da escola para autenticacao.

O sitio Web foi reconhecido pela sua rdpida producao, gragas a tecnologias robustas e a
uma forte énfase no desempenho. Esta énfase resultou numa interface rapida com
laténcia minima, melhorando a experiéncia do utilizador e fazendo com que se parecesse
mais com uma aplica¢do do que com um sitio Web. Construido com tecnologias de topo
como Next.js e PostgreSQL, mostrou o potencial de alavancar APls REST para a
funcionalidade SMS. Por ultimo, a sua implementagao utilizando o Docker e o Nginx num
computador local da escola foi excelente para aprender as no¢6es basicas de alojamento e
demonstrou a aplicacao pratica destas tecnologias.

Embora o projeto tenha apresentado desafios, foi particularmente dificil encerra-lo no
final, o que acabou por servir como uma experiéncia de aprendizagem significativa. Com os
conhecimentos adquiridos, previa-se que as futuras itera¢des de aplica¢bes semelhantes
pudessem ser desenvolvidas de forma mais eficiente e eficaz.

Arrependimentos

Utilizar apenas as funcionalidades basicas do i18next sem o i18nexus, evitando o plural e a
ramificacdo da tradugao.

Repeticao frequente de calculos complexos da drea de desloca¢ao em vez de os gerir num
unico local

Configuracao complexa das defini¢bes do front-end com algumas defini¢bes a serem
tratadas por bibliotecas

Realizag¢do lenta da incompatibilidade entre os componentes Sheet e ScrollArea do
ShadCN

A utilizagdo de .safeParse emvez de .parse com zod faz com que o cédigo de
tratamento de erros fique no bloco try, o que ndo respeita a separacao de preocupagdes
Sem snippets para cddigo repetitivo

N3o existe uma forma uniforme de tratar os erros nas ac¢des do servidor

N&o hd convenc¢des de nomenclatura claras/consistentes para fun¢ées, tipos TypeScript e
esquemas Zod

Carateristicas omitidas

A carateristica mais importante nao implementada foi a sondagem da API quanto ao
estado de entrega das SMS. Era crucial porque, embora os erros imediatos fossem geridos
tanto do lado do utilizador como do lado da API de gateway, as mensagens podiam nao
chegar ao destinatadrio final devido a questées como um ndmero de telefone invalido ou
problemas com o telefone do destinatario. Este estado devia ser apresentado na aplicagao.

Luigi Matteo Girke 62 Maio 2025



Sistema de envio de SMS com interface web

Para obter informacdes sobre como pesquisar a API, foi consultada a documentacao da
GatewayAPI.

Embora a APl recomendasse a utilizacao de webhooks em vez de sondagens por motivos
de eficiéncia, necessitava de sondagens de mensagens devido a sua configuracao de auto-
hospedagem. Esta abordagem permitiu-lhe gerir situacdes em que o servidor podia ser
desligado durante as férias, garantindo que ainda podia recuperar o estado da entrega de
SMS quando o servidor estivesse novamente online.

Embora esta funcionalidade ndo tenha sido implementada, foram tomadas notas:

Do ponto de vista l6gico, 0 estado do campo da base de dados das mensagens
programadas ndo deve ser "PROGRAMADO" quando a data de entrega € atingida.

No inicio de sessao do utilizador, as mensagens podem ser verificadas quanto ao
sinalizador confirmed_delivery.

Os erros de entrega para destinatdrios individuais podem ser apresentados no ecra de
mensagens.

Um campo como was_scheduled ou scheduled_send poderia ser adicionado para indicar
como a mensagem foi enviada.

Para atualizar os indicadores de quantidade, pode ser adicionado na estrutura de raiz um
temporizador de atualizacdo de 5 minutos para sondar os estados de entrega de
mensagens programadas.

Outras carateristicas

LigacOes para o item modificado/criado em mensagens de sucesso para um acesso facil
aos detalhes

Apenas administradores:

LigagOes para a pagina de inicio de sessdo da GatewayAPI no painel de administra¢ao
Definicao de max-age do cookie de autentica¢ao

Opcao para efetuar cdpias de seguranca e restaurar a base de dados

Opcao para especificar as op¢des de selecao disponiveis para o nome do remetente
Mais informag6es de contacto apresentadas em cada item de mensagem da lista
Fotografias de perfil de contacto

Os valores ndo definidos devem ser passados como nulos para a base de dados

Luigi Matteo Girke 63 Maio 2025


https://gatewayapi.com/docs/apis/rest/#get-sms-and-sms-status
https://gatewayapi.com/docs/apis/rest/#get-sms-and-sms-status
https://gatewayapi.com/docs/apis/rest/#webhooks

Sistema de envio de SMS com interface web

ANEXO | - MANUAL DO UTILIZADOR

Este capitulo fornece explica¢des claras e passo a passo de procedimentos comuns e
processos ndo intuitivos para ajudar os novos utilizadores a navegar no projeto e a aceder
as ferramentas necessarias para a expansao. Dicas e guias adicionais para configuracoes
especificas podem ser encontrados noutros capitulos.

Como comecgar
Este é um projeto de router de aplicagdes Next.js 15.

O utilizador instala o gestor de pacotes Bun seguindo as instru¢des do seu sitio Web.

O utilizador define as varidveis de ambiente necessarias encontradas na sec¢ao ANEXAS.
Estas incluem .env e .env.docker, que vao ambas para o diretdrio raiz do projeto.

O utilizador navega para o diretdrio correto a partir de uma aplicagao terminal a sua
escolha.

O utilizador instala os pacotes executando o comando de terminal bun install.

O utilizador inicia o servidor de desenvolvimento executando o comando de terminal bun
dev. Se ocorrer um erro, o utilizador pode utilizar o comando alternativo: bun next dev.

Nota: O usudrio pode utilizar qualquer gerenciador de pacotes que preferir, mas
0 autor recomenda o uso do Bun por ser o gerenciador de pacotes mais rapido e
eficiente, além de fornecer uma API quase idéntica ao npm.

GitHub

Primeiros passos: O utilizador cria uma conta GitHub e configura o Git na sua maquina
local. Ele configura seu nome de usudrio e e-mail com git config --global user.name
"Seu nome" egit config --global user.email "your.email@example.com".

Clonando o repositdrio: O utilizador utiliza o comando git clone <repositério-url>
para copiar um repositdério remoto para a sua maquina local, permitindo-lhe trabalhar no
projeto localmente.

Adicionando um novo ramo e configurando o upstream: O usudrio cria um novo ramo com
git checkout -b <nome do ramo> e, em seguida, faz o push para o repositdrio remoto
pela primeira vez usando git push -u origin <nome do ramo>. O sinalizador -u define
a referéncia de rastreamento upstream, vinculando o ramo local ao ramo remoto. Os
ramos sdo criados apenas para novos recursos e, quando um recurso é concluido, testado
e funcionando, ele pode ser mesclado no ramo principal.

Enviando para o repositorio: Depois de fazer as altera¢des, o usudrio as encena com git
add .,fazocommitcomgit commit -m "Sua mensagem", e faz o push para o repositdrio
remoto usando git push origin <branch-name>.

Trabalhar num ambiente de desenvolvimento

Este processo pode ser complicado em diferentes plataformas, mas a configuracao e
algumas dicas para desenvolver este projeto sdo explicadas abaixo.

Luigi Matteo Girke 64 Maio 2025


https://nextjs.org/
https://bun.sh/
mailto:your.email@example.com

Sistema de envio de SMS com interface web

Servidor Web Node.js
Para iniciar um servidor de desenvolvimento, € utilizado o seguinte comando:

desenvolvimento de pao
Se ndo houver ligagao a Internet ou ocorrer outro erro, é utilizado o comando abaixo:
bun next dev

Depurando o banco de dados PostgreSQL

No macOS, o Postgres.app deve estar em execu¢ao em segundo plano para funcionar
corretamente. Para consultar a base de dados diretamente, o utilizador executa o
comando psql num terminal para aceder a shell psql, onde todas as consultas podem ser
executadas.

No Windows, o Postgres deve estar sempre em execucdo. O utilizador abre a aplica¢ao
psql, que contém a shell psql para execucao de consultas.

Sugestao: Os problemas de ligacao devem-se provavelmente a credenciais
invalidas.

Comandos PostgreSQL

Para semear a base de dados, o utilizador

executayour_project_file path/lib/db/seed.sql nashell psql. Este comando é o
mesmo para macOS e Windows. No entanto, se surgirem problemas no Windows, o
utilizador deve tentar usar barras invertidas (\) em vez de barras (/).

Comandos SQL:

Para eliminar todas as tabelas: DROP TABLE IF EXISTS destinatario, contacto,
mensagem, public.user;

Para verificar quantas mensagens foram enviadas nos ultimos 30 dias: SELECT COUNT(*)
FROM message WHERE send_time >= CURRENT_DATE - INTERVAL 'l months' AND
in_trash = false AND status NOT IN ('FAILED', 'DRAFTED');

Trabalhar num ambiente de producdo (implantacdo)

O utilizador garante que o motor Docker estd a funcionar abrindo a aplicacao Docker.
O utilizador inicia os contentores Docker com o seguinte comando:

docker-compose up --build

Se o Nginx nao estiver em execucao, o utilizador executa este comando:

nginx

O utilizador reinicia o servidor Web Nginx utilizando o comando:

nginx -s recarregar

Observacao: No primeiro comando, o sinalizador --build é opcional. Ele solicita
que o Docker reconstrua as imagens e deve ser usado quando ha altera¢6es que
precisam ser aplicadas. Se omitido, o Docker Compose usa imagens existentes,
acelerando o processo.

Luigi Matteo Girke 65 Maio 2025



Sistema de envio de SMS com interface web

Depuracao do Docker

Aceder a um contentor Docker: Para aceder a um contentor Docker em execucdo, o
utilizador executa o seguinte comando:

docker exec -it< nome_do_contentor_ou_id> /bin/sh

O utilizador substitui <nome_do_contentor_ou_id> pelo nome real ou ID do contentor.
Como o Alpine estd em uso, o usudrio acessa o shell sh em vez do bash.

Acessando um banco de dados PostgreSQL em um container Docker: Para acessar um
banco de dados PostgreSQL através do shell psql em execugao dentro de um contéiner
Docker, o usudrio executa:

docker exec -it< postgres_container_name_or_id> psql -U< username> -d<
database_name>

O utilizador substitui <postgres_container_name_or_id>, <username> e
<database_name> pelos valores apropriados.

Mais comandos:

Listagem de contentores em execuc¢do: docker ps

Parar um contentor: docker stop <nome_do_contentor_ou_id>
Iniciando um contéiner: docker start <nome_do_contéiner_ou_id>
Removendo um contéiner: docker rm <nome_do_contéiner_ou_id>

Ver os registos do contentor: docker logs <nome_do_contentor_ou_id>

Zona de perigo:

Remocao de contentores parados: docker container prune

Remocao de imagens ndo utilizadas: docker image prune

Remocao de volumes ndo utilizados: docker volume prune

Remocao de redes ndo utilizadas: docker network prune

Remocao de todos os recursos do Docker: docker system prune -a --volumes

Trabalhar com a i18nexus

Aviso: Optar por nao utilizar o i18nexus e editar manualmente os ficheiros JSON
resulta na perda permanente de altera¢des quando se executa o comando pull,
uma vez que o diretdrio /locales nao € confirmado no git.

O utilizador inicia sessao na plataforma i18nexus com a conta fornecida.

O utilizador faz altera¢des na plataforma. O plano gratuito limita as cadeias de tradugao,
impedindo a adi¢do de novas. Estd disponivel um espaco de nomes "arquivo (ndo utilizado
em lado nenhum)" para mover e editar tradu¢des ndo utilizadas.

O utilizador sincroniza as altera¢des executando:

i18nexus pull

Luigi Matteo Girke 66 Maio 2025


https://app.i18nexus.com/sign-in

‘ Sistema de envio de SMS com interface web

ANEXO Il - FICHEIROS DE CODIGO

/middleware.ts

import { il8nRouter } from "next-il8n-router"”;

import { i18nConfig } from

./118n.config";

import { NextRequest, NextResponse } from "next/server";

import { getSession } from

./1lib/auth/sessions”;

export default async function middleware(request: NextRequest) {

// Handle 118n routing

const il8nResponse = il8nRouter(request, il8nConfig);

const session = await getSession(request, il8nResponse);

const { pathname } = request.nextUrl;

const locale = request.cookies.get("NEXT LOCALE")?.value || "en";

// Pathname checks use °.includes()" 1instead of ~.startsWith(), because

of possible locale between url segments.

}

if (session.isAuthenticated && pathname.includes("/login")) {
// Redirect logged in users to home
return NextResponse.redirect(new URL( /${locale}/ , request.url));

}

if (!session.isAuthenticated && !pathname.includes("/login")) {
// Redirect unauthorized users to login
return NextResponse.redirect(new URL( /${locale}/login , request.url));

}

// Return the i18n-router response for all other cases
return il8nResponse;

// applies this middleware only to files in the app directory

e

/

S

}.

xport const config = {
matcher: "/((?!api|static|.*\\..*| _next).*)",

)

docker-compose.yaml

ervices:
web:
build:
context:
dockerfile: Dockerfile
env_file: .env.docker
ports:
- "3000:3000"
depends_on:
database:

Luigi Matteo Girke 67 Maio 2025



condition: service healthy

database:
build:
context: ./lib/db

dockerfile: Dockerfile
container_name: postgres

env_file: .env.docke
ports:

r

Sistema de envio de SMS com interface web

- ${POSTGRES_PORT}:${POSTGRES_PORT}

volumes:

- database-v:/var/lib/postgresql/data

healthcheck:
test:

[
"CMD-SHELL",

"pg_isready -p ${POSTGRES_PORT} -U ${POSTGRES_USER} -d ${POSTGRES

_DB}",

]

start_period: @s
interval: 5s
timeout: 5s
retries: 5

volumes:

database-v:
name: "database-v"

/types/contact.ts

export type DBContact =

}s

id: string;
phone: string;

// contact information
user_id: string;
name: string;

{

description?: string; // Optional field

created _at: Date;
updated at: Date;

/types/dashboard.ts

export type LightDBMessage

}s

user_id: string;
send_time: Date;
cost: string;

Luigi Matteo Girke

68 Maio 2025



Sistema de envio de SMS com interface web

/types/action.ts

import { ContactSchema } from "@/lib/form.schemas";

import { DBContact } from "./contact";
import { z } from "zod";

// this is for useActionState() forms
export type ActionResponse<T> = {
success: boolean;
message: string[];
errors?: {
[K in keyof T]?: string[];
s
inputs?: {
[K in keyof T]?: string;
}s
¥

export type DraftActionResponse<T> = {
success: boolean;
message: string[];
draftId?: T;

}s

export type DataActionResponse<T>
success: boolean;
message: string[];
data?: T;

¥

1
~

export type UpdateSettingResponse
success: boolean;
name?: string;
input: string;
error?: string;
data?: any;

}s

1
~

export type CreateContactResponse
success: boolean;
message: string[];
data?: DBContact;
errors?: {

1
~~

[K in keyof z.infer<typeof ContactSchema>]?:

1

inputs?: {

}s
}s

Luigi Matteo Girke 69

[K in keyof z.infer<typeof ContactSchema>]?:

string[];

string;

Maio 2025



Sistema de envio de SMS com interface web

/types/recipient.ts

type BaseRecipient = {
phone: string;
// if it is a contact
contact?: {
id: string;
name?: string;
phone: string;
description?: string;
}s
¥

// Recipients used in the new message form.
export type NewRecipient = {
formattedPhone?: string;
isValid: boolean;

error?: {
type?: "error" | "warning";
message?: string;

}s

proneForDeletion: boolean;
} & BaseRecipient;

export type WithContact = {
id: string;
} & BaseRecipient;

// No joins - normal query directly from the DB
export type DBRecipient = {

id: string;

phone: string;

}s

export type FetchedRecipient = DBRecipient & { last used: Date };
export type RankedRecipient = DBRecipient & { usageCount: number };

/types/index.ts

import { z } from "zod";
import { DBRecipient, NewRecipient } from "./recipient";
import { MessageSchema } from "@/lib/form.schemas";

export type StatusEnums = "SENT" | "SCHEDULED" | "FAILED" | "DRAFTED";
export type CategoryEnums =

| "SENT"

| "SCHEDULED"

Luigi Matteo Girke 70 Maio 2025



Sistema de envio de SMS com interface web

| "FAILED"
| "DRAFTS"
| "TRASH";

// export type StringBoolMap = { [kRey: string]: boolean };
export type Modals = {
schedule: boolean;
scheduleAlert: boolean;
contact: {
create: boolean;
edit: boolean;
info: boolean;
insert: boolean;
}s
¥

export type Message = z.infer<typeof MessageSchema> & {
recipients: NewRecipient[];

}s

export type DBMessage = {
id: string;
user_id: string;
sender?: string;
subject?: string | null;
body: string;
created _at: Date;
send_time: Date;
status: StatusEnums;
in_trash: boolean;
api_error_code: number | null;
api_error_details _json: string | null;
recipients: DBRecipient[];
sms_reference_id: string;
cost: number | null;
cost_currency: string | null;

}s

export type AmountIndicators = {
sent: number;
scheduled: number;
failed: number;
drafts: number;
trash: number;
contacts: number;

}s

/types/theme.ts

import { themes } from "@/lib/theme.colors";

Luigi Matteo Girke 71 Maio 2025



export type ThemeProperties = {
background: string;
foreground: string;
card: string;
cardForeground: string;
popover: string;
popoverForeground: string;
primary: string;
primaryForeground: string;
secondary: string;
secondaryForeground: string;
muted: string;
mutedForeground: string;
accent: string;
accentForeground: string;
destructive: string;
destructiveForeground: string;
border: string;
input: string;
ring: string;
radius: string;

}s

export type Theme = {
light: ThemeProperties;
dark: ThemeProperties;

}s

export type Themes = {
[key: string]: Theme;
¥

Sistema de envio de SMS com interface web

export type ThemeColors = keyof typeof themes; // This will be 'Orange' |

Blue' | 'Green' | 'Rose' | 'Zinc'

export type ThemeMode = "light" | "dark";

/types/user.ts

export const validSettingNames =
lllangll,
"display_name",
"profile color_id",

"primary_color_id",
"appearance_layout",
"dark_mode",

1;

Luigi Matteo Girke

72 Maio 2025



Sistema de envio de SMS com interface web

export const appearancelLayoutValues = ["MODERN", "SIMPLE"] as const; // thi
s 1s needed for zod
export type LayoutType = (typeof appearancelLayoutValues)[number];
export type UserSettings = {
lang: string;

profile color_id: number;
display name: string;

dark_mode: boolean;
primary_color_id: number;
appearance_layout: LayoutType;

}s

export type User = {
id: string;
name: string;
email: string;
first_name: string;
last_name: string;

}s

// ALL user fields
export type DBUser = User &
UserSettings & {
role: "USER" | "ADMIN";
created_at?: Date;
updated at?: Date;
}s

export type SettingName =
| "lang"
| "profile color_id"
| "display name"
| "primary color_id"
| n
|

"appearance_layout
"dark_mode";

/global.config.ts

import { MessageState } from "./contexts/use-new-message";
// These date formats are used for the date-fns Library
export const PT_DATE_FORMAT = "dd/MM/yyyy HH:mm";

export const PT_DATE_FORMAT_NO_TIME = "dd/MM/yyyy";

export const IS08601_ DATE_FORMAT = "yyyy-MM-dd";

export const DEFAULT_START_DATE = "2025-01-01";

export const EMPTY_MESSAGE: MessageState = {
sender: "ETPZP",

Luigi Matteo Girke 73 Maio 2025



Sistema de envio de SMS com interface web

subject: s
recipients: [],
body: "",
recipientInput: {
recipientsExpanded: false,
value: "",
error: undefined,
isHidden: false,
b
scheduledDate: new Date(),
scheduledDateModified: false,
scheduledDateConfirmed: false,

}s

// This is used in the metadata
export const METADATA_APP_NAME = "ETPZP SMS | ";

/contexts/use-modal.tsx

"use client";

import { Modals } from "@/types";
import React, {

createContext,

Dispatch,

SetStateAction,

useContext,

useEffect,

useState,
} from "react";

const ModalContext = createContext<{
modal: Modals;
setModal: Dispatch<SetStateAction<Modals>>;
scheduleDropdown: boolean;
setScheduleDropdown: Dispatch<SetStateAction<boolean>>;
} | null>(null);

// These are popups used to work with contacts (create, edit, 1insert into n
ew message, view more info) used on /contacts and /new-message.
export function ModalProvider({
children,
o A
children: Readonly<React.ReactNode>;
H A
const [modal, setModal] = useState<Modals>({
schedule: false,
scheduleAlert: false,
contact: { create: false, edit: false, insert: false, info: false },

1)

Luigi Matteo Girke 74 Maio 2025



Sistema de envio de SMS com interface web

const [scheduleDropdown, setScheduleDropdown] = useState(false);

return (
<ModalContext.Provider
value={{ modal, setModal, scheduleDropdown, setScheduleDropdown }}
>
{children}
</ModalContext.Provider>
)
}

export function useModal() {
const context = useContext(ModalContext);
if (!context) {
throw new Error("ModalContext must be within ModalProvider");

}

return context;

}

/contexts/use-layout.tsx

"use client";

import { fetchAmountIndicators } from "@/lib/db/general";
import { AmountIndicators } from "@/types";
import {
createContext,
Dispatch,
SetStateAction,
useContext,
useEffect,
useState,
} from "react";

type LayoutContextType = {
amountIndicators: AmountIndicators | undefined;
fallbackLayout: number[];

layout: number[];
setLayout: Dispatch<SetStateAction<number[]>>;

isCollapsed: boolean;
setIsCollapsed: Dispatch<SetStateAction<boolean>>;

mobileNavPanel: boolean;
setMobileNavPanel: Dispatch<SetStateAction<boolean>>;

isFullscreen: boolean;
setIsFullscreen: Dispatch<SetStateAction<boolean>>;

Luigi Matteo Girke 75 Maio 2025



Sistema de envio de SMS com interface web

refetchAmountIndicators: () => void;

}s

const LayoutContext = createContext<LayoutContextType | undefined>(undefine
d);

export function LayoutProvider({
children,
initiallayout,
initialIsCollapsed,
initialAmountIndicators,
b A
children: React.ReactNode;
initiallayout: number[];
initialIsCollapsed: boolean;
initialAmountIndicators: AmountIndicators | undefined;
» A
// desktop layout 3 column react-resizable-panels data
const [layout, setLayout] = useState(initiallayout);
const [isCollapsed, setIsCollapsed] = useState(initialIsCollapsed);
const fallbackLayout = [20, 32, 48];
const [amountIndicators, setAmountIndicators] = useState(
initialAmountIndicators
)
// Simple state to keep track of whether the mobile nav panel 1is open
const [mobileNavPanel, setMobileNavPanel] = useState(false);
const [isFullscreen, setIsFullscreen] = useState(false);

const refetchAmountIndicators = async () => {
const amountIndicators = await fetchAmountIndicators();

if (amountIndicators) {
setAmountIndicators(amountIndicators);
}

1

useEffect(() => {
setAmountIndicators(initialAmountIndicators);
}, [initialAmountIndicators]);
return (
<LayoutContext.Provider
value={{
layout,
setlLayout,
isCollapsed,
setIsCollapsed,
fallbackLayout,
amountIndicators,
mobileNavPanel,
setMobileNavPanel,
isFullscreen,

Luigi Matteo Girke 76 Maio 2025



Sistema de envio de SMS com interface web

setIsFullscreen,
refetchAmountIndicators,

b}

{children}
</LayoutContext.Provider>
)
}

>

export function uselayout() {
const context = useContext(LayoutContext);
if (context === undefined) {
throw new Error("uselLayout must be used within a LayoutProvider");

}

return context;

}

/contexts/use-new-message.tsx

"use client";

import type React from "react";
import {
createContext,
useState,
useContext,
useCallback,
useMemo,
useEffect,
} from "react";
import { toast } from "sonner";
import type { Message } from "@/types";
import type { DBContact } from "@/types/contact";
import type {
DBRecipient,
NewRecipient,
RankedRecipient,
WithContact,
} from "@/types/recipient”;
import {
convertToRecipient,
getUniques,
matchContactsToRecipients,
validatePhoneNumber,
} from "@/lib/utils";
import { useContacts } from "./use-contacts";
import { useTranslation } from "react-il8next";
import { z } from "zod";
import { MessageSchema } from "@/lib/form.schemas";
import InsertContactModal from "@/components/modals/insert-contact”;

Luigi Matteo Girke 77 Maio 2025



‘ Sistema de envio de SMS com interface web

import CreateContactModal from "@/components/modals/create-contact”;
import RecipientInfoModal from "@/components/modals/recipient-info";
import { EMPTY_MESSAGE } from "@/global.config";
import ScheduleMessageModal, {

ScheduleAlertModal,
} from "@/components/modals/schedule-modals”;

// This is our biggest state where we store all data related to the active
message, that should be persisted during draft saving re-renders
// MessageState 1is only used here & for EMPTY_MESSAGE
export type MessageState = Message & {
// This is only for the front end composing of the message and will not b
e used on the server
recipientInput: {
value: string;
error?: string;
isHidden: boolean;
recipientsExpanded: boolean;
}s
serverStateErrors?: { [K in keyof z.infer<typeof MessageSchema>]?: string

[1}s

invalidRecipients?: NewRecipient[];

scheduledDate: Date;
scheduledDateModified: boolean;
scheduledDateConfirmed: boolean;
s
type DraftState = {
id: string | null;
pending: boolean;
lastSaveSuccessful: boolean;

}s

type MessageContextValues = {
// Message state
message: MessageState;
setMessage: React.Dispatch<React.SetStateAction<MessageState>>;

// Recipient management
recipients: NewRecipient[];
addRecipient: (phone: string) => void;
removeRecipient: (
recipient: NewRecipient,
replaceWithRecipient?: NewRecipient
) => void;

// Recipient search and suggestions
searchRecipients: (searchTerm: string) => void;

suggestedRecipients: WithContact[];

// UI state
showInfoAbout: React.Dispatch<React.SetStateAction<NewRecipient | null>>;

Luigi Matteo Girke 78 Maio 2025



Sistema de envio de SMS com interface web

selectedPhone: string | null;
updateSelectedPhone: (direction: "ArrowDown" | "ArrowUp") => void;

revalidateRecipients: () => void;
focusedInput: string | null;
setFocusedInput: React.Dispatch<React.SetStateAction<string | null>>;

form: HTMLFormElement | null;
setForm: React.Dispatch<React.SetStateAction<HTMLFormElement | null>>;
draft: DraftState;
setDraft: React.Dispatch<React.SetStateAction<DraftState>>;
¥
type ContextProps = {
children: React.ReactNode;
rankedRecipients: RankedRecipient[];
initialMessage?: MessageState;
draftId: string | null;

¥
const NewMessageContext = createContext<MessageContextValues | null>(null);

export function NewMessageProvider({
children,
rankedRecipients,
initialMessage,
draftId,
}: ContextProps) {
// Message state
const [message, setMessage] = useState<MessageState>(
initialMessage || EMPTY_MESSAGE
)
// kReep draft state separate because we don't want the draft saver to get
triggered when this data gets updated
const [draft, setDraft] = useState<DraftState>({
id: draftId,
pending: false,
lastSaveSuccessful: !!initialMessage ? true : false,
3
const { contacts } = useContacts();
const { t } = useTranslation(["new-message-page"]);

// Associate contacts with matching phone numbers to recipients
const initialRecipients: WithContact[] =
matchContactsToRecipients(rankedRecipients, contacts) || [];

// UI state

const [moreInfoOn, showInfoAbout] = useState<NewRecipient | null>(null);

const [selectedPhone, setSelectedPhone] = useState<string | null>(null);

const [suggestedRecipients, setSuggestedRecipients] =
useState(initialRecipients);

const [focusedInput, setFocusedInput] = useState<string | null>(null);

const [form, setForm] = useState<HTMLFormElement | null>(null);

Luigi Matteo Girke 79 Maio 2025



Sistema de envio de SMS com interface web

// Memoized values
const recommendedRecipients: WithContact[] = useMemo(() => {

// adjust this to your Liking
const AMOUNT = 10;
const topRecipients = initialRecipients.slice(©, AMOUNT);
if (topRecipients.length === AMOUNT) {

// Check if there are enough topRecipients

return topRecipients;

} else {
// If not Look for unused contacts to fill the gap

const extraContacts: WithContact[] = contacts
// 1. Filter out the ones that already exist in the top recipients

Filter(
(contact) => !topRecipients.some((top) => top.phone === contact.p
hone)
)
// 2. Get only the extra ones we need to fill the gap
.slice(@, AMOUNT - topRecipients.length)
// 3. Adjust the contacts to match the other recipients in the arra
y
.map(({ id, phone, name, description }) => ({
id,
phone,
contact: {
id,
name,
phone,
description,
s
1)

return [...topRecipients, ...extraContacts] as WithContact[];

¥
}, [contacts]);

// Helper functions
const revalidateRecipients = () => {
setMessage((prevMessage) => ({
// For some reason this inner part gets run twice while the outer fun
ction only gets run once

...prevMessage,
recipients: prevMessage.recipients.map((recipient, index) => {

const foundContact = contacts.find(
(contact) => contact.phone === recipient.phone

)
if (foundContact) {

return { ...recipient, contact: foundContact };
} else return recipient;

3

Luigi Matteo Girke 80 Maio 2025



Sistema de envio de SMS com interface web

)
}s

const DEFAULT SELECTED_PHONE_INDEX = null;
// Recipient management functions
const addRecipient = (phone: string) => {
if (message.recipients.some((item) => item.phone === phone)) {
// I kRnow this is not on the server, but I wanted to keep the same fo
rmat
return toast.error(t("server-duplicate recipients_error"), {
description: t("server-duplicate recipients_error_caption"),

1)
}

setMessage((prev) => {
const validatedRecipient = validatePhoneNumber(phone);
const foundContact = contacts.find((contact) => contact.phone === pho
ne);
return {
...prev,
recipients: [
...prev.recipients,
// In case “recipientWithContact™ has some old fields
{
...validatedRecipient,
contact: foundContact
? convertToRecipient(foundContact).contact
: undefined,

}s
1,
}s
1)

// Update selectedPhone to the next available recipient
setSelectedPhone((prevSelected) => {

if (prevSelected === phone) {
const nextRecipient = suggestedRecipients.find(
(r) => r.phone !== phone
)
return nextRecipient ? nextRecipient.phone : null;
¥
return prevSelected;
})s

// Reset the input and search:
setMessage((m) => ({

coem,
recipientInput: { ...m.recipientInput, value: "" },
recipients: m.recipients.map((r) => ({
...r,
proneForDeletion: false,
1),
1)
¥

Luigi Matteo Girke 81 Maio 2025



Sistema de envio de SMS com interface web

const removeRecipient = useCallback(
(recipient: NewRecipient, replaceWithRecipient?: NewRecipient) => {
setMessage((prev) => ({

...prev,
// recipientInput: { ...prev.recipientInput, value: "" },
recipients: prev.recipients
.map((r) => (r === recipient ? replaceWithRecipient : r))
.filter((r) => r !== undefined), // Filter out undefined values
1)
}s
[]

// Search and suggestion functions
const searchRecipients = (rawSearchTerm: string) => {
const searchTerm = rawSearchTerm.trim().toLowerCase();
if (!suggestedRecipients.length && !recommendedRecipients.length) {
// Searched suggested- and recommended recipients are empty -
// ALL recipients from the suggested List have already been added!
return setSelectedPhone(null);

}

// There are still suggested recipients that haven't been added yet, so
do additional checks
if (searchTerm.length) {
const filteredRecipients = getUniques(
message.recipients,
initialRecipients.filter(
(recipient) =>
(recipient.contact?.name?.toLowerCase().includes(searchTerm) ||
recipient.phone.toLowerCase().includes(searchTerm)) &&
Imessage.recipients.some((r) => r.phone === recipient.phone)
)
)
setSuggestedRecipients(filteredRecipients);

if (!filteredRecipients.length) {
// No recipients found (the suggested panel will be hidden) - desel
ect the previous phone
setSelectedPhone(null);
} else {
setSelectedPhone(
DEFAULT_SELECTED_ PHONE_ INDEX
? filteredRecipients[DEFAULT_SELECTED_PHONE_INDEX]?.phone
: DEFAULT_SELECTED_ PHONE_ INDEX
)
}
} else {
setSuggestedRecipients(
getUniques(message.recipients, recommendedRecipients)

)

Luigi Matteo Girke 82 Maio 2025



Sistema de envio de SMS com interface web

setSelectedPhone(
DEFAULT_SELECTED_PHONE_INDEX
? recommendedRecipients[DEFAULT_SELECTED_PHONE_INDEX]?.phone
: DEFAULT_SELECTED_PHONE_INDEX
);
}
¥

// UI update functions
const updateSelectedPhone = useCallback(
(input: "ArrowDown" | "ArrowUp") =»> {
setSelectedPhone((prevPhone) => {
const currentIndex = suggestedRecipients.findIndex(
(item) => item.phone === prevPhone
)
const length = suggestedRecipients.length;
const newIndex =
input === "ArrowUp"
? (currentIndex - 1 + length) % length
: (currentIndex + 1) % length;
return suggestedRecipients[newIndex]?.phone;
3
}s
[suggestedRecipients]

)

useEffect(() => {
// Revalidate recipients when contacts get re-fetched

revalidateRecipients();
}, [contacts]);

useEffect(() => {
if (!!initialMessage === false) {
// If initialMessage 1is undefined, reset all the controlled inputs to
an empty value
setMessage (EMPTY_MESSAGE) ;
}

}, [initialMessage]);

// When recipients change do this:
useEffect(() => {
// If we still freshly have the invalid recipients error
if (message.invalidRecipients) {
const validRecipientExists = !!message.recipients.find(
(r) => r.isValid === true
)
if (validRecipientExists) {
// If the new recipient is valid, we clear the error, allowing erro
r pulsing for more invalid recipients.
setMessage((prev) => ({ ...prev, invalidRecipients: undefined }));

}
}

Luigi Matteo Girke 83 Maio 2025



Sistema de envio de SMS com interface web

// Note: Works only correctly here; won't update correctly with add/rem
ove operations.
searchRecipients(message.recipientInput.value);
}, [message.recipients]);
return (
<NewMessageContext.Provider
value={{
message,
setMessage,
recipients: message.recipients,
addRecipient,
removeRecipient,
suggestedRecipients,
searchRecipients,

showInfoAbout,
selectedPhone,
updateSelectedPhone,
revalidateRecipients,
focusedInput,
setFocusedInput,

form,
setForm,
draft,
setDraft,

b}

{/* We move modals here, because unlike the form component, this does
n't re-render when a draft gets saved */}
<InsertContactModal />
<ScheduleMessageModal />
<ScheduleAlertModal />
{/* This should always be defined as we pass a defaultPhone and may c
reate a contact from scratch. */}
<CreateContactModal
defaultPhone={moreInfoOn?.phone}
onCreateSuccess={(contact) => {
// After creating the new contact, replace the old recipient
const oldRecipient = message.recipients.find(
(r) => r.phone == moreInfoOn?.phone

>

)
const newRecipient = convertToRecipient(contact);
showInfoAbout(newRecipient);
if (oldRecipient) {
removeRecipient(oldRecipient, newRecipient);
}
}}
/>

{moreInfoOn && (

Luigi Matteo Girke 84 Maio 2025



Sistema de envio de SMS com interface web

<RecipientInfoModal recipient={moreInfoOn} allowContactCreation />
)}
{children}
</NewMessageContext.Provider>
)5
}

export function useNewMessage() {
const context = useContext(NewMessageContext);
if (!context) {
throw new Error("useNewMessage must be used within a NewMessageProvider
")
}

return context;

}

/contexts/use-settings.tsx

"use client";

import { useThemeContext } from "@/contexts/theme-data-provider";
import { il8nConfig } from "@/il8n.config";
import { fetchUserSettings } from "@/lib/db/general”;
import { usePathname, useRouter } from "next/navigation"”;
import { useTheme as useNextTheme } from "next-themes";
import {

createContext,

Dispatch,

SetStateAction,

useContext,

useEffect,

useState,
} from "react";
import { LayoutType } from "@/types/user";
import useIsMounted from "@/hooks/use-mounted";

type SettingsState = {
displayName?: string;
profileColorId?: number;
layout: LayoutType | undefined;

}s

type SettingsContext = {
settings: SettingsState;
setSettings: Dispatch<SetStateAction<SettingsState>>;
updatelLanguageCookie: (newLocale: string) => void;
normalizePath: (path: string) => string;
// hasLanguageCookie: () => boolean; not used outside as of now
syncWithDB: () => Promise<void>;
resetLocalSettings: () => void;

Luigi Matteo Girke 85 Maio 2025



Sistema de envio de SMS com interface web

}s
const SettingsContext = createContext<SettingsContext | null>(null);

export function SettingsProvider({
children,
currentLocale,
b A
children: Readonly<React.ReactNode>;
currentlLocale: string;
H A
const isMounted = useIsMounted();
// Localstorage state without theme color (primary color) and theme mode
because those are handled internally by our packages
const [settings, setSettings] = useState<SettingsState>({
displayName: localStorage.getItem("display name") || undefined,
profileColorld:
Number(localStorage.getItem("profile color_id")) || undefined,
layout:
(localStorage.getItem("appearance layout") as LayoutType) || undefine
d,
3

const router = useRouter();

const currentPathname = usePathname();

const { setThemeColor } = useThemeContext();
const { setTheme } = useNextTheme();

// Helper function to normalize paths
function normalizePath(path: string) {
const defaultlLocale = il8nConfig.defaultlLocale as string;

// Remove leading slash and split into segments
const segments = path.replace(/~\//, "").split("/");

// If the first segment is a locale and it's not the default, remove it

if (segments[0] === currentLocale && currentlLocale !== defaultlLocale) {
segments.shift();

}

return "/" + segments.join("/");

}

const updatelLanguageCookie = (newLocale: string) => {
// set cookie for next-il18n-router
const days = 30;
const date = new Date();
date.setTime(date.getTime() + days * 24 * 60 * 60 * 1000);
const expires = date.toUTCString();
document.cookie = "NEXT_LOCALE=%${newLocale};expires=%${expires};path=/";

// redirect to the new locale path

Luigi Matteo Girke 86 Maio 2025



Sistema de envio de SMS com interface web

if (
currentlLocale === i18nConfig.defaultlLocale &&
1i18nConfig.prefixDefault
) A
router.push("/" + newLocale + currentPathname);
} else {

router.push(
currentPathname.replace( /${currentLocale} , "~ /${newLocale} )

);
}

router.refresh();

1

const hasLanguageCookie = () => {
const cookies = document.cookie.split(";").map((cookie) => cookie.trim(

));
return cookies.some((cookie) =>
cookie.startsWith("NEXT LOCALE=")
) as boolean;
}s

const syncWithDB
const settings

async () => {
await fetchUserSettings();

if (settings) {

const {
profile color _id,
display name,
dark_mode,
primary color id,
lang,
appearance_layout,

} = settings;

// Profile

localStorage.setItem("profile color id", profile color id.toString())

localStorage.setItem("display name", display name);

// Appearance

setTheme(dark_mode === true ? "dark" : "light"); // theme 1is stored a
s strings because we are using next-themes

setThemeColor(primary color_id);

localStorage.setItem("appearance layout", appearance layout);

// Language - this comes last because it will refresh the page, which
might cause 1issues
updatelLanguageCookie(lang);

// Update components when localstorage settings change
setSettings({
displayName: display name,

Luigi Matteo Girke 87 Maio 2025



Sistema de envio de SMS com interface web

profileColorlId: profile color_id,

layout: appearance_layout,

3
}

}s

const resetlLocalSettings = () => {
localStorage.clear();
setTheme("1light");
setThemeColor(1);
updatelLanguageCookie(il8nConfig.defaultlLocale);

1

// This will also get triggered on load
useEffect(() => {
const referenceHeaderHeight = parseInt(

getComputedStyle(document.documentElement).getPropertyValue(

"--simple-header-height"
)5
10 // base 16 1integer
)5
if (settings.layout === "MODERN") {
document.documentElement.style.setProperty(
"--header-height",
“${referenceHeaderHeight * 2}px"
)5
} else if (settings.layout === "SIMPLE") {
document.documentElement.style.setProperty(
"--header-height",
“${referenceHeaderHeight}px"
)5
}
}, [settings.layout]);
useEffect(() => {
if (isMounted) {
if (
localStorage.getItem("profile color id") == null ||
localStorage.getItem("display name") == null ||
localStorage.getItem("primary color id") == null ||
localStorage.getItem("theme") == null ||
hasLanguageCookie() === false
) {
syncWithDB();
}

}
}, [isMounted]);

return (
<SettingsContext.Provider
value={{
settings,
setSettings,
updatelLanguageCookie,

Luigi Matteo Girke 88

Maio 2025



Sistema de envio de SMS com interface web

normalizePath,

// haslLanguageCookie,
syncWithDB,
resetlLocalSettings,

}}
>

{children}
</SettingsContext.Provider>
)
}

export function useSettings() {
const context = useContext(SettingsContext);
if (!context) {
throw new Error("SettingsContext must be within SettingsProvider");

}

return context;

}

/contexts/theme-data-provider.tsx

"use client";

import setGlobalColorTheme from "@/lib/theme.colors”;

import { ThemeProviderProps, useTheme as useNextTheme } from "next-themes";
import React, { createContext, useContext, useEffect, useState } from "reac
tll;

type ThemeColorStateParams = {

themeColor: number;

setThemeColor: React.Dispatch<React.SetStateAction<number>>;
¥
const ThemeContext = createContext<ThemeColorStateParams>(

{} as ThemeColorStateParams

);

export default function ThemeDataProvider({ children }: ThemeProviderProps)

{

if (typeof localStorage === "undefined") {
return null;
}
const getSavedThemeColor = (): number => {
return Number(localStorage.getItem("primary color id")) || 1;
}s

const { theme } = useNextTheme();
const [themeColor, setThemeColor] = useState<number>(getSavedThemeColor()

);

const [isMounted, setIsMounted] = useState<boolean>(false);

Luigi Matteo Girke 89 Maio 2025



Sistema de envio de SMS com interface web

useEffect(() => {
localStorage.setItem("primary color id", themeColor.toString());
setGlobalColorTheme(theme as "light" | "dark", themeColor);

if (!isMounted) {
setIsMounted(true);
}
}, [themeColor, theme, isMounted]);
if (!isMounted) {
return null;

}
return (
<ThemeContext.Provider value={{ themeColor, setThemeColor }}>
{children}
</ThemeContext.Provider>
)

}

export function useThemeContext() {
return useContext(ThemeContext);

}

/contexts/use-contacts.tsx

"use client";

import { fetchContacts } from "@/1lib/db/contact";

import { DBContact } from "@/types/contact";

import React, { createContext, useContext, useEffect, useState } from "reac
tll;

import { useTranslation } from "react-il8next";

type ContactContextValues = {
contacts: DBContact[];
refetchContacts: () => void;
contactFetchError: string | null;

¥
const ContactsContext = createContext<ContactContextValues | null>(null);

export function ContactsProvider({
children,
initialContacts,
Fo A
children: Readonly<React.ReactNode>;
initialContacts: DBContact[] | undefined;
A
const { t } = useTranslation(["contacts-page"]);
const [contacts, setContacts] = useState<DBContact[]>(initialContacts ||

Luigi Matteo Girke 90 Maio 2025



Sistema de envio de SMS com interface web

[1)s

const unknownFetchError = t("fetch error");
const [error, setError] useState<string | null>(
initialContacts === undefined ? unknownFetchError : null

);

const refetchContacts = async () => {
const newContacts = await fetchContacts();
setContacts(newContacts || []);

if (newContacts === undefined) {
setError(unknownFetchError);

}
1

return (
<ContactsContext.Provider
value={{ contacts, refetchContacts, contactFetchError: error }}
>
{children}
</ContactsContext.Provider>
)
}

export function useContacts() {
const context = useContext(ContactsContext);
if (!context) {
throw new Error("ContactsContext must be within ContactsProvider");

}

return context;

}

/contexts/translations-provider.jsx

"use client";

import { Il18nextProvider } from "react-il8next";
import initTranslations from "@/app/il8n";
import { createInstance } from "il8next";

// This provider 1is for client-component useTranslation() hook
export default function TranslationsProvider({

children,

locale,

namespaces,

resources,

N A

const il18n = createlInstance();

initTranslations(locale, namespaces, il8n, resources);

Luigi Matteo Girke 91 Maio 2025



Sistema de envio de SMS com interface web

return <I18nextProvider i118n={il8n}>{children}</I18nextProvider>;

}

/app/[locale]/(root)/(message-layout)/drafts/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
return <MessagesPageSkeleton category="DRAFTS" />;

}

/app/[locale]/(root)/(message-layout)/drafts/page.tsx

import initTranslations from "@/app/il8n";

import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";
import { fetchMessagesByStatus } from "@/lib/db/message";

export default async function Page() {
const messages = await fetchMessagesByStatus("DRAFTED");

return (
<MessagesPage
messages={messages || []}
error={messages === undefined}
category="DRAFTS"
/>
)
}
export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
H A

const { locale } = await params;

const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("drafts-title"),
description: t("drafts-description"),
}s
}

Luigi Matteo Girke 92

Maio 2025



Sistema de envio de SMS com interface web
/app/[locale]/(root)/(message-layout)/contacts/loading.tsx

import ContactsPageSkeleton from "@/components/contacts-page-skeleton";

export default function Loading() {
return <ContactsPageSkeleton />;

}

/app/[locale]/(root)/(message-layout)/contacts/page.tsx

import ContactsPage from "@/components/contacts-page";
import { ModalProvider } from "@/contexts/use-modal";
import initTranslations from "@/app/il8n";

import { METADATA_APP_NAME } from "@/global.config";

export default async function Page() {
return (
<ModalProvider>
<ContactsPage />
</ModalProvider>
)
}

export async function generateMetadata({
params,

b A
params: Promise<{ locale: string }>;

N A

const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("contacts-title"),
description: t("contacts-description"),

1
}

/app/[locale]/(root)/(message-layout)/trash/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
return <MessagesPageSkeleton category="TRASH" />;

}

Luigi Matteo Girke 93 Maio 2025



Sistema de envio de SMS com interface web
/app/[locale]/(root)/(message-layout)/trash/page.tsx

import initTranslations from "@/app/il8n";

import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";
import { fetchTrashedMessages } from "@/lib/db/message";

export default async function Page() {
const messages = await fetchTrashedMessages();

return (
<MessagesPage
messages={messages || []}
error={messages === undefined}
category="TRASH"
/>
)
}
export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
H A

const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("trash-title"),
description: t("trash-description"),

1
}

/app/[locale]/(root)/(message-layout)/sent/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
return <MessagesPageSkeleton category="SENT" />;

}

/app/[locale]/(root)/(message-layout)/sent/page.tsx

import initTranslations from "@/app/il8n";
import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";

Luigi Matteo Girke 94 Maio 2025



Sistema de envio de SMS com interface web

import { fetchSentIn } from "@/1lib/db/message";

export default async function Page() {
const messages = await fetchSentIn("PAST");

return (
<MessagesPage
messages={messages || []}
error={messages === undefined}
category="SENT"
/>
)
}
export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
H A

const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("sent-title"),
description: t("sent-description™),

1
}

/app/[locale]/(root)/(message-layout)/failed/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
return <MessagesPageSkeleton category="FAILED" />;

}

/app/[locale]/(root)/(message-layout)/failed/page.tsx

import initTranslations from "@/app/il8n";

import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";
import { fetchMessagesByStatus } from "@/lib/db/message";

export default async function Page() {
const messages = await fetchMessagesByStatus("FAILED");

return (

Luigi Matteo Girke 95 Maio 2025



Sistema de envio de SMS com interface web

<MessagesPage
messages={messages || []}
error={messages === undefined}
category="FAILED"
/>
)
}
export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
H A

const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("failed-title"),
description: t("failed-description"),
}s
}

/app/[locale]/(root)/(message-layout)/layout.tsx

import initTranslations from "@/app/il8n";

import TranslationsProvider from "@/contexts/translations-provider";
import { ContactsProvider } from "@/contexts/use-contacts";

import { fetchContacts } from "@/1lib/db/contact";

type LayoutProps = Readonly<{
children: React.ReactNode;
params: Promise<{ locale: string }>;

1>

export default async function TranslationLayout({
children,
params,
}: LayoutProps) {
// Internationalization (i118n) stuff
const il8nNamespaces = [
"messages-page",
"contacts-page",
"modals",
"common",
"errors",
1;
const { locale } = await params;
const { resources } = await initTranslations(locale, il8nNamespaces);

return (

Luigi Matteo Girke 96 Maio 2025



‘ Sistema de envio de SMS com interface web

/* This is a client Layout component containing the translation provide
r for the nav panel */
<TranslationsProvider
/* Only wrap what's necessary with the TranslationsProvider */
resources={resources}
locale={locale}
namespaces={il8nNamespaces}

<ContactsProvider initialContacts={(await fetchContacts()) || []}>
{children}
</ContactsProvider>
</TranslationsProvider>
)
}

/app/[locale]/(root)/(message-layout)/error.tsx

"use client";

import ChildrenPanel from "@/components/shared/children-panel”;
import ErrorComponent from "@/components/shared/error-component”;
import { Button } from "@/components/ui/button”;

import { useEffect } from "react"”;

import { useTranslation } from "react-il8next";

export default function Error({
error,
reset,

e A
error: Error & { digest?: string };
reset: () => void;

H A

const { t } = useTranslation(["errors"]);

useEffect(() => {
// Log the error to an error reporting service
console.error(error);
}, [error]);
return (
<ChildrenPanel>
<ErrorComponent
title={t("error-header")}
subtitle={t("error-header_caption")}
>
<Button
onClick={
// Attempt to recover by trying to re-render the segment
() => reset()
}

>

Luigi Matteo Girke 97 Maio 2025



Sistema de envio de SMS com interface web

{t("try_again")}
</Button>
</ErrorComponent>
</ChildrenPanel>
)
}

/app/[locale]/(root)/(message-layout)/scheduled/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
return <MessagesPageSkeleton category="SCHEDULED" />;

}

/app/[locale]/(root)/(message-layout)/scheduled/page.tsx

import initTranslations from "@/app/il8n";

import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";
import { fetchSentIn } from "@/1lib/db/message";

export default async function Page() {
const messages = await fetchSentIn("FUTURE");

return (
<MessagesPage
messages={messages || []}
error={messages === undefined}
category="SCHEDULED"
/>
)
}
export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
» A

const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("scheduled-title"),
description: t("scheduled-description"),
}s
}

Luigi Matteo Girke 98 Maio 2025



Sistema de envio de SMS com interface web

/app/[locale]/(root)/layout.tsx

import initTranslations from "@/app/il8n";

import AppLayout from "@/components/app-layout"”;

import { SettingsProvider } from "@/contexts/use-settings";
import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = Readonly<{
children: React.ReactNode;
params: Promise<{ locale: string }>;

1>

export default async function NavPanellayout({

children,

params,
}: LayoutProps) {

// Internationalization (i118n) stuff - no need to include errors namespac
e as we only put in more specific locations

const il8nNamespaces = ["navigation", "welcome-page", "modals", "common"

const { locale } = await params;
const { resources } = await initTranslations(locale, il8nNamespaces);

return (
<SettingsProvider currentLocale={locale}>
<AppLayout
/* This is a client Llayout component containing the translation pro
vider for the nav panel */
resources={resources}
locale={locale}
namespaces={il8nNamespaces}
>
{children}
</ApplLayout>
</SettingsProvider>
)
}

export async function generateMetadata({
params,

b A
params: Promise<{ locale: string }>;

N A

const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("welcome-title"),
description: t("welcome-description"),

Luigi Matteo Girke 99 Maio 2025



3

Sistema de envio de SMS com interface web

/app/[locale]/(root)/page.tsx

"use client";

import
import
import
import
import
import
import
import
import
import
import
import
import

export

ChildrenPanel from "@/components/shared/children-panel”;
{ uselLayout } from "@/contexts/use-layout”;

Link from "next/link";

{ cn } from "@/lib/utils";

{ buttonvariants } from "@/components/ui/button”;

{ Trans, useTranslation } from "react-il8next";

LinkCard from "@/components/cards";

{ useThemeContext } from "@/contexts/theme-data-provider";
Envelope from "@/public/icons/envelope-solid.svg";
Contact from "@/public/icons/user-solid.svg";

{ PageHeader } from "@/components/headers";

{ ScrollArea } from "@/components/ui/scroll-area"”;

{ useIsMobile } from "@/hooks/use-mobile";

default function WelcomePage() {

const { amountIndicators } = uselayout();
const { themeColor } = useThemeContext();
const onMobile = useIsMobile();

const { t, i18n } = useTranslation(["welcome-page"]);

const gradientStyle = {
fontSize: "48px", // Adjust the font size as needed
fontWeight: "bold", // Make the text bold
background: "linear-gradient(135deg, ${themeColor}, orange , // Diagona

L gradient using CSS variables

WebkitBackgroundClip: "text", // Clip the background to the text
WebkitTextFillColor: "transparent", // Make the text color transparent
display: "inline-block", // Ensure the gradient applies correctly

}s

return (
<ChildrenPanel>

<ScrollArea className="h-full">

{onMobile && <PageHeader />}

<div className="flex-1 flex flex-col p-4 min-h-[calc(1@0@vh-var(--si

mple-header-height))]">

gap-10'

<div className="flex-1 flex flex-col items-center justify-center

">

{/* <PageHeader title="Welcome to the Etpzp SMS App!" /> */}

<div className="text-center">
<span className="text-x1 text-muted-foreground block">
{t("welcome_message")}{" "}
</span>

Luigi Matteo Girke 100 Maio 2025



‘ Sistema de envio de SMS com interface web

<span className="text-6x1 leading-tighter gradient-text">
ETPZP-SMS
</span>
</div>

/= %/}
<div className="flex flex-col xs:flex-row gap-2 w-full justify-
center items-center">
<LinkCard
href="/contacts"”
heroValue={amountIndicators?.contacts || 0}
Icon={Contact}
title={t("card 1-title")}

/>
<LinkCard
href="/sent"
heroValue={
(amountIndicators?.sent || 9) +
(amountIndicators?.scheduled || 0)
¥

Icon={Envelope}
title={t("card 2-title")}
/>
</div>
</div>

<p className="text-sm text-center my-8" /**mb-12 */>
{t("developer credit")}{" "}
<Link
href="https://github.com/devdogfish"
className={cn(
buttonvariants({ variant: "link" }),

"p-0 h-min"
// "underline hover:no-underline"
)}
target="_blank"
>
Luigi Girke
</Link>
</p>
</div>
</ScrollArea>
</ChildrenPanel>

)s
}

/app/[locale]/(root)/(other)/_seed/page.tsx

import ChildrenPanel from "@/components/shared/children-panel”;
import db from "@/lib/db";

Luigi Matteo Girke 101 Maio 2025



' o Sistema de envio de SMS com interface web

// Function to generate a random date up to 3 years ago
function getRandomDate() {
const now = new Date();
const threeYearsAgo = new Date(now.setFullYear(now.getFullYear() - 2));
const randomDate = new Date(
threeYearsAgo.getTime() +
Math.random() * (Date.now() - threeYearsAgo.getTime())
)
return randomDate;

}

// Function to generate random message data
function getRandomMessageData() {
const users = Array.from({ length: 10 }, (_, i) => i + 1); // User IDs fr
om 1 to 10
const subjects = [
"Hello",
"Meeting Reminder",
"Invoice",
"Newsletter",
"Promotion",
1;
const bodies = [
"This is a test message.",
"Don’t forget about our meeting tomorrow.",
"Your invoice is attached.",
"Check out our latest newsletter.",
"Exclusive offer just for you!",
1;
const statuses = ["SENT", "SCHEDULED", "FAILED", "DRAFTED"];

return {
user_id: users[Math.floor(Math.random() * users.length)],
sender: “user${Math.floor(Math.random() * 10) + 1}@example.com’,
subject: subjects[Math.floor(Math.random() * subjects.length)],
body: bodies[Math.floor(Math.random() * bodies.length)],
send_time: getRandomDate(),
status: statuses[Math.floor(Math.random() * statuses.length)],
in_trash: false, // Randomly true or false
cost: parseFloat((Math.random() * ©.1).toFixed(4)), // Random cost betw
een 0.0 and 0.1
cost_currency: "EUR",
¥
}

// Function to insert a message into the database
async function insertMessage() {
const messageData = getRandomMessageData();

const query = °
INSERT INTO "message" (user_id, sender, subject, body, send time, s

Luigi Matteo Girke 102 Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

tatus, in_trash, cost, cost_currency)
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9)

3

const values = [
messageData.user_id,
messageData.sender,
messageData.subject,
messageData.body,
messageData.send time,
messageData.status,
messageData.in_trash,
messageData.cost,
messageData.cost_currency,

15

try {
await db(query, values);
console.log("Message inserted successfully:", messageData);
} catch (err) {
console.error("Error inserting message:", err);
}
}

async function insertUsers() {

try {
const result = await db(

INSERT INTO "user" (name, email, role, created at, updated_at, firs
t_name, last _name, lang, profile color_id, display name, dark_mode, primary
_color_id)

VALUES

('Alice Johnson', 'alice@example.com', 'USER', NOW(), NOW(), 'Ali
ce', 'Johnson', 'en', 1, 'Alice J.', false, 1),

('Bob Smith', 'bob@example.com', 'USER', NOW(), NOW(), 'Bob', 'Sm
ith', 'en', 1, 'Bob S.', false, 1),

('Charlie Brown', 'charlie@example.com', "ADMIN', NOW(), NOW(), '
Charlie', 'Brown', 'en', 1, 'Charlie B.', false, 1),

('David Wilson', 'david@example.com', 'USER', NOW(), NOW(), 'Davi
d', '"Wilson', 'pt', 1, 'David W.', false, 1),

('Eve Davis', 'eve@example.com', 'ADMIN', NOW(), NOW(), 'Eve', 'D
avis', 'pt', 1, 'Eve D.', true, 1),

('Frank Miller', 'frank@example.com', 'USER', NOW(), NOW(), 'Fran
k', 'Miller', 'en', 1, 'Frank M.', false, 1),

('Grace Lee', 'grace@example.com', 'USER', NOW(), NOW(), 'Grace',
'Lee', 'en', 1, 'Grace L.', false, 1),

('Hank Green', 'hank@example.com', 'USER', NOW(), NOW(), 'Hank',
'Green', 'pt', 1, 'Hank G.', true, 1),

("Irene Taylor', 'irene@example.com', "'ADMIN', NOW(), NOW(), 'Ire
ne', 'Taylor', 'en', 1, 'Irene T.', false, 1),

('Jack White', 'jack@example.com', 'USER', NOW(), NOW(), 'Jack',
'"White', 'pt', 1, 'Jack W.', false, 1);

Luigi Matteo Girke 103 Maio 2025



‘ Sistema de envio de SMS com interface web

)
console.log("Users inserted successfully:", result.rows);
} catch (err) {
console.error("Error inserting users:", err);
}
}

// Call the function to insert a message
export default async function Page() {
await insertUsers();
for (let i = 1; i <= 300; i++) {
await insertMessage();

}

return (
<ChildrenPanel>
<div className="centered">Seeded successfully</div>
</ChildrenPanel>
)
}

/app/[locale]/(root)/(other)/settings/layout.tsx

import initTranslations from "@/app/il8n";

import TranslationsProvider from "@/contexts/translations-provider";
import ChildrenPanel from "@/components/shared/children-panel”;
import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = Readonly<{
children: React.ReactNode;
params: Promise<{ locale: string }>;

1>

export default async function TranslationLayout({
children,
params,
}: LayoutProps) {
// Internationalization (i118n) stuff
const il8nNamespaces = ["settings-page", "common", "errors"];
const { locale } = await params;
const { resources } = await initTranslations(locale, il8nNamespaces);

return (
/* This is a client Layout component containing the translation provide
r for the nav panel */

<TranslationsProvider
/* Only wrap what's necessary with the TranslationsProvider */
resources={resources}
locale={locale}
namespaces={il8nNamespaces}

Luigi Matteo Girke 104 Maio 2025



Sistema de envio de SMS com interface web

>
<ChildrenPanel>{children}</ChildrenPanel>
</TranslationsProvider>
)
}

export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
H A
const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("settings-title"),
description: t("settings-description"),
¥
}

/app/[locale]/(root)/(other)/settings/error.tsx

"use client";

import ChildrenPanel from "@/components/shared/children-panel”;
import ErrorComponent from "@/components/shared/error-component”;
import { Button } from "@/components/ui/button”;

import { useEffect } from "react"”;

import { useTranslation } from "react-il8next";

export default function Error({
error,
reset,

e A
error: Error & { digest?: string };
reset: () => void;

N A

const { t } = useTranslation(["errors"]);

useEffect(() => {
// Log the error to an error reporting service
console.error(error);
}, [error]);
return (
<ErrorComponent
title={t("error-header")}
subtitle={t("error-header caption")}
>
<Button
onClick={

Luigi Matteo Girke 105 Maio 2025



Sistema de envio de SMS com interface web

// Attempt to recover by trying to re-render the segment
() => reset()

}
>
{t("try_again")}
</Button>
</ErrorComponent>

);

/app/[locale]/(root)/(other)/settings/page.tsx

"use client";

import { PageHeader, SectionHeader } from "@/components/headers";
import {
LanguageChanger,
ThemeToggle,
ThemeColorChanger,
createSelectItems,
ColorDropdown,
} from "@/components/settings";
import { Button, buttonVariants } from "@/components/ui/button";
import {
Select,
SelectContent,
SelectItem,
SelectTrigger,
SelectValue,
} from "@/components/ui/select”;
import { useTranslation } from "react-il8next";
import SettingsItem from "../../../../../components/settings-item";

import { cn } from "@/lib/utils";

import { useTheme as useNextTheme } from "next-themes";

import { useThemeContext } from "@/contexts/theme-data-provider";
import { ScrollArea } from "@/components/ui/scroll-area"”;

import { useIsMobile } from "@/hooks/use-mobile";

export default function Settings() {
const { t } = useTranslation();
const { theme } = useNextTheme();
const { themeColor, setThemeColor } = useThemeContext();
const onMobile = uselIsMobile();

const initialValues = {
profile: {
displayName:
localStorage.getItem("display name") || "Initial display name",
colorId: localStorage.getItem("profile color id") || undefined,

}s

Luigi Matteo Girke 106 Maio 2025



' e Sistema de envio de SMS com interface web

appearance: {
darkMode: theme,
layout: localStorage.getItem("appearance layout") || "MODERN",
primaryColor: themeColor.toString(),
¥
}s

return (
<>
<PageHeader title={t("header")} />

<ScrollArea
className={
onMobile
? "h-[calc(1@@vh-var(--simple-header-height))]"
"h-[calc(1@0vh-var(--header-height))]"
}

>
<div
className="p-4" /* Inside Looks better with rimless bottom on scr
oll on scroll */
>
<div className="space-y-12">
<SectionHeader
title={t("language-header")}
subtitle={t("language-header caption")}
anchorName="1language"
>
<SettingsItem
name="lang"
label={t("language-language label")}
caption={t("language-language label caption")}
renderInput={({
value,
onChange,
onBlur,
id,
isPending,
setServerState,
P o=>A
return (
<LanguageChanger
// This component has custom behavior—only select pro
ps are used as it handles its own submission,

// and setServerState 1s passed so elements update wi
th errors.

id={id}

value={value}

onChange={onChange}

onBlur={onBlur}

isPending={isPending}

setServerState={setServerState}
/>

Luigi Matteo Girke 107 Maio 2025



Sistema de envio de SMS com interface web

)
13
/>
</SectionHeader>

<SectionHeader
title={t("profile-header")}
subtitle={t("profile-header caption")}
anchorName="profile"
>
<SettingsItem
name="profile color_id" // this might need to be the exact
database field
label={t("profile-color_label")}
caption={t("profile-color_label caption")}
renderInput={({ value, onChange, onBlur, id, isPending }) =

<ColorDropdown
initialValue={initialValues.profile.colorId}
id={id}
value={value}
isPending={isPending}
// We need to do nothing here because the this type of
setting is handled internally (in settings-item)
onValueChange={(colorIndex: string) => {}}
onChange={onChange}
onBlur={onBlur}
/>
)}
/>
<SettingsItem
name="display name"
label={t("profile-name_label")}
caption={t("profile-name_label caption")}
initialValue={initialValues.profile.displayName}
/>
</SectionHeader>

<SectionHeader
title={t("appearance-header")}
subtitle={t("appearance-header_caption")}
anchorName="appearance"
>
<SettingsItem
name="primary color_id" // this might need to be the exact
database field
label={t("appearance-color_label")}
caption={t("appearance-color_label caption")}
renderInput={({ value, onChange, onBlur, id, isPending }) =

<ColorDropdown
initialValue={initialValues.appearance.primaryColor}
// Initial value handled internally

Luigi Matteo Girke 108 Maio 2025



‘ Sistema de envio de SMS com interface web

id={id}
value={value}
isPending={isPending}
onValueChange={(colorIndex: string) =>
setThemeColor(Number(colorIndex))

}
// we call these in onValueChange
onChange={onChange}
onBlur={onBlur}

/>

)}
/>

<SettingsItem
name="appearance_layout" // this might need to be the exact
database field
label={t("appearance-layout label")}
caption={t("appearance-layout label caption")}
renderInput={({ value, onChange, onBlur, id, isPending }) =

const layouts = [
{
value: "MODERN",
name: "Modern",

}s

{
value: "SIMPLE",

name: "Simple",
¥
1;
return (
<Select
defaultValue={initialValues.appearance.layout}
onValueChange={(value) => {
onChange(value);
setTimeout(() => {
onBlur(undefined, value);
}, 200);
1}
disabled={isPending}
>
<SelectTrigger
id={id}
className={cn(
buttonvariants({ variant: "outline" }),
"w-[200px] appearance-none font-normal justify-be
tween"
)}
>
<SelectValue />
</SelectTrigger>
<SelectContent>
{createSelectItems(layouts, theme)}

Luigi Matteo Girke 109 Maio 2025



Sistema de envio de SMS com interface web

</SelectContent>
</Select>
)
1}
/>
<SettingsItem
name="dark_mode"
label={t("appearance-theme label")}
caption={t("appearance-theme label caption")}
renderInput={({ value, onChange, onBlur, id, isPending }) =

<ThemeToggle
id={id}
value={value}
onChange={onChange}
onBlur={onBlur}
className="order-2"
initialValue={initialValues.appearance.darkMode}
isPending={isPending}
/>
)}
/>
</SectionHeader>
</div>
</div>
</ScrollArea>
</>
)
}

/app/[locale]/(root)/(other)/new-message/layout.tsx

import initTranslations from "@/app/il8n";

import TranslationsProvider from "@/contexts/translations-provider";
import ChildrenPanel from "@/components/shared/children-panel”;
import { ContactsProvider } from "@/contexts/use-contacts”;

import { fetchContacts } from "@/1lib/db/contact"”;

import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = Readonly<{
children: React.ReactNode;
params: Promise<{ locale: string }>;

1>

export default async function TranslationLayout({
children,
params,
}: LayoutProps) {
// Internationalization (i118n) stuff
const il8nNamespaces = ["new-message-page", "modals", "common", "errors"

Luigi Matteo Girke 110 Maio 2025



Sistema de envio de SMS com interface web

5
const { locale } = await params;
const { resources } = await initTranslations(locale, il8nNamespaces);

return (
/* This is a client Layout component containing the translation provide
r for the nav panel */
<TranslationsProvider
/* Only wrap what's necessary with the TranslationsProvider */
resources={resources}
locale={locale}
namespaces={il8nNamespaces}
>
<ChildrenPanel>
<ContactsProvider initialContacts={(await fetchContacts()) || []1}>
{children}
</ContactsProvider>
</ChildrenPanel>
</TranslationsProvider>
)
}

export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
» A
const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("new message-title"),
description: t("new message-description"),
¥
}

/app/[locale]/(root)/(other)/new-message/error.tsx

"use client";

import ErrorComponent from "@/components/shared/error-component”;
import { Button } from "@/components/ui/button”;

import { useEffect } from "react"”;

import { useTranslation } from "react-il8next";

export default function Error({
error,
reset,

b A

error: Error & { digest?: string };

Luigi Matteo Girke 111 Maio 2025



Sistema de envio de SMS com interface web

reset: () => void;

N A

const { t } = useTranslation(["errors"]);

useEffect(() => {
// Log the error to an error reporting service
console.error(error);
}, [error]);
return (
<ErrorComponent
title={t("error-header")}
subtitle={t("error-header caption")}
>
<Button
onClick={
// Attempt to recover by trying to re-render the segment
() => reset()
}
>
{t("try _again")}
</Button>
</ErrorComponent>

)s

/app/[locale]/(root)/(other)/new-message/loading.tsx

"use client";

import { Separator } from "@/components/ui/separator”;
import {

ChevronDown,

Maximize2,

Minimize2,

Send,

Trash2,

X,
} from "lucide-react"”;
import { useTranslation } from "react-il8next";
import { PageHeader } from "@/components/headers";
import { Button, buttonVvariants } from "@/components/ui/button”;
import { usePathname, useRouter, useSearchParams } from "next/navigation";
import {

Select,

SelectContent,

SelectItem,

SelectTrigger,

SelectValue,
} from "@/components/ui/select”;
import { uselLayout } from "@/contexts/use-layout"”;

Luigi Matteo Girke 112 Maio 2025



‘ Sistema de envio de SMS com interface web

import { useIsMobile } from "@/hooks/use-mobile";

import Skeleton from "react-loading-skeleton";
import { cn } from "@/1lib/utils”;

const PULSE_BODY_WIDTH = "70%";
const PULSE_SUBJECT_WIDTH = "25%";

export default function Loading() {
const { t } = useTranslation(["new-message-page"]);
const router = useRouter();
const { isFullscreen, setIsFullscreen } = uselayout();

const onMobile = useIsMobile();

return (
<div className="">
<PageHeader title={t("header")} skeleton>
<p>{t("common:loading")}</p>
{!onMobile && (
<Button variant="ghost" size="icon" disabled>
{isFullscreen ? (
<Minimize2 className="h-4 w-4" />
)+ (
<Maximize2 className="h-4 w-4" />

)}
</Button>

)}

<Button
variant="ghost"
className={cn(buttonVariants({ variant: "ghost" }), "aspect-1 p-90

")}
disabled
>
<X className="h-4 w-4" />
</Button>
</PageHeader>
<div className="h-screen flex flex-col"»
<div className="flex flex-col h-[calc(1@@vh-var(--header-height))]"
>

<div className="flex flex-col px-4 mt-2">
<div className={cn("border-b focus-within:border-black")}>
<Select name="sender" defaultValue="ETPZP" disabled>
{/** It defaults to the first SelectItem */}
<SelectTrigger className="w-full rounded-none border-none s
hadow-none focus:ring-0 px-5 py-1 h-11">

<SelectValue placeholder="ETPZP" />

</SelectTrigger>

<SelectContent>
<SelectItem value="ETPZP">ETPZP</SelectItem>
<SelectItem value="Test">Test</SelectItem>

Luigi Matteo Girke 113 Maio 2025



' e Sistema de envio de SMS com interface web

</SelectContent>
</Select>
</div>

<InputSkeleton title={t("common:to")} />
<InputSkeleton />
</div>
<div className="px-4 flex-grow mt-[1.25rem] mb-2 w-full">
<span className="mb-1 flex items-center text-sm text-muted-fore
ground flex-1 min-w-8">
<Skeleton
height={16}
containerClassName={ min-w-[${PULSE_BODY_WIDTH}] }
/>
</span>
</div>

<Separator />
<div className="flex px-4 py-2 justify-end gap-2">
<Button
variant="secondary"
type="button"
className="w-max"
disabled

<Trash2 className="h-4 w-4" />
{t("discard")}
</Button>

<div className="flex">
<Button
className="rounded-tr-none rounded-br-none border-primary-f
oreground border-r"
disabled
>
<Send className="w-4 h-4" />
{t("submit_btn-normal™)}
</Button>
<div
className={cn("flex gap-3 items-center justify-start w-full

")}

<Button

className="px-[1px] rounded-tl-none rounded-bl-none shado
w-none"
type="button"
disabled
>
<ChevronDown className={cn("h-4 w-4 transition-transform"

)} />
</Button>
</div>
</div>

Luigi Matteo Girke 14 Maio 2025



Sistema de envio de SMS com interface web

</div>
</div>
</div>
</div>
)5
}

function InputSkeleton({ title }: { title?: string }) {
return (
<div className="flex-1 py-1 relative ">
<div className="max-h-24 overflow-auto">
<div className="w-full flex flex-wrap items-center gap-x-1 py-1 h-f
ull border-b px-5 z-50 min-h-[45px]">
{title ? (
<span className="my-0.5 mr-0.5 px-0 flex items-center text-sm t
ext-muted-foreground">
{title}
</span>
c (
<span className="mb-1 flex items-center text-sm text-muted-fore
ground flex-1 min-w-8">
<Skeleton
height={16}
width=""
containerClassName={ min-w-[${PULSE_SUBJECT_WIDTH}] }
/>
</span>
)}
</div>
</div>
</div>

)

)s
}

/app/[locale]/(root)/(other)/new-message/page.tsx

import NewMessageForm from "@/components/new-message-form";

import { MessageState, NewMessageProvider } from "@/contexts/use-new-messag
e";

import { fetchRecipients } from "@/1lib/db/recipients”;

import { fetchDraft } from "@/lib/db/message"”;

import { rankRecipients, validatePhoneNumber } from "@/lib/utils";

import { ModalProvider } from "@/contexts/use-modal";

import { EMPTY_MESSAGE } from "@/global.config";

type NewMessagePageProps = {
searchParams: Promise<{ message_id: string }>;

}s

export default async function Page({ searchParams }: NewMessagePageProps) {

Luigi Matteo Girke 115 Maio 2025



Sistema de envio de SMS com interface web

const rawRecipients = await fetchRecipients();
const draftInUrl = await searchParams;
const fetchedDraft = await fetchDraft(draftInUrl.message id);

return (
<ModalProvider>
<NewMessageProvider
rankedRecipients={rankRecipients(rawRecipients || []1) || []1}
// initialMessage={fetchedDraft [| EMPTY_MESSAGE}
initialMessage={
fetchedDraft
2 q
body: fetchedDraft?.body || EMPTY_MESSAGE.body,
subject: fetchedDraft?.subject || EMPTY_MESSAGE.subject,
sender: fetchedDraft?.sender || EMPTY_MESSAGE.sender,
recipients:
fetchedDraft?.recipients.map((r) => {
return {
...r,
...validatePhoneNumber(r.phone),
¥
}) || EMPTY_MESSAGE.recipients,
recipientInput: EMPTY_MESSAGE.recipientInput,
scheduledDate:
fetchedDraft.send time || EMPTY_MESSAGE.scheduledDate,
scheduledDateModified: EMPTY_MESSAGE.scheduledDateModified,
scheduledDateConfirmed: EMPTY_MESSAGE.scheduledDateConfirme

}

: undefined

}
draftId={fetchedDraft?.id || null}

>
<NewMessageForm message_id={fetchedDraft} />

</NewMessageProvider>

</ModalProvider>
)
}

/app/[locale]/dashboard/layout. tsx

import TranslationsProvider from "@/contexts/translations-provider";
import initTranslations from "@/app/il8n";

import { SettingsProvider } from "@/contexts/use-settings";

import { getSession } from "@/lib/auth/sessions";

import UnauthorizedPage from "@/components/403";

import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = {
children: React.ReactNode;

Luigi Matteo Girke 116 Maio 2025



Sistema de envio de SMS com interface web

params: Promise<{ locale: string }>;

}s

export default async function DashboardLayout({

children,

params,
}: LayoutProps) {

const il8nNamespaces = ["dashboard-page", "errors", "common", "navigation
BE

const { locale } = await params;

const { resources } = await initTranslations(locale, il8nNamespaces);

// Prevent non-admins from viewing the admin-dashboard and display an aut
horization message.

const session = await getSession();

if (!session?.isAdmin) return <UnauthorizedPage />;

return (
<TranslationsProvider
resources={resources}
locale={locale}
namespaces={il8nNamespaces}
>
<SettingsProvider currentLocale={locale}>{children}</SettingsProvider

</TranslationsProvider>
)5
}

export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
» A
const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA APP_NAME + t("dashboard-title"),
description: t("dashboard-description"),
}s
}

/app/[locale]/dashboard/page.tsx

import {
fetchCountryStats,
fetchMessagesInDateRange,
fetchUsers,

} from "@/1ib/db/dashboard";

Luigi Matteo Girke 17 Maio 2025



Sistema de envio de SMS com interface web

import { format } from "date-fns";
import AdminDashboard from "@/components/admin-dashboard";
import { DEFAULT_START DATE, IS08601 DATE_ FORMAT } from "@/global.config";

export type CountryStat = { country: string; amount: number; cost: number }

J

export default async function Dashboard({
searchParams,
b A
searchParams?: Promise<{
// We expect both of these to be in ISO 8601 format (YYYY-MM-DD)
start_date?: string;
end_date?: string;
}>s
H A
const s = await searchParams;
const dateRange = {
startDate: s?.start date || format(DEFAULT_START DATE, IS08601 DATE_FOR
MAT),
endDate: s?.end date || format(new Date(), IS08601 DATE_FORMAT),
}s
const messages = await fetchMessagesInDateRange(dateRange);
const users = await fetchUsers();
const countryData = await fetchCountryStats(dateRange);

return (
<AdminDashboard
messages={messages || []}
users={users || []}
countryStats={countryData}
/>

)s

/app/[locale]/login/layout.tsx

import TranslationsProvider from "@/contexts/translations-provider";
import initTranslations from "@/app/il8n";

import { SettingsProvider } from "@/contexts/use-settings";

import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = {
children: React.ReactNode;
params: Promise<{ locale: string }>;

¥
export default async function LoginLayout({ children, params }: LayoutProps

) A

const il8nNamespaces = ["login-page", "common"];

Luigi Matteo Girke 118 Maio 2025



Sistema de envio de SMS com interface web

const { locale } = await params;
const { resources } = await initTranslations(locale, il8nNamespaces);

return (
<TranslationsProvider
resources={resources}
locale={locale}
namespaces={il8nNamespaces}
>
<SettingsProvider currentLocale={locale}>{children}</SettingsProvider

</TranslationsProvider>
)s
}

export async function generateMetadata({
params,
b A
params: Promise<{ locale: string }>;
H A
const { locale } = await params;
const { t } = await initTranslations(locale, ["metadata"]);

return {
title: METADATA_APP_NAME + t("login-title"),
description: t("login-description"),
}s
}

/app/[locale]/login/page.tsx

import LoginForm from "@/components/login-form";

export default async function LoginPage() {
return <LoginForm />;

}

/app/scattered-profiles.module.css

/* Base class for absolute centering (if needed) */
.profile-absolute {

position: absolute;

/* Reducing width/height and increasing scale makes the text inside the e
Lement bigger */

width: 67%;

height: 67%;

/* Uncomment this if you prefer

Luigi Matteo Girke 119 Maio 2025



opacity: 0.9; */
}

Sistema de envio de SMS com interface web

/* Big profile: centered in container with scale */

.profile-big {
z-index: 1;

/* Center using helper translate and scale */

top: 40%;
left: 52%;

transform: translate(-50%, -50%) scale(1.15);

}

.profile-top-left {
top: ©;
left: -7px;
transform: scale(0.7);
transform-origin: top left;

}

.profile-bottom-left {
left: 09;
bottom: ©;
transform-origin: bottom left;
transform: scale(0.4);

}

.profile-top-right {
top: -5px;
right: o;

transform: scale(0.3);
transform-origin: top right;

}

.profile-bottom-right {
z-index: 2;

/* This works, while top:100% and Lleft:

parent. */
right: o;
bottom: -3px;

transform-origin: bottom right;
transform: scale(9.82);
font-weight: 700;

/app/layout.tsx

import localFont from "next/font/local";
import "./globals.css";
import { dir } from "il8next";

Luigi Matteo Girke 120

100% places it way outside of the

Maio 2025



‘ Sistema de envio de SMS com interface web

import { ThemeProvider as NextThemesProvider } from "next-themes";
import ThemeProvider from "@/contexts/theme-data-provider";

import { cookies } from "next/headers";

import { TooltipProvider } from "@/components/ui/tooltip";
import { LayoutProvider } from "@/contexts/use-layout";
import { Toaster } from "sonner";

import { fetchAmountIndicators } from "@/lib/db/general”;
import { i18nConfig } from "@/il8n.config";

// We can't export this, because in Layout or page files Next.js expects on
Ly components and some other stuff to be exported
const disketMonoRegular = localFont({

src: "./fonts/Disket-Mono-Bold.ttf",

variable: "--font-disket-mono-regular",
weight: "100 900",
3

// Let Next.js statically generate pages for each of our Languages
export function generateStaticParams() {
return il18nConfig.locales.map((locale) => ({ locale }));

}

export default async function RootlLayout({
children,
b A
children: React.ReactNode;
H A
// We can't get the Llocale from the url params, thus we parse it from the
Locale cookie
const cookieStore = await cookies();
const currentLocale = cookieStore.get("NEXT_LOCALE")?.value;

const layoutCookie = cookieStore.get("react-resizable-panels:layout:app")
5
const collapsedCookie = cookieStore.get("react-resizable-panels:collapsed

")

const initiallayout: number[] = layoutCookie
? JSON.parse(layoutCookie.value)
: undefined;
const initialIsCollapsed: boolean = collapsedCookie
? JSON.parse(collapsedCookie.value)
: undefined;

const amountIndicators = await fetchAmountIndicators();

return (
<html
lang={currentlLocale}
dir={dir(currentLocale)}
suppressHydrationWarning
>

Luigi Matteo Girke 121 Maio 2025



Sistema de envio de SMS com interface web

<body
className={" ${disketMonoRegular.variable} antialiased flex flex-col
h-screen” }
>
<NextThemesProvider
attribute="class"
defaultTheme="1ight"
enableSystem
disableTransitionOnChange

<ThemeProvider>
<TooltipProvider delayDuration={0}>
<LayoutProvider
initiallLayout={initiallLayout}
initialIsCollapsed={initialIsCollapsed}
initialAmountIndicators={amountIndicators}

<Toaster richColors position="top-center" />

{children}
</LayoutProvider>
</TooltipProvider>

</ThemeProvider>

</NextThemesProvider>
</body>
</html>
)
}

/app/il8n.js

import { createInstance } from "il8next";

import { initReactIl8next } from "react-il8next/initReactIl8next";
import resourcesToBackend from "il8next-resources-to-backend";
import { il8nConfig } from "@/il8n.config";

export default async function initTranslations(
locale,
namespaces,
il8nInstance,
resources

) A

il8nInstance = il8nInstance || createInstance();
il8nInstance.use(initReactI18next);

if (!resources) {
il8nInstance.use(
resourcesToBackend((language, namespace) =>
import( @/locales/${language}/${namespace}.json" )
)

Luigi Matteo Girke 122 Maio 2025



‘ Sistema de envio de SMS com interface web

)5
}

await il8nInstance.init({
lng: locale,
resources,
fallbackLng: 118nConfig.defaultlLocale,
supportedLngs: il8nConfig.locales,
defaultNS: namespaces[@],
fallbackNS: namespaces[@],
ns: namespaces,
preload: resources ? [] : il8nConfig.locales,

1)

return {
i1l8n: il8nInstance,
resources: il8nInstance.services.resourceStore.data,
t: il8nInstance.t,

}s

/app/globals.css

@tailwind base;
@tailwind components;
@tailwind utilities;

@layer base {
:root {
/* Custom variables here */
/* --simple-header-height is a constant for the SIMPLE Layout, used as
a reference for other Layouts. */
--simple-header-height: 52px;
/* header-height on the other hand is dynamic */
--header-height: 52px;
}

:root {
--background: © 0% 100%;
--foreground: 20 14.3% 4.1%;
--card: 0 0% 100%;
--cardForeground: 20 14.3% 4.1%;
--popover: 0 0% 100%;
--popoverForeground: 20 14.3% 4.1%;
--primary: 47.9 95.8% 53.1%;
--primaryForeground: 26 83.3% 14.1%;
--secondary: 60 4.8% 95.9%;
--secondaryForeground: 24 9.8% 10%;
--muted: 60 4.8% 95.9%;
--mutedForeground: 25 5.3% 44.7%;

Luigi Matteo Girke 123 Maio 2025



' o Sistema de envio de SMS com interface web

--accent: 60 4.8% 95.9%;
--accentForeground: 24 9.8% 10%;
--destructive: 0 84.2% 60.2%;
--destructiveForeground: 60 9.1% 97.8%;
--border: 240 5.9% 90%;

--input: 20 5.9% 90%;

--ring: 20 14.3% 4.1%;

--radius: 9.5rem;

--chartl: 207 90% 57%;

--chart2: 100.15, 63.11%, 59.61%;
--chart3: 51 100% 50%;

--chart4: 36 100% 50%;

--chart5: 262 52% 47%;
--sidebar-background: 9 0% 98%;
--sidebar-foreground: 240 5.3% 26.1%;
--sidebar-primary: 240 5.9% 10%;
--sidebar-primary-foreground: 0 0% 98%;
--sidebar-accent: 240 4.8% 95.9%;
--sidebar-accent-foreground: 240 5.9% 10%;
--sidebar-border: 220 13% 91%;
--sidebar-ring: 217.2 91.2% 59.8%;

}

.dark {
--background: 20 14.3% 4.1%;
--foreground: 60 9.1% 97.8%;
--card: 20 14.3% 4.1%;
--cardForeground: 60 9.1% 97.8%;
--popover: 20 14.3% 4.1%;
--popoverForeground: 60 9.1% 97.8%;
--primary: 47.9 95.8% 53.1%;
--primaryForeground: 26 83.3% 14.1%;
--secondary: 12 6.5% 15.1%;
--secondaryForeground: 60 9.1% 97.8%;
--muted: 12 6.5% 15.1%;
--mutedForeground: 24 5.4% 63.9%;
--accent: 12 6.5% 15.1%;
--accentForeground: 60 9.1% 97.8%;
--destructive: 0 62.8% 30.6%;
--destructiveForeground: 60 9.1% 97.8%;
--border: 240 3.7% 15.9%;
--input: 12 6.5% 15.1%;
--ring: 35.5 91.7% 32.9%;
--chartl: 207 90% 57%;
--chart2: 100.15, 63.11%, 59.61%;
--chart3: 51 100% 50%;
--chart4: 36 100% 50%;
--chart5: 262 52% 47%;
--sidebar-background: 240 5.9% 10%;
--sidebar-foreground: 240 4.8% 95.9%;
--sidebar-primary: 224.3 76.3% 48%;
--sidebar-primary-foreground: © 0% 100%;
--sidebar-accent: 240 3.7% 15.9%;

Luigi Matteo Girke 124 Maio 2025



}
@

}

h

}
h

}
h

o Sistema de envio de SMS com interface web

--sidebar-accent-foreground: 240 4.8% 95.9%;
--sidebar-border: 240 3.7% 15.9%;
--sidebar-ring: 217.2 91.2% 59.8%;

}

layer base {
A
@apply border-border;

¥

html {
@apply scroll-smooth;

¥

body {
@apply bg-background text-foreground overscroll-none;
/* font-feature-settings: "rlig" 1, "calt" 1; */
font-synthesis-weight: none;
text-rendering: optimizelegibility;

¥

@supports (font: -apple-system-body) and (-webkit-appearance:

[data-wrapper] {
@apply min-[1800px]:border-t;
}
}

/* Custom scrollbar styling. Thanks @pranathiperii. */
::-webkit-scrollbar {
width: 5px;
}
::-webkit-scrollbar-track {
background: transparent;

:-webkit-scrollbar-thumb {
background: hsl(var(--border));
border-radius: 5px;

{

scrollbar-width: thin;
scrollbar-color: hsl(var(--border)) transparent;

* =

1
@apply text-4x1 font-bold;

2 {
@apply text-x1 font-bold;

3 {
@apply text-1lg font-medium;

Luigi Matteo Girke 125

none) {

Maio 2025



Sistema de envio de SMS com interface web

p.subtitle {
@apply text-sm text-muted-foreground;

}

hé {
font-size: 1.15em;
line-height: 1.5;

}
A
box-sizing: border-box;
}
body {
overflow: hidden;
}

.font-disket-mono-regular {
font-family: var(--font-disket-mono-regular);

}

.gradient-text {
font-weight: bold; /* Make the text bold */
/* background: Linear-gradient(135deg, var(--border), orange); /* Diagona
L gradient */
background: linear-gradient(
135deg,
hsl(var(--primary)),
hsl(var(--primaryForeground))
)
-webkit-background-clip: text; /* Clip the background to the text */
-webkit-text-fill-color: transparent; /* Make the text color transparent
*/
display: inline-block; /* Ensure the gradient applies correctly */
}
.focus-primary-ring {
@apply focus-visible:ring-1 focus-visible:ring-primary focus-visible:outl
ine-none;

}

.user-select-none {

user-select: none; /* Prevent text selection */
}
.new-message-input {

@apply h-11 rounded-none pl-5 shadow-none border-0 border-b-[1px] border-
border focus-visible:border-b-ring disabled:opacity-100 placeholder:text-mu
ted-foreground;

}

.shadcn-input {

@apply flex h-9 w-full rounded-md bg-transparent px-3 py-1 text-base shad
ow-sm transition-colors file:border-0 file:bg-transparent file:text-sm file
:font-medium file:text-accent-foreground placeholder:text-accent-foreground
focus-visible:outline-none focus-visible:ring-1 focus-visible:ring-ring dis

Luigi Matteo Girke 126 Maio 2025



' o Sistema de envio de SMS com interface web

abled:cursor-not-allowed disabled:opacity-50 md:text-sm;

}

.centered {
text-align: center;
align-content: center;
}
.flex-centered {
display: flex;
align-items: center;
justify-content: center;
}
.closeX:hover * {
color: var(--background);

}

.error-border-pulse {
animation: pulse 1000ms infinite;
}
@keyframes pulse {
0% {
@apply border-border;
}

50% {
@apply border-destructive;
}

100% {
@apply border-border;
}

}

/* Helper class to center an element absolutely using transform */
.center-absolute {

position: absolute;

top: 50%;

left: 50%;

transform: translate(-50%, -50%);
}

.ellipsis {
white-space: nowrap; /* Prevents text from wrapping */
overflow: hidden; /* Hides overflowed text */
text-overflow: ellipsis; /* Adds ellipsis (...) */

}

.container-overlay {
position: absolute;
width: 100%;
height: 100%;

}

.frozen {

Luigi Matteo Girke 127 Maio 2025



' o Sistema de envio de SMS com interface web

pointer-events: none; /* Prevents all mouse events */
user-select: none; /* Prevents text selection */
opacity: 0.5; /* Optional: make it Look "frozen" */

}

/app/not-found.tsx

import { buttonVariants } from "@/components/ui/button”;

import Link from "next/link";

import { cookies } from "next/headers";

import initTranslations from "./il18n";

import { i18nConfig } from "@/il8n.config";

import ErrorComponent from "@/components/shared/error-component”;

export default async function NotFound() {

// we have to get it directly from the cookie here, because we are not in
the [locale] route segment

const cookieStore = await cookies();

const currentLocale = cookieStore.get("NEXT_LOCALE")?.value;

const { t } = await initTranslations(
currentLocale || il18nConfig.defaultlocale,
["errors", "common"

)

return (

<ErrorComponent
title={t("404_error-header")}
subtitle={t("404 error-header_caption")}

>
<Link href="/" className={buttonVariants({ variant: "default" })}>

{t("common:go_back")}

</Link>

</ErrorComponent>

)s

/postcss.config.mjs

/** @type {import('postcss-Lload-config').Config} */
const config = {
plugins: {
tailwindcss: {},
¥
}s

export default config;

Luigi Matteo Girke 128 Maio 2025



o Sistema de envio de SMS com interface web

/Dockerfile

FROM oven/bun:alpine AS base

# Install Node.js, npm, and il18nexus for translations
RUN apk add --no-cache nodejs npm
RUN bun i -g il8nexus-cli

# Stage 1: Install dependencies

FROM base AS deps

# set a path to for the following commands to be run on
WORKDIR /app

COPY package.json bun.lock ./

RUN bun install

# Stage 2: Build the application

FROM base AS builder

WORKDIR /app

COPY --from=deps /app/node_modules ./node_modules
COPY .

RUN bun run build

# Stage 3: Production server

FROM base AS runner

WORKDIR /app

ENV NODE_ENV=production

COPY --from=builder /app/public ./public

COPY --from=builder /app/.next/standalone ./

COPY --from=builder /app/.next/static ./.next/static

# If it at some point doesn't work anymore, copy the entire directory
# COPY --from=builder /app/.next ./.next

# This 1is for the “start™ script, but when replacing the start command with
server.js (also part of the build) I can't access the site on Localhost
COPY --from=builder /app/package.json ./

COPY --from=builder /app/node_modules ./node_modules

EXPOSE 3000
CMD ["bun", "run", "start"]

/118n.config.ts

export const il8nConfig = {
locales: ["pt", "de", "en"],
defaultLocale: "pt",

Luigi Matteo Girke 129 Maio 2025



- R Sistema de envio de SMS com interface web

// Set to “true’ 1if you want the default lLocale to be included in the url
prefixDefault: false,

}s

/next-env.d.ts

/// <reference types="next" />
/// <reference types="next/image-types/global" />

// NOTE: This file should not be edited
// see https://nextjs.org/docs/app/api-reference/config/typescript for more
information.

/.prettierignore

README .md
.env**

/README .md
This is a Next.js 15 app router project

Luigi Matteo Girke 130 Maio 2025


https://nextjs.org/

o Sistema de envio de SMS com interface web

Getting Started

First, run the development server:

npm run dev
# or

yarn dev

# or

pnpm dev

# or

bun dev

Open http://localhost:3000 with your browser to see the result.

/tailwind.config.ts

import type { Config } from "tailwindcss";
import tailwindcssAnimate from "tailwindcss-animate”;

export default {
darkMode: ["class"],
content: [
"./pages/**/*.{js,ts,jsx,tsx,mdx}",
"./components/**/* {js,ts,jsx,tsx,mdx}",
"./app/**/*.{]js,ts,jsx,tsx, mdx}",
1,
theme: {
extend: {
colors: {
background: "hsl(var(--background))",
foreground: "hsl(var(--foreground))",
card: {
DEFAULT: "hsl(var(--card))",
foreground: "hsl(var(--cardForeground))",
}s
popover: {
DEFAULT: "hsl(var(--popover))",
foreground: "hsl(var(--popoverForeground))",
s
primary: {
DEFAULT: "hsl(var(--primary))",
foreground: "hsl(var(--primaryForeground))",
s
secondary: {
DEFAULT: "hsl(var(--secondary))",
foreground: "hsl(var(--secondaryForeground))",
s
muted: {
DEFAULT: "hsl(var(--muted))",
foreground: "hsl(var(--mutedForeground))",

Luigi Matteo Girke 131 Maio 2025


http://localhost:3000/

}s

accent: {

}s

DEFAULT: "hsl(var(--accent))",
foreground: "hsl(var(--accentForeground))",

destructive: {

}s

DEFAULT: "hsl(var(--destructive))",
foreground: "hsl(var(--destructiveForeground))",

border: "hsl(var(--border))",
input: "hsl(var(--input))",
ring: "hsl(var(--ring))",
chart: {

}s

"1": "hsl(var(--chartl))",
"2": "hsl(var(--chart2))",
"3": "hsl(var(--chart3))",

2
3
"4": "hsl(var(--chart4))"
"5": "hsl(var(--chart5))"

sidebar: {

}s
}s

DEFAULT: "hsl(var(--sidebar-background))",
foreground: "hsl(var(--sidebar-foreground))",
primary: "hsl(var(--sidebar-primary))",

Sistema de envio de SMS com interface web

"primary-foreground”: "hsl(var(--sidebar-primary-foreground))",

accent: "hsl(var(--sidebar-accent))",

"accent-foreground": "hsl(var(--sidebar-accent-foreground))",

border: "hsl(var(--sidebar-border))",
ring: "hsl(var(--sidebar-ring))",

borderRadius: {
lg: "var(--radius)”,
md: "calc(var(--radius) - 2px)",

sm:

}s

"calc(var(--radius) - 4px)",

keyframes: {
"accordion-down": {

}s

from: {
height: "e",
}s
to: {
height: "var(--radix-accordion-content-height)",
}s

"accordion-up": {

}s
}s

from: {
height: "var(--radix-accordion-content-height)",
¥
to: {
height: "@",
¥

Luigi Matteo Girke 132

Maio 2025



}s

SC

}s

as

s

}s
plug
} sati

/compo

"use ¢

import
import
Sele
Sele
Sele
Sele
Sele
} from
import
import
import
import
import
import
import
import

export
// v
onCh
id,
setS
}: Ren
cons
cons

Sistema de envio de SMS com interface web

animation: {

"accordion-down": "accordion-down 0.2s ease-out",
"accordion-up": "accordion-up 0.2s ease-out",

¥

reens: {

sm: "640px",

md: "768px",

lg: "1024px",

x1l: "1280px",

"2x1": "1536px",

// Custom breakpoints
xs: "435px",

pectRatio: {
"1": "1 / 1",

ins: [tailwindcssAnimate],
sfies Config;

nents/settings.tsx

lient";

{ Button, buttonVariants } from "@/components/ui/button”;
{
ct,
ctContent,
ctItem,
ctTrigger,
ctValue,

"@/components/ui/select”;
useThemeContext } from "@/contexts/theme-data-provider";
cn } from "@/lib/utils”;
useTheme as useNextTheme } from "next-themes"”;
useTranslation } from "react-il8next";
RenderInputArgs } from "@/components/settings-item";
useEffect, useState } from "react";
updateSetting } from "@/lib/actions/user.actions”;
useSettings } from "@/contexts/use-settings";

N e L s L T WP

function LanguageChanger({
alue,
ange,

erverState,

derInputArgs) {

t { t, i18n } = useTranslation();
t currentlLocale = i18n.language;

Luigi Matteo Girke 133

Maio 2025



Sistema de envio de SMS com interface web

const { updatelLanguageCookie } = useSettings();
const [isPending, setIsPending] = useState<boolean>(false);

const handleChange = async (newlLocale: string) => {
// Update the database first
setIsPending(true);
const formData = new FormData();
formData.append("name"”, "lang");
formData.append("value", newlLocale);

const result = await updateSetting(formData);
if (setServerState) setServerState(result);
setIsPending(false);

updatelLanguageCookie(newlLocale);
¥
return (
<Select
defaultValue={currentLocale}
// When turning into a controlled input by passing in a value, the ap
p breaks - I'm not sure why.
// value={value}
onValueChange={handleChange}
disabled={isPending}

>
<SelectTrigger
id={id}
className={cn(
buttonvVariants({ variant: "outline" }),
"w-[200px] appearance-none font-normal justify-between"
)}
>
<SelectValue placeholder="Select Language" />
</SelectTrigger>
<SelectContent>
<SelectItem value="en">English</SelectItem>
<SelectItem value="pt">Portugués</SelectItem>
<SelectItem value="de">Deutsch</SelectItem>
</SelectContent>
</Select>

)s
}

const COLORS = [
{
value: "1",
name: "Zinc",
light: "bg-zinc-900",
dark: "bg-zinc-700",
b
{

value: "2",

Luigi Matteo Girke 134 Maio 2025



name: "Rose",
light: "bg-rose-600",
dark: "bg-rose-700",
b
{
value: "3",
name: "Blue",
light: "bg-blue-600",
dark: "bg-blue-700",
b
{
value: "4",
name: "Green",
light: "bg-green-600",
dark: "bg-green-500",
b
{
value: "5",
name: "Orange",
light: "bg-orange-500",
dark: "bg-orange-700",
b
{
value: "6",
name: "Yellow",
light: "bg-yellow-300",
dark: "bg-yellow-500",
b
15
export function ThemeColorChanger({
onChange,
onBlur,
id,
isPending,

}: RenderInputArgs) {

const { themeColor, setThemeColor }

const { theme } = useNextTheme();

Sistema de envio de SMS com interface web

= useThemeContext();

const handleChange = (colorIndex: string) => {
setThemeColor(Number(colorIndex));
onChange(colorIndex);

// Remove this if you are sure that it works this way
// setTimeout(() => {
onBlur(undefined, colorlIndex);
// }, 200);

}s

return (

<Select
defaultValue={themeColor.toString()}
onValueChange={handleChange}
disabled={isPending}

Luigi Matteo Girke

135

Maio 2025



Sistema de envio de SMS com interface web

>
<SelectTrigger
id={id}
className={cn(
buttonvVariants({ variant: "outline" }),
"w-[200px] appearance-none font-normal justify-between"

)}

<SelectValue />
</SelectTrigger>
<SelectContent>{createSelectItems(COLORS, theme)}</SelectContent>
</Select>

);

>

}

export function ColorDropdown({
onValueChange,
id,
isPending,
onChange,
onBlur,
initialVvalue,
}: RenderInputArgs & { onValueChange: (value: string) => void }) {
const { theme } = useNextTheme();

return (
<Select
defaultValue={initialvalue}
onValueChange={(colorIndex) => {
onValueChange(colorIndex);
onChange(colorIndex);
onBlur(undefined, colorlIndex);
}}
disabled={isPending}
>
<SelectTrigger
id={id}
className={cn(
buttonvVariants({ variant: "outline" }),
"w-[200px] appearance-none font-normal justify-between"

)}
>

<SelectValue />
</SelectTrigger>
<SelectContent>{createSelectItems(COLORS, theme)}</SelectContent>
</Select>
)
}

export function ThemeToggle({
onChange,
onBlur,
id,
initialVvalue,

Luigi Matteo Girke 136 Maio 2025



' o Sistema de envio de SMS com interface web

className,
isPending,
}: RenderInputArgs) {
const { theme, setTheme } = useNextTheme();
const { t } = useTranslation();
const activeString = ~(${t("common:active").toLowerCase()}) ;

const handleChange = (value: string) => {
setTheme(value);
onChange(value);
setTimeout(() => {
onBlur(undefined, value);
}, 200);
}s
return (
<div
className={cn(
className,
"flex flex-col gap-1 sm:flex-row sm:gap-8 max-w-md pt-2"
)}
>
<div
onClick={isPending ?» () => {} : () => handleChange("light")}
className={cn(isPending && "opacity-50 cursor-not-allowed")}
>
<div className="items-center rounded-md border-2 border-muted p-1 h
over:border-accent">
<div className="space-y-2 rounded-sm bg-[#ecedef] p-2">
<div className="space-y-2 rounded-md bg-white p-2 shadow-sm">
<div className="h-2 w-[8@px] rounded-1lg bg-[#ecedef]" />
<div className="h-2 w-[100px] rounded-1lg bg-[#ecedef]" />
</div>
<div className="flex items-center space-x-2 rounded-md bg-white
p-2 shadow-sm">
<div className="h-4 w-4 rounded-full bg-[#ecedef]" />
<div className="h-2 w-[100px] rounded-1lg bg-[#ecedef]" />
</div>
<div className="flex items-center space-x-2 rounded-md bg-white
p-2 shadow-sm">
<div className="h-4 w-4 rounded-full bg-[#ecedef]" />
<div className="h-2 w-[100px] rounded-1lg bg-[#ecedef]" />
</div>
</div>
</div>
<label className="block w-full p-2 text-center font-normal text-sm"

{t("appearance-theme_light")}{" "}
{!isPending && theme === "light" && activeString}
</label>
</div>

<div
onClick={isPending ?» () => {} : () => handleChange("dark")}

Luigi Matteo Girke 137 Maio 2025



' e Sistema de envio de SMS com interface web

className={cn(isPending && "opacity-50 cursor-not-allowed")}

>
<div
className={cn(
"items-center rounded-md border-2 border-muted bg-popover p-1",
lisPending && "hover:bg-accent hover:text-accent-foreground”
)}
>

<div className="space-y-2 rounded-sm bg-slate-950 p-2">
<div className="space-y-2 rounded-md bg-slate-800 p-2 shadow-sm

<div className="h-2 w-[80@px] rounded-lg bg-slate-400" />
<div className="h-2 w-[100px] rounded-1lg bg-slate-400" />
</div>
<div className="flex items-center space-x-2 rounded-md bg-slate
-800 p-2 shadow-sm">
<div className="h-4 w-4 rounded-full bg-slate-400" />
<div className="h-2 w-[100px] rounded-1lg bg-slate-400" />
</div>
<div className="flex items-center space-x-2 rounded-md bg-slate
-800 p-2 shadow-sm">
<div className="h-4 w-4 rounded-full bg-slate-400" />
<div className="h-2 w-[100px] rounded-lg bg-slate-400" />
</div>
</div>
</div>
<label className="block w-full p-2 text-center font-normal text-sm"

{t("appearance-theme_dark")}{" "}
{!isPending && theme === "dark" && activeString}
</label>
</div>
</div>
)
}

export const createSelectItems = (data: any[], theme: string | undefined) =
> A
return data.map(({ name, light, dark, value }) => (
<SelectItem key={value} value={value || name}>
<div className="flex gap-2">
{light && dark && (
<div
className={cn(
“w-[20px]",
“h-[2epx]",
"rounded-full",
theme === "light" ? light : dark
)}
/>
)}
<div className="text-sm">{name}</div>
</div>

Luigi Matteo Girke 138 Maio 2025



‘ Sistema de envio de SMS com interface web

</SelectItem>

))s
}s

/components/ui/alert-dialog.tsx

"use client";

import * as React from "react"”;
import * as AlertDialogPrimitive from "@radix-ui/react-alert-dialog";

import { cn } from "@/lib/utils";
import { buttonVariants } from "@/components/ui/button";

const AlertDialog = AlertDialogPrimitive.Root;
const AlertDialogTrigger = AlertDialogPrimitive.Trigger;
const AlertDialogPortal = AlertDialogPrimitive.Portal;

const AlertDialogOverlay = React.forwardRef<
React.ElementRef<typeof AlertDialogPrimitive.Overlay>,
React.ComponentPropsiWithoutRef<typeof AlertDialogPrimitive.Overlay>
>(({ className, ...props }, ref) => (
<AlertDialogPrimitive.Overlay
className={cn(

"fixed inset-0© z-50 bg-black/80 data-[state=open]:animate-in data-[st
ate=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fa
de-in-0",

className

)}
{...props}
ref={ref}
/>
))s
AlertDialogOverlay.displayName = AlertDialogPrimitive.Overlay.displayName;

const AlertDialogContent = React.forwardRef<
React.ElementRef<typeof AlertDialogPrimitive.Content>,
React.ComponentPropsiWithoutRef<typeof AlertDialogPrimitive.Content>
>(({ className, ...props }, ref) => (
<AlertDialogPortal>
<AlertDialogOverlay />
<AlertDialogPrimitive.Content
ref={ref}
className={cn(

"fixed left-[50%] top-[50%] z-50 grid w-full bg-background max-w-1g
translate-x-[-50%] translate-y-[-50%] gap-4 border bg-background p-6 shadow
-1g duration-200 data-[state=open]:animate-in data-[state=closed]:animate-o
ut data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=c

Luigi Matteo Girke 139 Maio 2025



‘ Sistema de envio de SMS com interface web

losed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[state=closed]:slide-o
ut-to-left-1/2 data-[state=closed]:slide-out-to-top-[48%] data-[state=open]
:slide-in-from-left-1/2 data-[state=open]:slide-in-from-top-[48%] sm:rounde
d-1g”,
className
)}
{...props}
/>
</AlertDialogPortal>

))s
AlertDialogContent.displayName = AlertDialogPrimitive.Content.displayName;

const AlertDialogHeader = ({
className,
...props
}: React.HTMLAttributes<HTMLDivElement>) => (
<div
className={cn(
"flex flex-col space-y-2 text-center sm:text-left",
className
)}
{...props}
/>
)
AlertDialogHeader.displayName = "AlertDialogHeader";

const AlertDialogFooter = ({
className,
...props
}: React.HTMLAttributes<HTMLDivElement>) => (
<div
className={cn(
"flex flex-col-reverse sm:flex-row sm:justify-end sm:space-x-2",
className

)}
{...props}
/>
)
AlertDialogFooter.displayName = "AlertDialogFooter";

const AlertDialogTitle = React.forwardRef<
React.ElementRef<typeof AlertDialogPrimitive.Title>,
React.ComponentPropsiWithoutRef<typeof AlertDialogPrimitive.Title>
>(({ className, ...props }, ref) => (
<AlertDialogPrimitive.Title
ref={ref}
className={cn("text-1g font-semibold", className)}
{...props}
/>
))s
AlertDialogTitle.displayName = AlertDialogPrimitive.Title.displayName;

Luigi Matteo Girke 140 Maio 2025



Sistema de envio de SMS com interface web

const AlertDialogDescription = React.forwardRef<
React.ElementRef<typeof AlertDialogPrimitive.Description>,
React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Description>
>(({ className, ...props }, ref) => (
<AlertDialogPrimitive.Description
ref={ref}
className={cn("text-sm text-muted-foreground ", className)}
{...props}
/>
));
AlertDialogDescription.displayName =
AlertDialogPrimitive.Description.displayName;

const AlertDialogAction = React.forwardRef<
React.ElementRef<typeof AlertDialogPrimitive.Action>,
React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Action>
>(({ className, ...props }, ref) => (
<AlertDialogPrimitive.Action
ref={ref}
className={cn(buttonVariants(), className)}
{...props}
/>
));
AlertDialogAction.displayName = AlertDialogPrimitive.Action.displayName;

const AlertDialogCancel = React.forwardRef<
React.ElementRef<typeof AlertDialogPrimitive.Cancel>,
React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Cancel>
>(({ className, ...props }, ref) => (
<AlertDialogPrimitive.Cancel
ref={ref}
className={cn(
buttonvariants({ variant: "outline" }),
"mt-2 sm:mt-0",
className
)}
{...props}
/>
));
AlertDialogCancel.displayName = AlertDialogPrimitive.Cancel.displayName;

export {
AlertDialog,
AlertDialogPortal,
AlertDialogOverlay,
AlertDialogTrigger,
AlertDialogContent,
AlertDialogHeader,
AlertDialogFooter,
AlertDialogTitle,
AlertDialogDescription,
AlertDialogAction,

Luigi Matteo Girke 141 Maio 2025



o Sistema de envio de SMS com interface web

AlertDialogCancel,
}s

/components/ui/tabs.tsx

"use client";

import * as React from "react"”;
import * as TabsPrimitive from "@radix-ui/react-tabs";

import { cn } from "@/1lib/utils”;
const Tabs = TabsPrimitive.Root;

const TabsList = React.forwardRef<
React.ElementRef<typeof TabsPrimitive.lList>,
React.ComponentPropsiWithoutRef<typeof TabsPrimitive.lList>
>(({ className, ...props }, ref) => (
<TabsPrimitive.List
ref={ref}
className={cn(
"inline-flex h-9 items-center justify-center rounded-lg bg-muted p-1
text-muted-foreground”,
className

)}
{...props}
/>
))s

TabsList.displayName = TabsPrimitive.lList.displayName;

const TabsTrigger = React.forwardRef<
React.ElementRef<typeof TabsPrimitive.Trigger>,
React.ComponentPropsiWithoutRef<typeof TabsPrimitive.Trigger>
>(({ className, ...props }, ref) => (
<TabsPrimitive.Trigger
ref={ref}
className={cn(

"inline-flex items-center justify-center whitespace-nowrap rounded-md
px-3 py-1 text-sm font-medium ring-offset-ring transition-all focus-visible
:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ri
ng-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=ac
tive]:bg-background data-[state=active]:text-foreground data-[state=active]
:shadow",

className

)}
{...props}
/>
))s

TabsTrigger.displayName = TabsPrimitive.Trigger.displayName;

Luigi Matteo Girke 142 Maio 2025



‘ Sistema de envio de SMS com interface web

const TabsContent = React.forwardRef<
React.ElementRef<typeof TabsPrimitive.Content>,
React.ComponentPropsiWithoutRef<typeof TabsPrimitive.Content>
>(({ className, ...props }, ref) => (
<TabsPrimitive.Content
ref={ref}
className={cn(
"mt-2 ring-offset-white focus-visible:outline-none focus-visible:ring
-2 focus-visible:ring-slate-950 focus-visible:ring-offset-2 dark:ring-offse
t-slate-950 dark:focus-visible:ring-primary",
className
)}
{...props}
/>
))s

TabsContent.displayName = TabsPrimitive.Content.displayName;

export { Tabs, TabslList, TabsTrigger, TabsContent };

/components/ui/card.tsx

import * as React from "react"”;
import { cn } from "@/lib/utils";

const Card = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
<div
ref={ref}
className={cn(
"rounded-x1 border bg-background text-foreground shadow",
className
)}
{...props}
/>
));
Card.displayName

"Card";

const CardHeader = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
<div
ref={ref}
className={cn("flex flex-col space-y-1.5 p-6", className)}
{...props}
/>
));

Luigi Matteo Girke 143 Maio 2025



Sistema de envio de SMS com interface web

CardHeader.displayName = "CardHeader";

const CardTitle = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
<div
ref={ref}
className={cn("font-semibold leading-none tracking-tight", className)}
{...props}
/>
));
CardTitle.displayName

"CardTitle";

const CardDescription = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement>

>(({ className, ...props }, ref) => (

<div
ref={ref}
className={cn("text-sm text-muted-foreground ", className)}
{...props}
/>
))s
CardDescription.displayName = "CardDescription”;

const CardContent = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
<div ref={ref} className={cn("p-6 pt-0", className)} {...props} />
));
CardContent.displayName = "CardContent";

const CardFooter = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
<div
ref={ref}
className={cn("flex items-center p-6 pt-0", className)}
{...props}
/>
));

CardFooter.displayName = "CardFooter";

export {
Card,
CardHeader,
CardFooter,
CardTitle,
CardDescription,

Luigi Matteo Girke 144 Maio 2025



‘ Sistema de envio de SMS com interface web

CardContent,
s

/components/ui/popover.tsx

"use client";

import * as React from "react"”;
import * as PopoverPrimitive from "@radix-ui/react-popover";

import { cn } from "@/lib/utils";

const Popover = PopoverPrimitive.Root;

const PopoverTrigger = PopoverPrimitive.Trigger;
const PopoverAnchor = PopoverPrimitive.Anchor;

const PopoverContent = React.forwardRef<
React.ElementRef<typeof PopoverPrimitive.Content>,
React.ComponentPropsiWithoutRef<typeof PopoverPrimitive.Content>
>(({ className, align = "center", sideOffset = 4, ...props }, ref) => (
<PopoverPrimitive.Portal>
<PopoverPrimitive.Content
ref={ref}
align={align}
sideOffset={sideOffset}
className={cn(
"z-50 w-72 rounded-md border bg-background p-4 text-slate-950 shado
w-md outline-none data-[state=open]:animate-in data-[state=closed]:animate-
out data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=
closed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-i
n-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide
-in-from-left-2 data-[side=top]:slide-in-from-bottom-2 dark:border-slate-80
@ bg-background dark:text-slate-50",
className
)}
{...props}
/>
</PopoverPrimitive.Portal>

))s

PopoverContent.displayName = PopoverPrimitive.Content.displayName;

export { Popover, PopoverTrigger, PopoverContent, PopoverAnchor };

/components/ui/chart.tsx

Luigi Matteo Girke 145 Maio 2025



Sistema de envio de SMS com interface web

"use client";

import * as React from "react";
import * as RechartsPrimitive from "recharts";

import { cn } from "@/lib/utils";

// Format: { THEME NAME: CSS_SELECTOR }
const THEMES = { light: "", dark: ".dark" } as const;

export type ChartConfig = {
[k in string]: {
label?: React.ReactNode;
icon?: React.ComponentType;
F&(
| { color?: string; theme?: never }
| { color?: never; theme: Record<keyof typeof THEMES, string> }
)
¥

type ChartContextProps = {
config: ChartConfig;

}s

const ChartContext = React.createContext<ChartContextProps | null>(null);

function useChart() {
const context = React.useContext(ChartContext);

if (!context) {
throw new Error("useChart must be used within a <ChartContainer />");

}

return context;

}

const ChartContainer = React.forwardRef<
HTMLDivElement,
React.ComponentProps<"div"> & {
config: ChartConfig;
children: React.ComponentProps<
typeof RechartsPrimitive.ResponsiveContainer
>["children"];
¥
>(({ id, className, children, config, ...props }, ref) => {
const uniqueId = React.useld();
const chartld = “chart-${id || uniqueId.replace(/:/g, "")} ;

return (
<ChartContext.Provider value={{ config }}»>

Luigi Matteo Girke 146 Maio 2025



‘ Sistema de envio de SMS com interface web

<div
data-chart={chartId}
ref={ref}

className={cn(

"flex aspect-video justify-center text-xs [& .recharts-cartesian-
axis-tick text]:fill-muted-foreground [& .recharts-cartesian-grid line[stro
ke="#ccc']]:stroke-border/50 [& .recharts-curve.recharts-tooltip-cursor]:st
roke-border [& .recharts-dot[stroke='#fff']]:stroke-transparent [& .rechart
s-layer]:outline-none [& .recharts-polar-grid [stroke="#ccc']]:stroke-borde
r [& .recharts-radial-bar-background-sector]:fill-muted [& .recharts-rectan
gle.recharts-tooltip-cursor]:fill-muted [& .recharts-reference-1line_[stroke
="#ccc']]:stroke-border [& .recharts-sector[stroke="#fff']]:stroke-transpar
ent [& .recharts-sector]:outline-none [& .recharts-surface]:outline-none",

className

)}
{...props}
>
<ChartStyle id={chartId} config={config} />
<RechartsPrimitive.ResponsiveContainer>

{children}
</RechartsPrimitive.ResponsiveContainer>
</div>
</ChartContext.Provider>
)
3

ChartContainer.displayName = "Chart";

const ChartStyle = ({ id, config }: { id: string; config: ChartConfig }) =>
{

const colorConfig = Object.entries(config).filter(
([, config]) => config.theme || config.color

)

if (!colorConfig.length) {
return null;

}

return (
<style
dangerouslySetInnerHTML={{
__html: Object.entries(THEMES)
.map(

([theme, prefix]) =>
${prefix} [data-chart=${id}] {
${colorConfig

.map(([key, itemConfig]) => {
const color =
itemConfig.theme?.[theme as keyof typeof itemConfig.theme] ||
itemConfig.color;
return color ? ~ --color-${key}: ${color};  : null;

})
.join("\n")}
}

Luigi Matteo Girke 147 Maio 2025



Sistema de envio de SMS com interface web

)
.join("\n"),
}}

/>
);
}s

const ChartTooltip = RechartsPrimitive.Tooltip;

const ChartTooltipContent = React.forwardRef<
HTMLDivElement,
React.ComponentProps<typeof RechartsPrimitive.Tooltip> &
React.ComponentProps<"div"> & {
hideLabel?: boolean;
hideIndicator?: boolean;
indicator?: "line" | "dot" | "dashed";
nameKey?: string;
labelKey?: string;

active,
payload,
className,
indicator = "dot",
hideLabel = false,
hideIndicator = false,
label,
labelFormatter,
labelClassName,
formatter,
color,
namekKey,
labelKey,

s

ref

) => |
const { config } = useChart();

const tooltipLabel = React.useMemo(() => {
if (hideLabel || !payload?.length) {
return null;

}

const [item] = payload;
const key = “${labelKey || item?.datakey || item?.name || "value"} ;
const itemConfig = getPayloadConfigFromPayload(config, item, key);
const value =
IlabelKey && typeof label === "string"
> config[label as keyof typeof config]?.label || label

Luigi Matteo Girke 148 Maio 2025



Sistema de envio de SMS com interface web

. itemConfig?.label;

if (labelFormatter) {
return (
<div className={cn("font-medium”, labelClassName)}>
{labelFormatter(value, payload)}
</div>
)
}

if (!value) {
return null;

}

return <div className={cn("font-medium", labelClassName)}>{value}</di

V>;
o0

label,

labelFormatter,

payload,

hidelLabel,

labelClassName,

config,

labelKey,

1);

if (lactive || !payload?.length) {
return null;

}

const nestlLabel = payload.length === 1 && indicator !== "dot";

return (
<div
ref={ref}
className={cn(

"grid min-w-[8rem] items-start gap-1.5 rounded-lg border border-s
late-200/50 bg-background px-2.5 py-1.5 text-xs shadow-x1 dark:border-slate
-800 dark:border-slate-800/50 bg-background",

className

)}
>
{!'nestlLabel ? tooltipLabel : null}
<div className="grid gap-1.5">
{payload.map((item, index) => {
const key = ~${nameKey || item.name || item.dataKey || "value"}

const itemConfig = getPayloadConfigFromPayload(config, item, ke

y);
const indicatorColor = color || item.payload.fill || item.color

Luigi Matteo Girke 149 Maio 2025



o Sistema de envio de SMS com interface web

return (
<div
key={item.dataKey}
className={cn(
"flex w-full flex-wrap items-stretch gap-2 [&>svg]:h-2.5
[&>svg]:w-2.5 [&>svg]:text-muted-foreground dark:[&>svg]:text-muted-foregro
und",

indicator === "dot" && "items-center"

)}

>

{formatter && item?.value !== undefined && item.name ? (

formatter(item.value, item.name, item, index, item.payloa
d)

) (

<>

{itemConfig?.icon ? (
<itemConfig.icon />
)
'hideIndicator && (
<div
className={cn(
"shrink-0 rounded-[2px] border-[--color-border]

{
"h-2.5 w-2.5": indicator === "dot",
"w-1": indicator === "line",
"w-0 border-[1.5px] border-dashed bg-transpar

bg-[--color-bg]l",

ent":
indicator === "dashed",
"my-0.5": nestLabel && indicator === "dashed"

}
)}
style={
{
"--color-bg": indicatorColor,
"--color-border": indicatorColor,
} as React.CSSProperties
}
/>
)
)}
<div
className={cn(
"flex flex-1 justify-between leading-none",
nestlLabel ? "items-end" : "items-center"
)}
>
<div className="grid gap-1.5">
{nestLabel ? tooltipLabel : null}
<span className="text-muted-foreground ">
{itemConfig?.label || item.name}
</span>

Luigi Matteo Girke 150 Maio 2025



Sistema de envio de SMS com interface web

</div>
{item.value && (
<span className="font-mono font-medium tabular-nums
text-slate-950 dark:text-slate-50">
{item.value.tolLocaleString()}

</span>
)}
</div>
</>
)}
</div>
)5
138
</div>
</div>
)5
}
)5

ChartTooltipContent.displayName = "ChartTooltip";
const ChartLegend = RechartsPrimitive.legend;

const ChartLegendContent = React.forwardRef<

HTMLDivElement,
React.ComponentProps<"div"> &
Pick<RechartsPrimitive.legendProps, "payload" | "verticalAlign"> & {

hideIcon?: boolean;
nameKey?: string;

}
(

{ className, hideIcon = false, payload, verticalAlign = "bottom", nameK

ey },
ref

) => |
const { config } = useChart();

>(

if (!payload?.length) {
return null;

}
return (
<div
ref={ref}
className={cn(
"flex items-center justify-center gap-4",
verticalAlign === "top" ? "pb-3" : "pt-3",
className
)}
>
{payload.map((item) => {
const key = “${nameKey || item.datakKey || "value"} ;

Luigi Matteo Girke 151 Maio 2025



Sistema de envio de SMS com interface web

const itemConfig = getPayloadConfigFromPayload(config, item, key)

return (
<div
key={item.value}
className={cn(

"flex items-center gap-1.5 [&>svg]:h-3 [&>svg]:w-3 [&>svg]:

text-muted-foreground dark:[&>svg]:text-muted-foreground"
)}
>
{itemConfig?.icon && !'hideIcon ? (
<itemConfig.icon />

)
<div
className="h-2 w-2 shrink-0 rounded-[2px]"
style={{
backgroundColor: item.color,
}}
/>
)}
{itemConfig?.label}
</div>
)
1}
</div>

)
}
)
ChartLegendContent.displayName = "ChartLegend";

// Helper to extract item config from a payload.
function getPayloadConfigFromPayload(

config: ChartConfig,

payload: unknown,

key: string
) 1

if (typeof payload !== "object" || payload === null) {

return undefined;

}

const payloadPayload =
"payload"” in payload &&
typeof payload.payload === "object" &&
payload.payload !== null
? payload.payload
: undefined;

let configlabelKey: string = key;

if (
key in payload &&

Luigi Matteo Girke 152

Maio 2025



Sistema de envio de SMS com interface web

typeof payload[key as keyof typeof payload] === "string"
) {
configlabelKey = payload[key as keyof typeof payload] as string;
} else if (
payloadPayload &&
key in payloadPayload &&
typeof payloadPayload[key as keyof typeof payloadPayload] === "string"
{

configlabelKey = payloadPayload][
key as keyof typeof payloadPayload
] as string;

}

return configlLabelKey in config
? config[configlLabelKey]
: config[key as keyof typeof config];

}

export {
ChartContainer,
ChartTooltip,
ChartTooltipContent,
ChartLegend,
ChartLegendContent,
ChartStyle,

}s

/components/ui/sheet.tsx

"use client";

import * as React from "react";

import * as SheetPrimitive from "@radix-ui/react-dialog";

import { cva, type VariantProps } from "class-variance-authority";
import { X } from "lucide-react";

import { cn } from "@/lib/utils";

const Sheet = SheetPrimitive.Root;

const SheetTrigger = SheetPrimitive.Trigger;
const SheetClose = SheetPrimitive.Close;
const SheetPortal = SheetPrimitive.Portal;

const SheetOverlay = React.forwardRef<
React.ElementRef<typeof SheetPrimitive.Overlay>,
React.ComponentPropsWithoutRef<typeof SheetPrimitive.Overlay>

Luigi Matteo Girke 153 Maio 2025



' e Sistema de envio de SMS com interface web

>(({ className, ...props }, ref) => (
<SheetPrimitive.Overlay
className={cn(

"fixed inset-© z-50 bg-black/80 data-[state=open]:animate-in data-[st
ate=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fa
de-in-0",

className

)}
{...props}
ref={ref}
/>
))s
SheetOverlay.displayName = SheetPrimitive.Overlay.displayName;

const sheetVariants = cva(
// change nav-panel duration here
"fixed z-50 gap-4 bg-background p-6 shadow-lg transition ease-in-out data
-[state=closed]:duration-500 data-[state=open]:duration-500 data-[state=ope
n]:animate-in data-[state=closed]:animate-out bg-background",
{
variants: {
side: {
top: "inset-x-0 top-0© border-b data-[state=closed]:slide-out-to-top
data-[state=open]:slide-in-from-top",
bottom:
"inset-x-0 bottom-0 border-t data-[state=closed]:slide-out-to-bot
tom data-[state=open]:slide-in-from-bottom",
left: "inset-y-0 left-0 h-full w-3/4 border-r data-[state=closed]:s
lide-out-to-left data-[state=open]:slide-in-from-left sm:max-w-sm",
right:
"inset-y-0 right-0 h-full w-3/4 border-1 data-[state=closed]:slid
e-out-to-right data-[state=open]:slide-in-from-right sm:max-w-sm",
¥

¥
defaultVariants: {

side: "right",
s
}
)5

interface SheetContentProps
extends React.ComponentPropsWithoutRef<typeof SheetPrimitive.Content>,
VariantProps<typeof sheetVariants> {}

const SheetContent = React.forwardRef<
React.ElementRef<typeof SheetPrimitive.Content>,
SheetContentProps
>(({ side = "right", className, children, ...props }, ref) => (
<SheetPortal>
<SheetOverlay />
<SheetPrimitive.Content
ref={ref}
className={cn(sheetVariants({ side }), className)}

Luigi Matteo Girke 154 Maio 2025



o Sistema de envio de SMS com interface web

{...props}
>
<SheetPrimitive.Close className="absolute right-4 top-4 rounded-sm op
acity-70 ring-offset-white transition-opacity hover:opacity-100 focus:outli
ne-none focus:ring-2 focus:ring-slate-950 focus:ring-offset-2 disabled:poin
ter-events-none data-[state=open]:bg-slate-100 dark:ring-offset-slate-950 d
ark:focus:ring-slate-300 dark:data-[state=open]:bg-slate-800">
<X className="h-4 w-4" />
<span className="sr-only">Close</span>
</SheetPrimitive.Close>
{children}
</SheetPrimitive.Content>
</SheetPortal>

))s
SheetContent.displayName = SheetPrimitive.Content.displayName;

const SheetHeader = ({
className,
...props
}: React.HTMLAttributes<HTMLDivElement>) => (
<div
className={cn(
"flex flex-col space-y-2 text-center sm:text-left",
className

)}
{...props}
/>
)
SheetHeader.displayName = "SheetHeader";

const SheetFooter = ({
className,
...props
}: React.HTMLAttributes<HTMLDivElement>) => (
<div
className={cn(
"flex flex-col-reverse sm:flex-row sm:justify-end sm:space-x-2",
className
)}
{...props}
/>
)

SheetFooter.displayName = "SheetFooter";

const SheetTitle = React.forwardRef<
React.ElementRef<typeof SheetPrimitive.Title>,
React.ComponentPropsiWithoutRef<typeof SheetPrimitive.Title>
>(({ className, ...props }, ref) => (
<SheetPrimitive.Title
ref={ref}
className={cn(
"text-1lg font-semibold text-slate-950 dark:text-slate-50",
className

Luigi Matteo Girke 155 Maio 2025



Sistema de envio de SMS com interface web

)}
{...props}
/>
));
SheetTitle.displayName

SheetPrimitive.Title.displayName;

const SheetDescription = React.forwardRef<
React.ElementRef<typeof SheetPrimitive.Description>,
React.ComponentPropsWithoutRef<typeof SheetPrimitive.Description>
>(({ className, ...props }, ref) => (
<SheetPrimitive.Description
ref={ref}
className={cn("text-sm text-muted-foreground ", className)}
{...props}
/>
));

SheetDescription.displayName = SheetPrimitive.Description.displayName;

export {
Sheet,
SheetPortal,
SheetOverlay,
SheetTrigger,
SheetClose,
SheetContent,
SheetHeader,
SheetFooter,
SheetTitle,
SheetDescription,

}s

/components/ui/scroll-area.tsx

"use client";

import * as React from "react";
import * as ScrollAreaPrimitive from "@radix-ui/react-scroll-area";

import { cn } from "@/lib/utils";
const ScrollArea = React.forwardRef<

React.ElementRef<typeof ScrollAreaPrimitive.Root>,
React.ComponentPropsWithoutRef<typeof ScrollAreaPrimitive.Root>

>(({ className, children, ...props }, ref) => (
<ScrollAreaPrimitive.Root
ref={ref}
className={cn("relative overflow-hidden", className)}
{...props}
>

<ScrollAreaPrimitive.Viewport className="h-full w-full rounded-[inherit

Luigi Matteo Girke 156 Maio 2025



Sistema de envio de SMS com interface web

1" >
{children}
</ScrollAreaPrimitive.Viewport>
<ScrollBar />
<ScrollAreaPrimitive.Corner />
</ScrollAreaPrimitive.Root>

))s

ScrollArea.displayName = ScrollAreaPrimitive.Root.displayName;

const ScrollBar = React.forwardRef<
React.ElementRef<typeof ScrollAreaPrimitive.ScrollAreaScrollbar>,
React.ComponentPropsiWithoutRef<typeof ScrollAreaPrimitive.ScrollAreaScrol
lbar>

>(({ className, orientation = "vertical", ...props }, ref) => (
<ScrollAreaPrimitive.ScrollAreaScrollbar
ref={ref}

orientation={orientation}
className={cn(
"flex touch-none select-none transition-colors"”,

orientation === "vertical" &&
"h-full w-2.5 border-1 border-1l-transparent p-[1px]",
orientation === "horizontal" &&
"h-2.5 flex-col border-t border-t-transparent p-[1px]",
className
)}
{...props}

>
<ScrollAreaPrimitive.ScrollAreaThumb className="relative flex-1 rounded

-full bg-border" />
</ScrollAreaPrimitive.ScrollAreaScrollbar>

))s

ScrollBar.displayName = ScrollAreaPrimitive.ScrollAreaScrollbar.displayName

J

export { ScrollArea, ScrollBar };

/components/ui/resizable.tsx

"use client";

import { GripVertical } from "lucide-react";
import * as ResizablePrimitive from "react-resizable-panels"”;

import { cn } from "@/lib/utils";

const ResizablePanelGroup = ({
className,
...props

}: React.ComponentProps<typeof ResizablePrimitive.PanelGroup>) => (
<ResizablePrimitive.PanelGroup

Luigi Matteo Girke 157 Maio 2025



' o Sistema de envio de SMS com interface web

className={cn(
"flex h-full w-full data-[panel-group-direction=vertical]:flex-col",
className
)}
{...props}
/>
)

const ResizablePanel = ResizablePrimitive.Panel;

const ResizableHandle = ({
withHandle,
className,
...props
}: React.ComponentProps<typeof ResizablePrimitive.PanelResizeHandle> & {
withHandle?: boolean;
3 o= (
<ResizablePrimitive.PanelResizeHandle
className={cn(

"relative flex w-px items-center justify-center bg-border after:absol
ute after:inset-y-0 after:left-1/2 after:w-1 after:-translate-x-1/2 focus-v
isible:outline-none focus-visible:ring-1 focus-visible:ring-ring focus-visi
ble:ring-offset-1 data-[panel-group-direction=vertical]:h-px data-[panel-gr
oup-direction=vertical]:w-full data-[panel-group-direction=vertical]:after:
left-0 data-[panel-group-direction=vertical]:after:h-1 data-[panel-group-di
rection=vertical]:after:w-full data-[panel-group-direction=vertical]:after:
-translate-y-1/2 data-[panel-group-direction=vertical]:after:translate-x-0
[&[data-panel-group-direction=vertical]>div]:rotate-90",

className

)}
{...props}
>
{withHandle && (
<div className="z-10 flex h-4 w-3 items-center justify-center rounded
-sm border bg-border">
{" "}
{/* bg-border or bg-background - both Looks good */}
<GripVertical className="h-2.5 w-2.5 text-accent-foreground"” />
</div>
)}

</ResizablePrimitive.PanelResizeHandle>

)5

export { ResizablePanelGroup, ResizablePanel, ResizableHandle };

/components/ui/label.tsx

"use client"

import * as React from "react"

Luigi Matteo Girke 158 Maio 2025



Sistema de envio de SMS com interface web

import * as LabelPrimitive from "@radix-ui/react-label”
import { cva, type VariantProps } from "class-variance-authority"

import { cn } from "@/lib/utils”

const labelVariants = cva(

"text-sm font-medium leading-none peer-disabled:cursor-not-allowed peer-d
isabled:opacity-70"
)

const Label = React.forwardRef<
React.ElementRef<typeof LabelPrimitive.Root>,
React.ComponentPropsWithoutRef<typeof LabelPrimitive.Root> &
VariantProps<typeof labelVariants>
>(({ className, ...props }, ref) => (
<LabelPrimitive.Root
ref={ref}
className={cn(labelVariants(), className)}
{...props}
/>
)
Label.displayName = LabelPrimitive.Root.displayName

export { Label }

/components/ui/tooltip.tsx

"use client"

import * as React from "react"
import * as TooltipPrimitive from "@radix-ui/react-tooltip"

import { cn } from "@/lib/utils™
const TooltipProvider = TooltipPrimitive.Provider

const Tooltip = TooltipPrimitive.Root

const TooltipTrigger = TooltipPrimitive.Trigger

const TooltipContent = React.forwardRef<
React.ElementRef<typeof TooltipPrimitive.Content>,
React.ComponentPropsWithoutRef<typeof TooltipPrimitive.Content>
>(({ className, sideOffset = 4, ...props }, ref) => (
<TooltipPrimitive.Portal>
<TooltipPrimitive.Content
ref={ref}
sideOffset={sideOffset}
className={cn(

Luigi Matteo Girke 159 Maio 2025



- R Sistema de envio de SMS com interface web

"z-50 overflow-hidden rounded-md bg-slate-900 px-3 py-1.5 text-xs t
ext-slate-50 animate-in fade-in-0© zoom-in-95 data-[state=closed]:animate-ou
t data-[state=closed]:fade-out-0 data-[state=closed]:zoom-out-95 data-[side
=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[s
ide=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2 dark
:bg-slate-50 dark:text-slate-900",

className

)}
{...props}
/>
</TooltipPrimitive.Portal>

))
TooltipContent.displayName = TooltipPrimitive.Content.displayName

export { Tooltip, TooltipTrigger, TooltipContent, TooltipProvider }

/components/ui/alert.tsx

import * as React from "react"”;
import { cva, type VariantProps } from "class-variance-authority";

import { cn } from "@/1lib/utils”;

const alertVariants = cva(

"relative w-full rounded-lg border px-4 py-3 text-sm [&>svg+div]:translat
e-y-[-3px] [&>svg]:absolute [&>svg]:left-4 [&>svg]:top-4 [&>svg]:text-slate
-950 [&>svg~*]:pl-7 dark:border-slate-800 dark:[&>svg]:text-slate-50",

{

variants: {
variant: {
default:
"bg-background text-slate-950 bg-background dark:text-slate-50",
destructive:
"border-red-500/50 text-red-500 dark:border-red-500 [&>svg]:text-
red-500 dark:border-red-900/50 dark:text-red-900 dark:dark:border-red-900 d
ark:[&>svg]:text-red-900",

}s

¥
defaultVariants: {

variant: "default",

¥
}
)
const Alert = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement> & VariantProps<typeof alertVariants>
>(({ className, variant, ...props }, ref) => (
<div
ref={ref}

Luigi Matteo Girke 160 Maio 2025



Sistema de envio de SMS com interface web

role="alert"
className={cn(alertVariants({ variant }), className)}
{...props}

/>

))s
Alert.displayName = "Alert";

const AlertTitle = React.forwardRef<
HTMLParagraphElement,
React.HTMLAttributes<HTMLHeadingElement>
>(({ className, ...props }, ref) => (
<h5
ref={ref}

className={cn("mb-1 font-medium leading-none tracking-tight", className

)}
{...props}
/>
))s

AlertTitle.displayName "AlertTitle";

const AlertDescription React.forwardRef<
HTMLParagraphElement,
React.HTMLAttributes<HTMLParagraphElement>

>(({ className, ...props }, ref) => (

<div
ref={ref}
className={cn("text-sm [& p]:leading-relaxed", className)}
{...props}
/>
))s
AlertDescription.displayName = "AlertDescription";

export { Alert, AlertTitle, AlertDescription };

/components/ui/switch.tsx

"use client";

import * as React from "react"”;
import * as SwitchPrimitives from "@radix-ui/react-switch";

import { cn } from "@/lib/utils";

const Switch = React.forwardRef<
React.ElementRef<typeof SwitchPrimitives.Root>,
React.ComponentPropsiWithoutRef<typeof SwitchPrimitives.Root>
>(({ className, ...props }, ref) => (
<SwitchPrimitives.Root
className={cn(

"peer inline-flex h-5 w-9 shrink-0 cursor-pointer items-center

Luigi Matteo Girke 161

rounde

Maio 2025



' o Sistema de envio de SMS com interface web

d-full border-2 border-transparent shadow-sm transition-colors focus-visibl
e:outline-none focus-visible:ring-2 focus-visible:ring-slate-950 focus-visi
ble:ring-offset-2 focus-visible:ring-offset-white disabled:cursor-not-allow
ed disabled:opacity-50 data-[state=checked]:bg-slate-900 data-[state=unchec
ked]:bg-slate-200 dark:focus-visible:ring-primary dark:focus-visible:ring-o
ffset-slate-950 dark:data-[state=checked]:bg-slate-50 dark:data-[state=unch
ecked]:bg-slate-800",
className
)}
{...props}
ref={ref}
>
<SwitchPrimitives.Thumb
className={cn(

"pointer-events-none block h-4 w-4 rounded-full bg-background shado
w-1g ring-0 transition-transform data-[state=checked]:translate-x-4 data-[s
tate=unchecked]:translate-x-0 bg-background"

)}
/>
</SwitchPrimitives.Root>

))s

Switch.displayName = SwitchPrimitives.Root.displayName;

export { Switch };

/components/ui/calendar.tsx

"use client";

import * as React from "react"”;
import { ChevronLeft, ChevronRight } from "lucide-react";
import { DayPicker } from "react-day-picker";

import { cn } from "@/1lib/utils”;
import { buttonVariants } from "@/components/ui/button”;

export type CalendarProps = React.ComponentProps<typeof DayPicker>;

function Calendar({
className,
classNames,
showOutsideDays = true,
...props
}: CalendarProps) {
return (
<DayPicker
showOutsideDays={showOutsideDays}
className={cn("p-3", className)}
classNames={{
months: "flex flex-col sm:flex-row space-y-4 sm:space-x-4 sm:space-

Luigi Matteo Girke 162 Maio 2025



gfesionel da zona doPinhal Sistema de envio de SMS com interface web

y'euJ
month: "space-y-4",
caption: "flex justify-center pt-1 relative items-center”,
caption_label: "text-sm font-medium",
nav: "space-x-1 flex items-center",
nav_button: cn(
buttonVariants({ variant: "outline" }),
"h-7 w-7 bg-transparent p-0 opacity-50 hover:opacity-100"
)
nav_button_previous: "absolute left-1",
nav_button_next: "absolute right-1",
table: "w-full border-collapse space-y-1",
head_row: "flex",
head_cell:

"text-slate-500 rounded-md w-8 font-normal text-[0.8rem] dark:tex

t-slate-400",
row: "flex w-full mt-2",
cell: cn(

"relative p-0 text-center text-sm focus-within:relative focus-wit
hin:z-20 [&:has([aria-selected])]:bg-slate-100 [&:has([aria-selected].day-o
utside)]:bg-slate-100/50 [&:has([aria-selected].day-range-end)]:rounded-r-m
d dark:[&:has([aria-selected])]:bg-muted dark:[&:has([aria-selected].day-ou
tside)]:bg-muted/50",

props.mode === "range"

? "[&:has(>.day-range-end)]:rounded-r-md [&:has(>.day-range-sta
rt)]:rounded-1-md first:[&:has([aria-selected])]:rounded-1-md last:[&:has([
aria-selected])]:rounded-r-md"

: "[&:has([aria-selected])]:rounded-md"

)
day: cn(
buttonVariants({ variant: "ghost" }),
"h-8 w-8 p-0 font-normal aria-selected:opacity-100"
)
day_range_start: "day-range-start",
day_range_end: "day-range-end",
day_selected:

"bg-primary text-primary-foreground hover:bg-primary hover:text-p

rimary-foreground”,
day_today: "border border-muted",
day_outside:

"invisible day-outside text-slate-500 aria-selected:bg-slate-100/
50 aria-selected:text-slate-500 dark:text-slate-400 dark:aria-selected:bg-m
uted/50 dark:aria-selected:text-slate-400",

day disabled: "text-muted-foreground opacity-50",
day_range middle:

"aria-selected:bg-slate-100 aria-selected:text-slate-900 dark:ari
a-selected:bg-muted dark:aria-selected:text-slate-50",

day_hidden: "invisible",
...classNames,
}}
components={{
IconLeft: ({ ...props }) => <ChevronLeft className="h-4 w-4" />,
IconRight: ({ ...props }) => <ChevronRight className="h-4 w-4" />,

Luigi Matteo Girke 163 Maio 2025



‘ Sistema de envio de SMS com interface web

}}
disabled={{ before: new Date() }}
{...props}
/>
)
}
Calendar.displayName = "Calendar";

export { Calendar };

/components/ui/radio-group.tsx

"use client";

import * as React from "react"”;
import * as RadioGroupPrimitive from "@radix-ui/react-radio-group";
import { Circle } from "lucide-react";

import { cn } from "@/lib/utils";

const RadioGroup = React.forwardRef<
React.ElementRef<typeof RadioGroupPrimitive.Root>,
React.ComponentPropsiWithoutRef<typeof RadioGroupPrimitive.Root>
>(({ className, ...props }, ref) => {
return (
<RadioGroupPrimitive.Root
className={cn("grid gap-2", className)}
{...props}
ref={ref}
/>
)
3

RadioGroup.displayName = RadioGroupPrimitive.Root.displayName;

const RadioGroupItem = React.forwardRef<
React.ElementRef<typeof RadioGroupPrimitive.Item>,
React.ComponentPropsiWithoutRef<typeof RadioGroupPrimitive.Item>
>(({ className, ...props }, ref) => {
return (
<RadioGroupPrimitive.Item
ref={ref}
className={cn(

"aspect-square h-4 w-4 rounded-full border border-slate-900 text-sl
ate-900 shadow focus:outline-none focus-visible:ring-1 focus-visible:ring-s
late-950 disabled:cursor-not-allowed disabled:opacity-50 dark:border-slate-
800 dark:border-slate-50 dark:text-slate-50 dark:focus-visible:ring-primary

1]
)

className

)}
{...props}

Luigi Matteo Girke 164 Maio 2025



‘ Sistema de envio de SMS com interface web

>
<RadioGroupPrimitive.Indicator className="flex items-center justify-c
enter">
<Circle className="h-3.5 w-3.5 fill-primary" />
</RadioGroupPrimitive.Indicator>
</RadioGroupPrimitive.Item>
)
3

RadioGroupItem.displayName = RadioGroupPrimitive.Item.displayName;

export { RadioGroup, RadioGroupItem };

/components/ui/command.tsx

"use client";

import * as React from "react"”;

import { type DialogProps } from "@radix-ui/react-dialog";
import { Command as CommandPrimitive } from "cmdk";

import { Search } from "lucide-react";

import { cn } from "@/1lib/utils”;
import { Dialog, DialogContent } from "@/components/ui/dialog";

const Command = React.forwardRef<
React.ElementRef<typeof CommandPrimitive>,
React.ComponentPropsiWithoutRef<typeof CommandPrimitive>
>(({ className, ...props }, ref) => (
<CommandPrimitive
ref={ref}
className={cn(
"flex h-full w-full flex-col overflow-hidden rounded-md bg-background
text-slate-950 bg-background dark:text-slate-50",
className
)}
{...props}
/>
))s

Command.displayName

CommandPrimitive.displayName;

const CommandDialog
return (
<Dialog {...props}>
<DialogContent className="overflow-hidden p-0">

<Command className="[& [cmdk-group-heading]]:px-2 [& [cmdk-group-he
ading]]:font-medium [& [cmdk-group-heading]]:text-muted-foreground [& [cmdk
-group]:not([hidden]) ~[cmdk-group]]:pt-0 [& [cmdk-group]]:px-2 [& [cmdk-in
put-wrapper] svg]:h-5 [& [cmdk-input-wrapper] svg]:w-5 [& [cmdk-input]]:h-1
2 [& [cmdk-item]]:px-2 [& [cmdk-item]]:py-3 [& [cmdk-item] svg]:h-5 [& [cmd
k-item] svg]:w-5 dark:[& [cmdk-group-heading]]:text-muted-foreground">

({ children, ...props }: DialogProps) => {

Luigi Matteo Girke 165 Maio 2025



‘ Sistema de envio de SMS com interface web

{children}
</Command>
</DialogContent>
</Dialog>
)
}s

const CommandInput = React.forwardRef<
React.ElementRef<typeof CommandPrimitive.Input>,
React.ComponentPropsiWithoutRef<typeof CommandPrimitive.Input>
>(({ className, ...props }, ref) => (
<div className="flex items-center border-b px-3" cmdk-input-wrapper="">
<Search className="mr-2 h-4 w-4 shrink-© opacity-50" />
<CommandPrimitive.Input
ref={ref}
className={cn(
"flex h-10 w-full rounded-md bg-transparent py-3 text-sm outline-no
ne placeholder:text-muted-foreground disabled:cursor-not-allowed disabled:o
pacity-50 dark:placeholder:text-muted-foreground”,

className
)}
{...props}
/>
</div>

))s

CommandInput.displayName = CommandPrimitive.Input.displayName;

const CommandList = React.forwardRef<
React.ElementRef<typeof CommandPrimitive.List>,
React.ComponentPropsiWithoutRef<typeof CommandPrimitive.List>
>(({ className, ...props }, ref) => (
<CommandPrimitive.List
ref={ref}
className={cn("max-h-[300px] overflow-y-auto overflow-x-hidden", classN
ame)}
{...props}
/>
));

CommandList.displayName = CommandPrimitive.List.displayName;

const CommandEmpty = React.forwardRef<
React.ElementRef<typeof CommandPrimitive.Empty>,
React.ComponentPropsiWithoutRef<typeof CommandPrimitive.Empty>
>((props, ref) => (
<CommandPrimitive.Empty
ref={ref}
className="py-6 text-center text-sm"
{...props}
/>
))s

Luigi Matteo Girke 166 Maio 2025



' o Sistema de envio de SMS com interface web

CommandEmpty.displayName = CommandPrimitive.Empty.displayName;

const CommandGroup = React.forwardRef<
React.ElementRef<typeof CommandPrimitive.Group>,
React.ComponentPropsiWithoutRef<typeof CommandPrimitive.Group>
>(({ className, ...props }, ref) => (
<CommandPrimitive.Group
ref={ref}
className={cn(

"overflow-hidden p-1 text-slate-950 [& [cmdk-group-heading]]:px-2 [&_
[cmdk-group-heading]]:py-1.5 [& [cmdk-group-heading]]:text-xs [& [cmdk-grou
p-heading]]:font-medium [& [cmdk-group-heading]]:text-muted-foreground dark
:text-slate-50 dark:[& [cmdk-group-heading]]:text-muted-foreground",

className

)}
{...props}
/>
))s

CommandGroup.displayName = CommandPrimitive.Group.displayName;

const CommandSeparator = React.forwardRef<
React.ElementRef<typeof CommandPrimitive.Separator>,
React.ComponentPropsiWithoutRef<typeof CommandPrimitive.Separator>
>(({ className, ...props }, ref) => (
<CommandPrimitive.Separator
ref={ref}
className={cn("-mx-1 h-px bg-slate-200 dark:bg-slate-800", className)}
{...props}
/>
))s

CommandSeparator.displayName = CommandPrimitive.Separator.displayName;

const CommandItem = React.forwardRef<
React.ElementRef<typeof CommandPrimitive.Item>,
React.ComponentPropsiWithoutRef<typeof CommandPrimitive.Item>
>(({ className, ...props }, ref) => (
<CommandPrimitive.Item
ref={ref}
className={cn(

"relative flex cursor-default gap-2 select-none items-center rounded-
sm px-2 py-1.5 text-sm outline-none data-[disabled=true]:pointer-events-non
e data-[selected=true]:bg-slate-100 data-[selected=true]:text-slate-900 dat
a-[disabled=true]:opacity-50 [& svg]:pointer-events-none [& svg]:size-4 [&_
svg]:shrink-0 dark:data-[selected=true]:bg-slate-800 dark:data-[selected=tr
ue]:text-slate-50",

className

)}
{...props}
/>
))s

Luigi Matteo Girke 167 Maio 2025



Sistema de envio de SMS com interface web

CommandItem.displayName = CommandPrimitive.Item.displayName;

const CommandShortcut = ({
className,
...props
}: React.HTMLAttributes<HTMLSpanElement>) => {
return (
<span
className={cn(
"ml-auto text-xs tracking-widest text-muted-foreground ",
className

)}
{...props}
/>
)
s

CommandShortcut.displayName = "CommandShortcut”;

export {
Command,
CommandDialog,
CommandInput,
CommandList,
CommandEmpty,
CommandGroup,
CommandItem,
CommandShortcut,
CommandSeparator,

}s

/components/ui/avatar.tsx

"use client"

import * as React from "react"
import * as AvatarPrimitive from "@radix-ui/react-avatar"

import { cn } from "@/lib/utils”

const Avatar = React.forwardRef<
React.ElementRef<typeof AvatarPrimitive.Root>,
React.ComponentPropsWithoutRef<typeof AvatarPrimitive.Root>
>(({ className, ...props }, ref) => (
<AvatarPrimitive.Root
ref={ref}
className={cn(
"relative flex h-10 w-10 shrink-0 overflow-hidden rounded-full",
className

)}

Luigi Matteo Girke 168 Maio 2025



Sistema de envio de SMS com interface web

{...props}
/>
))

Avatar.displayName = AvatarPrimitive.Root.displayName

const AvatarImage = React.forwardRef<
React.ElementRef<typeof AvatarPrimitive.Image>,
React.ComponentPropsiWithoutRef<typeof AvatarPrimitive.Image>
>(({ className, ...props }, ref) => (
<AvatarPrimitive.Image
ref={ref}
className={cn("aspect-square h-full w-full", className)}
{...props}
/>
))

AvatarImage.displayName = AvatarPrimitive.Image.displayName

const AvatarFallback = React.forwardRef<
React.ElementRef<typeof AvatarPrimitive.Fallback>,
React.ComponentPropsiWithoutRef<typeof AvatarPrimitive.Fallback>
>(({ className, ...props }, ref) => (
<AvatarPrimitive.Fallback
ref={ref}
className={cn(
"flex h-full w-full items-center justify-center rounded-full bg-slate
-100 dark:bg-slate-800",
className
)}
{...props}
/>
)

AvatarFallback.displayName = AvatarPrimitive.Fallback.displayName

export { Avatar, AvatarImage, AvatarFallback }

/components/ui/dialog.tsx

"use client";

import * as React from "react"”;

import * as DialogPrimitive from "@radix-ui/react-dialog";
import { X } from "lucide-react";

import { cn } from "@/lib/utils";

const Dialog = DialogPrimitive.Root;

const DialogTrigger = DialogPrimitive.Trigger;

Luigi Matteo Girke 169 Maio 2025



' e Sistema de envio de SMS com interface web

const DialogPortal = DialogPrimitive.Portal;
const DialogClose = DialogPrimitive.Close;

const DialogOverlay = React.forwardRef<
React.ElementRef<typeof DialogPrimitive.Overlay>,
React.ComponentPropsiWithoutRef<typeof DialogPrimitive.Overlay>
>(({ className, ...props }, ref) => (
<DialogPrimitive.Overlay
ref={ref}
className={cn(

"fixed inset-0 z-50 bg-black/80 data-[state=open]:animate-in data-[st
ate=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fa
de-in-0",

className

)}
{...props}
/>
))s

DialogOverlay.displayName = DialogPrimitive.Overlay.displayName;

const DialogContent = React.forwardRef<
React.ElementRef<typeof DialogPrimitive.Content>,
React.ComponentPropsiWithoutRef<typeof DialogPrimitive.Content>
>(({ className, children, ...props }, ref) => (
<DialogPortal>
<DialogOverlay />
<DialogPrimitive.Content
ref={ref}
className={cn(
"fixed left-[50%] top-[50%] z-50 grid w-full max-w-1lg translate-x-[
-50%] translate-y-[-50%] gap-4 border bg-background p-6 shadow-1g duration-
200 data-[state=open]:animate-in data-[state=closed]:animate-out data-[stat
e=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:zoom-o0
ut-95 data-[state=open]:zoom-in-95 data-[state=closed]:slide-out-to-left-1/
2 data-[state=closed]:slide-out-to-top-[48%] data-[state=open]:slide-in-fro
m-left-1/2 data-[state=open]:slide-in-from-top-[48%] sm:rounded-1g",
className
)}
{...props}
>
{children}
<DialogPrimitive.Close className="absolute right-4 top-4 rounded-sm o
pacity-70 ring-offset-white transition-opacity hover:opacity-100 focus:outl
ine-none focus:ring-2 focus:ring-slate-950 focus:ring-offset-2 disabled:poi
nter-events-none data-[state=open]:bg-slate-100 data-[state=open]:text-mute
d-foreground dark:ring-offset-slate-950 dark:focus:ring-slate-300 dark:data
-[state=open]:bg-slate-800 dark:data-[state=open]:text-muted-foreground”>
<X className="h-4 w-4" />
<span className="sr-only">Close</span>
</DialogPrimitive.Close>
</DialogPrimitive.Content>
</DialogPortal>

Luigi Matteo Girke 170 Maio 2025



‘ Sistema de envio de SMS com interface web

))s

DialogContent.displayName = DialogPrimitive.Content.displayName;

const DialogHeader = ({
className,
...props
}: React.HTMLAttributes<HTMLDivElement>) => (
<div
className={cn(
"flex flex-col space-y-1.5 text-center sm:text-left",
className

)}
{...props}
/>
)

DialogHeader.displayName = "DialogHeader";

const DialogFooter = ({
className,
...props
}: React.HTMLAttributes<HTMLDivElement>) => (
<div
className={cn(
"mt-5 flex gap-2 flex-col-reverse sm:flex-row sm:justify-between sm:
space-x-2",
className
)}
{...props}
/>
)

DialogFooter.displayName = "DialogFooter";

const DialogTitle = React.forwardRef<
React.ElementRef<typeof DialogPrimitive.Title>,
React.ComponentPropsiWithoutRef<typeof DialogPrimitive.Title>
>(({ className, ...props }, ref) => (
<DialogPrimitive.Title
ref={ref}
className={cn(
"text-1lg font-semibold leading-none tracking-tight",
className
)}
{...props}
/>
))s
DialogTitle.displayName

DialogPrimitive.Title.displayName;

const DialogDescription = React.forwardRef<
React.ElementRef<typeof DialogPrimitive.Description>,
React.ComponentPropsiWithoutRef<typeof DialogPrimitive.Description>
>(({ className, ...props }, ref) => (
<DialogPrimitive.Description

Luigi Matteo Girke 171 Maio 2025



' o Sistema de envio de SMS com interface web

ref={ref}
className={cn("text-sm text-muted-foreground", className)}
{...props}
/>
))s

DialogDescription.displayName = DialogPrimitive.Description.displayName;

export {
Dialog,
DialogPortal,
DialogOverlay,
DialogTrigger,
DialogClose,
DialogContent,
DialogHeader,
DialogFooter,
DialogTitle,
DialogDescription,

}s

/components/ui/badge.tsx

import * as React from "react"”;
import { cva, type VariantProps } from "class-variance-authority";

import { cn } from "@/1ib/utils”;

const badgeVariants = cva(

"inline-flex items-center rounded-md border px-2.5 py-0.5 text-xs font-se
mibold transition-colors focus:outline-none focus:ring-2 focus:ring-slate-9
50 focus:ring-offset-2 dark:border-slate-800 dark:focus:ring-slate-300",

{

variants: {
variant: {
default:
"border-transparent bg-slate-900 text-slate-50 shadow hover:bg-sl
ate-900/80 dark:bg-slate-50 dark:text-slate-900 dark:hover:bg-slate-50/80",
secondary:
"border-transparent bg-slate-100 text-slate-900 hover:bg-muted/80
dark:bg-slate-800 dark:text-slate-50 dark:hover:bg-slate-800/80",
destructive:
"border-transparent bg-red-500 text-slate-50 shadow hover:bg-red-
500/80 dark:bg-red-900 dark:text-slate-50 dark:hover:bg-red-900/80",
outline: "text-slate-950 dark:text-slate-50",
¥

¥
defaultVariants: {

variant: "default",

}s
}

Luigi Matteo Girke 172 Maio 2025



Sistema de envio de SMS com interface web

)5

export interface BadgeProps
extends React.HTMLAttributes<HTMLDivElement>,
VariantProps<typeof badgeVariants> {}

function Badge({ className, variant, ...props }: BadgeProps) {
return (
<div className={cn(badgeVariants({ variant }), className)} {...props} /
>
)
}

export { Badge, badgeVariants };

/components/ui/table.tsx

import * as React from "react"”;
import { cn } from "@/lib/utils";

const Table = React.forwardRef<
HTMLTableElement,
React.HTMLAttributes<HTMLTableElement>
>(({ className, ...props }, ref) => (
<div className="relative w-full overflow-auto">
<table
ref={ref}
className={cn("w-full caption-bottom text-sm", className)}
{...props}
/>
</div>
))s
Table.displayName

"Table";

const TableHeader = React.forwardRef<
HTMLTableSectionElement,
React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
<thead ref={ref} className={cn("[& tr]:border-b", className)} {...props}
/>
))s
TableHeader.displayName = "TableHeader";

const TableBody = React.forwardRef<
HTMLTableSectionElement,
React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
<tbody
ref={ref}

Luigi Matteo Girke 173 Maio 2025



' o Sistema de envio de SMS com interface web

className={cn("[& tr:last-child]:border-0", className)}
{...props}
/>

));
TableBody.displayName = "TableBody";

const TableFooter = React.forwardRef<
HTMLTableSectionElement,
React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
<tfoot
ref={ref}
className={cn(
"border-t bg-slate-100/50 font-medium [&>tr]:last:border-b-0 dark:bg-
slate-800/50",
className

)}
{...props}
/>
));
TableFooter.displayName = "TableFooter";

const TableRow = React.forwardRef<
HTMLTableRowElement,
React.HTMLAttributes<HTMLTableRowElement>
>(({ className, ...props }, ref) => (
<tr
ref={ref}
className={cn(

"border-b transition-colors hover:bg-muted/50 data-[state=selected]:b
g-slate-100 dark:hover:bg-slate-800/50 dark:data-[state=selected]:bg-slate-
800",

className

)}
{...props}
/>
));
TableRow.displayName = "TableRow";

const TableHead = React.forwardRef<
HTMLTableCellElement,
React.ThHTMLAttributes<HTMLTableCellElement>
>(({ className, ...props }, ref) => (
<th
ref={ref}
className={cn(
"h-10 px-2 text-left align-middle font-medium text-muted-foreground [
&:has([role=checkbox])]:pr-0 [&>[role=checkbox]]:translate-y-[2px] ",
className
)}
{...props}
/>
));

Luigi Matteo Girke 174 Maio 2025



Sistema de envio de SMS com interface web

TableHead.displayName = "TableHead";

const TableCell = React.forwardRef<
HTMLTableCellElement,
React.TdHTMLAttributes<HTMLTableCellElement>
>(({ className, ...props }, ref) => (
<td
ref={ref}
className={cn(
"p-2 align-middle [&:has([role=checkbox])]:pr-0 [&>[role=checkbox]]:t
ranslate-y-[2px]",
className
)}
{...props}
/>
));
TableCell.displayName = "TableCell";

const TableCaption = React.forwardRef<
HTMLTableCaptionElement,
React.HTMLAttributes<HTMLTableCaptionElement>
>(({ className, ...props }, ref) => (
<caption
ref={ref}
className={cn("mt-4 text-sm text-muted-foreground ", className)}
{...props}
/>
))s
TableCaption.displayName = "TableCaption";

export {
Table,
TableHeader,
TableBody,
TableFooter,
TableHead,
TableRow,
TableCell,
TableCaption,

}s

/components/ui/separator.tsx

"use client";

import * as React from "react"”;
import * as SeparatorPrimitive from "@radix-ui/react-separator"”;

import { cn } from "@/lib/utils";

Luigi Matteo Girke 175 Maio 2025



' o Sistema de envio de SMS com interface web

const Separator = React.forwardRef<
React.ElementRef<typeof SeparatorPrimitive.Root>,
React.ComponentPropsWithoutRef<typeof SeparatorPrimitive.Root>
>(
(
{ className, orientation = "horizontal", decorative = true, ...props },
ref
) => (
<SeparatorPrimitive.Root
ref={ref}
decorative={decorative}
orientation={orientation}
className={cn(
"shrink-@ bg-border",
orientation === "horizontal" ? "h-[1px] w-full” : "h-full w-[1px]",
className
)}
{...props}
/>
)
)5

Separator.displayName = SeparatorPrimitive.Root.displayName;

export { Separator };

/components/ui/button.tsx

import * as React from "react"”;
import { Slot } from "@radix-ui/react-slot";
import { cva, type VariantProps } from "class-variance-authority";

import { cn } from "@/1lib/utils”;

const buttonVariants = cva(

"inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-
md text-sm font-medium transition-colors focus-visible:outline-none focus-v
isible:ring-1 focus-visible:ring-primary disabled:pointer-events-none disab
led:opacity-50 [& svg]:pointer-events-none [& svg]:size-4 [& svg]:shrink-0"
J

{

variants: {
variant: {
default:
"bg-primary text-primary-foreground shadow hover:bg-primary/90 fo
cus-visible:ring-white",
destructive:
"bg-red-500 text-slate-50 shadow-sm hover:bg-red-500/90 dark:bg-r
ed-900 dark:text-slate-50 dark:hover:bg-red-900/90",
outline: "border shadow-sm hover:bg-accent",
secondary: "bg-accent/70 text-foreground shadow-sm hover:bg-accent”

Luigi Matteo Girke 176 Maio 2025



‘ Sistema de envio de SMS com interface web

ghost:
"hover:bg-accent hover:text-accent-foreground ring-1 ring-transpa
rent focus-visible:ring-1",
link: "text-slate-900 underline-offset-4 hover:underline dark:text-
slate-50",
none: "",
¥
size: {
default: "h-9 px-4 py-2",
sm: "h-8 rounded-md px-3 text-xs",
1g: "h-10 rounded-md px-8",
icon: "h-9 w-9",

¥

3

defaultVariants: {
variant: "default",
size: "default",

¥

}
)

export interface ButtonProps
extends React.ButtonHTMLAttributes<HTMLButtonElement>,

VariantProps<typeof buttonVariants> {
asChild?: boolean;

}

const Button = React.forwardRef<HTMLButtonElement, ButtonProps>(
({ className, variant, size, asChild = false, ...props }, ref) => {
const Comp = asChild ? Slot : "button";
return (

<Comp
className={cn(buttonVariants({ variant, size, className }))}

ref={ref}
{...props}
/>
)
}
)
Button.displayName = "Button";

export { Button, buttonVariants };

/components/ui/checkbox.tsx

"use client";

import * as React from "react"”;
import * as CheckboxPrimitive from "@radix-ui/react-checkbox";

Luigi Matteo Girke 177 Maio 2025



‘ Sistema de envio de SMS com interface web

import { Check } from "lucide-react";
import { cn } from "@/lib/utils";

const Checkbox = React.forwardRef<
React.ElementRef<typeof CheckboxPrimitive.Root>,
React.ComponentPropsiWithoutRef<typeof CheckboxPrimitive.Root>
>(({ className, ...props }, ref) => (
<CheckboxPrimitive.Root
ref={ref}
className={cn(

"peer h-4 w-4 shrink-0 rounded-sm border border-slate-900 shadow focu
s-visible:outline-none focus-visible:ring-1 focus-visible:ring-slate-950 di
sabled:cursor-not-allowed disabled:opacity-50 data-[state=checked]:bg-slate
-900 data-[state=checked]:text-slate-50 dark:border-slate-800 dark:border-s
late-50 dark:focus-visible:ring-primary dark:data-[state=checked]:bg-slate-
50 dark:data-[state=checked]:text-slate-900",

className

)}
{...props}
>
<CheckboxPrimitive.Indicator

className={cn("flex items-center justify-center text-current")}

>

<Check className="h-4 w-4" />

</CheckboxPrimitive.Indicator>
</CheckboxPrimitive.Root>

))s

Checkbox.displayName = CheckboxPrimitive.Root.displayName;

export { Checkbox };

/components/ui/collapsible.tsx

"use client™
import * as CollapsiblePrimitive from "@radix-ui/react-collapsible”

const Collapsible = CollapsiblePrimitive.Root

const CollapsibleTrigger = CollapsiblePrimitive.CollapsibleTrigger

const CollapsibleContent = CollapsiblePrimitive.CollapsibleContent

export { Collapsible, CollapsibleTrigger, CollapsibleContent }

/components/ui/dropdown-menu.tsx

Luigi Matteo Girke 178 Maio 2025



Sistema de envio de SMS com interface web

"use client";

import * as React from "react";
import * as DropdownMenuPrimitive from "@radix-ui/react-dropdown-menu";
import { Check, ChevronRight, Circle } from "lucide-react";

import { cn } from "@/lib/utils";

const DropdownMenu = DropdownMenuPrimitive.Root;

const DropdownMenuTrigger = DropdownMenuPrimitive.Trigger;

const DropdownMenuGroup = DropdownMenuPrimitive.Group;

const DropdownMenuPortal = DropdownMenuPrimitive.Portal;

const DropdownMenuSub = DropdownMenuPrimitive.Sub;

const DropdownMenuRadioGroup = DropdownMenuPrimitive.RadioGroup;

const DropdownMenuSubTrigger = React.forwardRef<
React.ElementRef<typeof DropdownMenuPrimitive.SubTrigger>,
React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.SubTrigger> &

{
inset?: boolean;
¥
>(({ className, inset, children, ...props }, ref) => (
<DropdownMenuPrimitive.SubTrigger
ref={ref}
className={cn(
"flex cursor-default gap-2 select-none items-center rounded-sm px-2 p
y-1.5 text-sm outline-none focus:bg-slate-100 data-[state=open]:bg-slate-10
@ [& svg]:pointer-events-none [& svg]:size-4 [& svg]:shrink-0© dark:focus:bg
-slate-800 dark:data-[state=open]:bg-slate-800",
inset && "pl-8",
className
)}
{...props}
>
{children}
<ChevronRight className="ml-auto" />
</DropdownMenuPrimitive.SubTrigger>
));
DropdownMenuSubTrigger.displayName =
DropdownMenuPrimitive.SubTrigger.displayName;

const DropdownMenuSubContent = React.forwardRef<
React.ElementRef<typeof DropdownMenuPrimitive.SubContent>,
React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.SubContent>
>(({ className, ...props }, ref) => (
<DropdownMenuPrimitive.SubContent

Luigi Matteo Girke 179 Maio 2025



' e Sistema de envio de SMS com interface web

ref={ref}
className={cn(
"z-50 min-w-[8rem] bg-background overflow-hidden rounded-md border p-
1 shadow-1g data-[state=open]:animate-in data-[state=closed]:animate-out da
ta-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed
]:zoom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-in-from
-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-fr
om-left-2 data-[side=top]:slide-in-from-bottom-2",
className
)}
{...props}
/>
))s
DropdownMenuSubContent.displayName =
DropdownMenuPrimitive.SubContent.displayName;

const DropdownMenuContent = React.forwardRef<
React.ElementRef<typeof DropdownMenuPrimitive.Content>,
React.ComponentPropsiWithoutRef<typeof DropdownMenuPrimitive.Content>
>(({ className, sideOffset = 4, ...props }, ref) => (
<DropdownMenuPrimitive.Portal>
<DropdownMenuPrimitive.Content
ref={ref}
sideOffset={sideOffset}
className={cn(

"z-50 min-w-[8rem] bg-background overflow-hidden rounded-md border
p-1 shadow-md",

"data-[state=open]:animate-in data-[state=closed]:animate-out data-
[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:z
oom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-in-from-to
p-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-
left-2 data-[side=top]:slide-in-from-bottom-2",

className

)}
{...props}
/>
</DropdownMenuPrimitive.Portal>

))s

DropdownMenuContent.displayName = DropdownMenuPrimitive.Content.displayName

J

const DropdownMenuItem = React.forwardRef<
React.ElementRef<typeof DropdownMenuPrimitive.Item>,
React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.Item> & {
inset?: boolean;

¥
>(({ className, inset, ...props }, ref) => (
<DropdownMenuPrimitive.Item
ref={ref}

className={cn(
"relative flex cursor-default select-none items-center gap-2 rounded-
sm px-2 py-1.5 text-sm outline-none transition-colors hover:bg-accent data-
[disabled]:pointer-events-none data-[disabled]:opacity-50 [&>svg]:size-4 [&

Luigi Matteo Girke 180 Maio 2025



‘ Sistema de envio de SMS com interface web

>svg]:shrink-0",
inset && "pl-8",
className
)}
{...props}
/>
))s

DropdownMenuItem.displayName = DropdownMenuPrimitive.Item.displayName;

const DropdownMenuCheckboxItem = React.forwardRef<
React.ElementRef<typeof DropdownMenuPrimitive.CheckboxItem>,
React.ComponentPropsiWithoutRef<typeof DropdownMenuPrimitive.CheckboxItem>

>(({ className, children, checked, ...props }, ref) => (
<DropdownMenuPrimitive.CheckboxItem
ref={ref}

className={cn(
"relative flex cursor-default select-none items-center rounded-sm py-
1.5 pl-8 pr-2 text-sm outline-none transition-colors hover:bg-accent data-[
disabled]:pointer-events-none data-[disabled]:opacity-50",
className
)}
checked={checked}
{...props}
>
<span className="absolute left-2 flex h-3.5 w-3.5 items-center justify-
center">
<DropdownMenuPrimitive.ItemIndicator>
<Check className="h-4 w-4" />
</DropdownMenuPrimitive.ItemIndicator>
</span>
{children}
</DropdownMenuPrimitive.CheckboxItem>
))s
DropdownMenuCheckboxItem.displayName =
DropdownMenuPrimitive.CheckboxItem.displayName;

const DropdownMenuRadioItem = React.forwardRef<
React.ElementRef<typeof DropdownMenuPrimitive.RadioItem>,
React.ComponentPropsiWithoutRef<typeof DropdownMenuPrimitive.RadioItem>

>(({ className, children, ...props }, ref) => (
<DropdownMenuPrimitive.RadioItem
ref={ref}

className={cn(
"relative flex cursor-default select-none items-center rounded-sm py-
1.5 pl-8 pr-2 text-sm outline-none transition-colors focus:bg-slate-100 foc
us:text-slate-900 data-[disabled]:pointer-events-none data-[disabled]:opaci
ty-50 dark:focus:bg-slate-800 dark:focus:text-slate-50",
className
)}
{...props}
>
<span className="absolute left-2 flex h-3.5 w-3.5 items-center justify-
center">

Luigi Matteo Girke 181 Maio 2025



Sistema de envio de SMS com interface web

<DropdownMenuPrimitive.ItemIndicator>
<Circle className="h-2 w-2 fill-current" />
</DropdownMenuPrimitive.ItemIndicator>
</span>
{children}
</DropdownMenuPrimitive.RadioItem>
));
DropdownMenuRadioItem.displayName = DropdownMenuPrimitive.RadioItem.display
Name;

const DropdownMenulLabel = React.forwardRef<
React.ElementRef<typeof DropdownMenuPrimitive.lLabel>,
React.ComponentPropsiWithoutRef<typeof DropdownMenuPrimitive.lLabel> & {
inset?: boolean;

¥
>(({ className, inset, ...props }, ref) => (
<DropdownMenuPrimitive.Label

ref={ref}

className={cn(
"px-2 py-1.5 text-sm font-semibold",
inset && "pl-8",
className

)}

{...props}

/>
));

DropdownMenuLabel.displayName = DropdownMenuPrimitive.lLabel.displayName;

const DropdownMenuSeparator = React.forwardRef<
React.ElementRef<typeof DropdownMenuPrimitive.Separator>,
React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.Separator>
>(({ className, ...props }, ref) => (
<DropdownMenuPrimitive.Separator
ref={ref}
className={cn("-mx-1 my-1 h-px bg-border", className)}
{...props}
/>
));
DropdownMenuSeparator.displayName = DropdownMenuPrimitive.Separator.display
Name;

const DropdownMenuShortcut = ({
className,
...props
}: React.HTMLAttributes<HTMLSpanElement>) => {
return (
<span
className={cn("ml-auto text-xs tracking-widest opacity-60", className
)}
{...props}
/>
)
¥

Luigi Matteo Girke 182 Maio 2025



Sistema de envio de SMS com interface web

DropdownMenuShortcut.displayName = "DropdownMenuShortcut";

export {
DropdownMenu,
DropdownMenuTrigger,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuCheckboxItem,
DropdownMenuRadioItenm,
DropdownMenuLabel,
DropdownMenuSeparator,
DropdownMenuShortcut,
DropdownMenuGroup,
DropdownMenuPortal,
DropdownMenuSub,
DropdownMenuSubContent,
DropdownMenuSubTrigger,
DropdownMenuRadioGroup,

}s

/components/ui/select.tsx

"use client";

import * as React from "react";
import * as SelectPrimitive from "@radix-ui/react-select”;
import { Check, ChevronDown, ChevronUp } from "lucide-react";

import { cn } from "@/lib/utils";
const Select = SelectPrimitive.Root;

const SelectGroup

SelectPrimitive.Group;
const SelectValue = SelectPrimitive.Value;

const SelectTrigger = React.forwardRef<
React.ElementRef<typeof SelectPrimitive.Trigger>,
React.ComponentPropsWithoutRef<typeof SelectPrimitive.Trigger>
>(({ className, children, ...props }, ref) => (
<SelectPrimitive.Trigger
ref={ref}
className={cn(

"flex h-9 items-center justify-between whitespace-nowrap rounded-md b
order bg-transparent px-3 py-2 text-sm shadow-sm ring-offset-white placehol
der:text-muted-foreground focus:outline-none focus:ring-1 focus:ring-slate-
950 disabled:cursor-not-allowed disabled:opacity-50 [&>span]:line-clamp-1",

className

)}
{...props}

Luigi Matteo Girke 183 Maio 2025



Sistema de envio de SMS com interface web

{children}
<SelectPrimitive.Icon asChild>
<ChevronDown className="h-4 w-4 opacity-50" />
</SelectPrimitive.Icon>
</SelectPrimitive.Trigger>

))s

SelectTrigger.displayName = SelectPrimitive.Trigger.displayName;

const SelectScrollUpButton = React.forwardRef<
React.ElementRef<typeof SelectPrimitive.ScrollUpButton>,
React.ComponentPropsiWithoutRef<typeof SelectPrimitive.ScrollUpButton>

>(({ className, ...props }, ref) => (
<SelectPrimitive.ScrollUpButton
ref={ref}

className={cn(
"flex cursor-default items-center justify-center py-1",

className

)}

{...props}
>

<ChevronUp className="h-4 w-4" />
</SelectPrimitive.ScrollUpButton>

))s
SelectScrollUpButton.displayName = SelectPrimitive.ScrollUpButton.displayNa

me;

const SelectScrollDownButton = React.forwardRef<
React.ElementRef<typeof SelectPrimitive.ScrollDownButton>,
React.ComponentPropsiWithoutRef<typeof SelectPrimitive.ScrollDownButton>
>(({ className, ...props }, ref) => (
<SelectPrimitive.ScrollDownButton
ref={ref}
className={cn(
"flex cursor-default items-center justify-center py-1",

className

)}
{...props}
>
<ChevronDown className="h-4 w-4" />
</SelectPrimitive.ScrollDownButton>
))s
SelectScrollDownButton.displayName =
SelectPrimitive.ScrollDownButton.displayName;

const SelectContent = React.forwardRef<
React.ElementRef<typeof SelectPrimitive.Content>,
React.ComponentPropsiWithoutRef<typeof SelectPrimitive.Content>
>(({ className, children, position = "popper", ...props }, ref) => (
<SelectPrimitive.Portal>
<SelectPrimitive.Content
ref={ref}
className={cn(

Luigi Matteo Girke 184 Maio 2025



' o Sistema de envio de SMS com interface web

"relative z-50 max-h-96 min-w-[8rem] overflow-hidden rounded-md bor
der bg-background text-foreground shadow-md data-[state=open]:animate-in da
ta-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=op
en]:fade-in-0 data-[state=closed]:zoom-out-95 data-[state=open]:zoom-in-95
data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right
-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bot
tom-2",

position === "popper" &&

"data-[side=bottom]:translate-y-1 data-[side=left]:-translate-x-1
data-[side=right]:translate-x-1 data-[side=top]:-translate-y-1",

className

)}
position={position}
{...props}
>
<SelectScrollUpButton />
<SelectPrimitive.Viewport
className={cn(
"p'luJ
position === "popper" &&
"h-[var(--radix-select-trigger-height)] w-full min-w-[var(--rad
ix-select-trigger-width)]"
)}

{children}
</SelectPrimitive.Viewport>
<SelectScrollDownButton />

</SelectPrimitive.Content>
</SelectPrimitive.Portal>

))s

SelectContent.displayName = SelectPrimitive.Content.displayName;

>

const SelectlLabel = React.forwardRef<
React.ElementRef<typeof SelectPrimitive.LlLabel>,
React.ComponentPropsiWithoutRef<typeof SelectPrimitive.label>
>(({ className, ...props }, ref) => (
<SelectPrimitive.Label
ref={ref}
className={cn("px-2 py-1.5 text-sm font-semibold", className)}
{...props}
/>
));
SelectLabel.displayName = SelectPrimitive.lLabel.displayName;

const SelectItem = React.forwardRef<
React.ElementRef<typeof SelectPrimitive.Item>,
React.ComponentPropsiWithoutRef<typeof SelectPrimitive.Item>
>(({ className, children, ...props }, ref) => (
<SelectPrimitive.Item
ref={ref}
className={cn(
"relative flex w-full hover:bg-accent cursor-default select-none item
s-center rounded-sm py-1.5 pl-2 pr-8 text-sm outline-none data-[disabled]:p

Luigi Matteo Girke 185 Maio 2025



Sistema de envio de SMS com interface web

ointer-events-none data-[disabled]:opacity-50 ",
className
)}

{...props}
>

<span className="absolute right-2 flex h-3.5 w-3.5 items-center justify

-center">
<SelectPrimitive.ItemIndicator>
<Check className="h-4 w-4" />
</SelectPrimitive.ItemIndicator>
</span>
<SelectPrimitive.ItemText>{children}</SelectPrimitive.ItemText>
</SelectPrimitive.Item>

))s

SelectItem.displayName = SelectPrimitive.Item.displayName;

const SelectSeparator = React.forwardRef<
React.ElementRef<typeof SelectPrimitive.Separator>,
React.ComponentPropsWithoutRef<typeof SelectPrimitive.Separator>
>(({ className, ...props }, ref) => (
<SelectPrimitive.Separator
ref={ref}
className={cn("-mx-1 my-1 h-px bg-background”, className)}
{...props}
/>
));

SelectSeparator.displayName = SelectPrimitive.Separator.displayName;

export {
Select,
SelectGroup,
SelectValue,
SelectTrigger,
SelectContent,
SelectlLabel,
SelectItem,
SelectSeparator,
SelectScrollUpButton,
SelectScrollDownButton,

}s

/components/ui/textarea.tsx

import * as React from "react";
import { cn } from "@/lib/utils";

const Textarea = React.forwardRef<
HTMLTextAreaElement,
React.ComponentProps<"textarea">

Luigi Matteo Girke 186

Maio 2025



- R Sistema de envio de SMS com interface web

>(({ className, ...props }, ref) => {
return (
<textarea
className={cn(

"flex min-h-[60px] w-full rounded-md border bg-background px-3 py-2
text-base shadow-sm placeholder:text-muted-foreground focus-visible:outline
-none focus-visible:ring-1 focus-visible:ring-primary disabled:cursor-not-a
llowed disabled:opacity-50 md:text-sm",

className

)}
ref={ref}
{...props}
/>
)
3

Textarea.displayName = "Textarea";

export { Textarea };

/components/ui/input.tsx

import * as React from "react"”;
import { cn } from "@/1ib/utils”;

const Input = React.forwardRef<HTMLInputElement, React.ComponentProps<"inpu
t">>(
({ className, type, ...props }, ref) => {
return (
<input
type={type}
className={cn(

"flex h-9 w-full rounded-md border bg-background px-3 py-1 text-b
ase shadow-sm transition-colors file:border-0 file:bg-transparent file:text
-sm file:font-medium file:text-slate-950 placeholder:text-muted-foreground
focus-visible:outline-none focus-visible:ring-primary focus-visible:ring-1
disabled:cursor-not-allowed disabled:opacity-50 md:text-sm dark:file:text-s
late-50 dark:placeholder:text-muted-foreground”,

className

)}
ref={ref}
{...props}
/>
)
}
)
Input.displayName = "Input";

export { Input };

Luigi Matteo Girke 187 Maio 2025



Sistema de envio de SMS com interface web

/components/ui/form.tsx

"use client";

import * as React from "react";
import * as LabelPrimitive from "@radix-ui/react-label";
import { Slot } from "@radix-ui/react-slot";
import {

Controller,

ControllerProps,

FieldPath,

FieldValues,

FormProvider,

useFormContext,
} from "react-hook-form";

import { cn } from "@/lib/utils";
import { Label } from "@/components/ui/label";

const Form = FormProvider;

type FormFieldContextValue<

TFieldValues extends FieldValues = FieldValues,

TName extends FieldPath<TFieldValues> = FieldPath<TFieldValues>
> = A

name: TName;

}s

const FormFieldContext = React.createContext<FormFieldContextValue>(
{} as FormFieldContextValue

);

const FormField = <
TFieldValues extends FieldValues = FieldValues,
TName extends FieldPath<TFieldValues> = FieldPath<TFieldValues>
>({
...props
}: ControllerProps<TFieldValues, TName>) => {
return (
<FormFieldContext.Provider value={{ name: props.name }}>
<Controller {...props} />
</FormFieldContext.Provider>
)
¥

const useFormField = () => {
const fieldContext = React.useContext(FormFieldContext);
const itemContext = React.useContext(FormItemContext);
const { getFieldState, formState } = useFormContext();

Luigi Matteo Girke 188 Maio 2025



Sistema de envio de SMS com interface web

const fieldState = getFieldState(fieldContext.name, formState);

if (!fieldContext) {
throw new Error("useFormField should be used within <FormField>");

}

const { id } = itemContext;

return {
id,
name: fieldContext.name,
formItemId: "~ ${id}-form-item’,
formDescriptionId: "~ ${id}-form-item-description’,
formMessageId: ~${id}-form-item-message’,
...fieldState,

}s

¥

type FormItemContextValue = {
id: string;

}s

const FormItemContext = React.createContext<FormItemContextValue>(
{} as FormItemContextValue

);

const FormItem = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement>

>(({ className, ...props }, ref) => {
const id = React.useld();

return (
<FormItemContext.Provider value={{ id }}»>
<div ref={ref} className={className} {...props} />
</FormItemContext.Provider>
)
3

FormItem.displayName = "FormItem";

const FormLabel = React.forwardRef<
React.ElementRef<typeof LabelPrimitive.Root>,
React.ComponentPropsWithoutRef<typeof LabelPrimitive.Root>
>(({ className, ...props }, ref) => {
const { error, formItemId } = useFormField();

return (
<Label
ref={ref}
className={cn(error && "text-red-500 dark:text-red-900", className)}
htmlFor={formItemId}

Luigi Matteo Girke 189 Maio 2025



Sistema de envio de SMS com interface web

{...props}
/>
)
3
FormLabel.displayName = "FormLabel";

const FormControl = React.forwardRef<
React.ElementRef<typeof Slot>,
React.ComponentPropsWithoutRef<typeof Slot>
>(({ ...props }, ref) => {
const { error, formItemId, formDescriptionld, formMessageld } =
useFormField();

return (
<Slot
ref={ref}
id={formItemId}
aria-describedby={
lerror
? “${formDescriptionId}"
“${formDescriptionId} ${formMessageld}"

}
aria-invalid={!'!error}
{...props}
/>
)
3
FormControl.displayName = "FormControl";

const FormDescription = React.forwardRef<
HTMLParagraphElement,
React.HTMLAttributes<HTMLParagraphElement>
>(({ className, ...props }, ref) => {
const { formDescriptionId } = useFormField();

return (
<p
ref={ref}
id={formDescriptionId}
className={cn("text-[0.8rem] text-muted-foreground ", className)}

{...props}
/>
)
3
FormDescription.displayName = "FormDescription"”;

const FormMessage = React.forwardRef<
HTMLParagraphElement,
React.HTMLAttributes<HTMLParagraphElement>

>(({ className, children, ...props }, ref) => {
const { error, formMessageld } = useFormField();
const body = error ? String(error?.message) : children;

Luigi Matteo Girke 190 Maio 2025



if (!body) {
return null;

}

return (
<p
ref={ref}
id={formMessageld}
className={cn(

Sistema de envio de SMS com interface web

"text-[0.8rem] font-medium text-red-500 dark:text-red-900",

className

)}
{...props}
>
{body}
</p>
)
3

FormMessage.displayName =

export {
useFormField,
Form,
FormItem,
FormLabel,
FormControl,
FormDescription,
FormMessage,
FormField,

}s

/components/contacts-page-skeleton.tsx

"use client";

React from "react";
ChildrenPanel from

import
import
import {
import {
import {

import {
import {
import {
import
import
import
import

cn } from "@/lib/utils";

PageHeader } from "./headers";

{ Button } from "./ui/button”;

Luigi Matteo Girke

ResizableHandle, ResizablePanel } from
uselLayout } from "@/contexts/use-layout";
useTranslation } from "react-il8next";

191

"FormMessage";

./shared/children-panel™”;

./ui/resizable";

useIsMobile } from "@/hooks/use-mobile";

Skeleton from "react-loading-skeleton";
"react-loading-skeleton/dist/skeleton.css";

{ ArrowLeft, Edit, Share, Trash2, X } from "lucide-react";

Maio 2025



' e Sistema de envio de SMS com interface web

export default function ContactsPageSkeleton() {
const { layout, fallbackLayout, amountIndicators } = uselLayout();
const { t } = useTranslation(["contacts-page", "common"]);
const onMobile = useIsMobile();
const selected = null;
const skeletonsAmount: number =
typeof amountIndicators?.contacts ===
? amountIndicators?.contacts
: 45
return (
<>
<ResizablePanel
className={cn(onMobile && selected !== null && "hidden")} // If we
are on mobile and a message is selected we only want to show the column con
taining the selected message.

// Check if the Llayout is a 3-column middle-bar panel. Use the prev
ious 3-column Layout 1if available; otherwise, render the fallback for diffe
rent or undefined Layouts.

defaultSize={

Array.isArray(layout) && layout.length === 3
? layout[1]
: fallbacklLayout[1]

}

minSize={22}

maxSize={50}

<PageHeader title={t( header )} />

<div className="rounded-md p-4 h-[68px]">
<Skeleton className="h-9" style={{ borderRadius: "©.375rem" }} />
</div>

<div className="flex flex-col gap-2 p-4 pt-0 mt-2 overflow-hidden">
{skeletonsAmount > @ ? (
// Math.min() makes it so that the maximum will be x, even 1if t
he variable has a Llarger number
Array.from({ length: Math.min(skeletonsAmount, 10) }).map(
(L, 1) =>H
return <ContactSkeleton key={i} />;
}

(

<div className="p-8 text-center text-muted-foreground">
<Skeleton className="w-full" />
</div>
)}
</div>
</ResizablePanel>
<ResizableHandle withHandle className={cn(onMobile && "hidden")} />
<ChildrenPanel
hasMiddleBar
className={cn(onMobile && selected === null && "hidden")} // Like a
bove we are using reverse logic here. If we are on mobile, and nothing is s

)
) .

Luigi Matteo Girke 192 Maio 2025



' o Sistema de envio de SMS com interface web

elected, this component should not be displayed.
>
<ContactDisplaySkeleton />
</ChildrenPanel>
</>
)
}

function ContactSkeleton() {
return (
<div
className={cn(
"flex contacts-start items-center gap-2 rounded-lg border p-3 text-
left text-sm transition-all”
)}
>
<Skeleton circle width={48} height={48} />
<div className="w-1/2 space-y-1">
<div className="w-1/4 font-semibold">
<Skeleton />
</div>
<div className="w-2/3 text-xs font-medium">
<Skeleton />
</div>
</div>
</div>
)
}

function ContactDisplaySkeleton() {
const onMobile = useIsMobile();
const { t } = useTranslation(["contacts-page"]);

return (
<div className={cn("flex h-full flex-col")}>
<div className="flex items-center p-2 h-[var(--header-height)] border

-b">
<div className="flex items-center gap-2">
{onMobile && (
<Button variant="ghost" size="icon">
<ArrowLeft className="h-4 w-4" />
<span className="sr-only">{t("common:go_back")}</span>
</Button>
)}
<Button variant="ghost" size="icon" disabled>
<Trash2 className="h-4 w-4" />
<span className="sr-only">{t("common:delete_permanently")}</spa
n>

</Button>

<Button variant="ghost" size="icon" disabled>

Luigi Matteo Girke 193 Maio 2025



</
)s
}

/compo

"use ¢

import
import

Sistema de envio de SMS com interface web

<Edit className="h-4 w-4" />
<span className="sr-only">{t("common:edit")}</span>
</Button>
</div>
<div className="ml-auto flex items-center gap-2">
<Button variant="ghost" size="icon" disabled>
<X className="h-4 w-4" />
<span className="sr-only">{t("common:close")}</span>
</Button>
</div>
</div>

<div className="p-8 text-center text-muted-foreground">
{t("none_selected")}

</div>

div>

nents/recipients-input.tsx

lient";

{ Input } from "./shared/input";
React, {

useState,

useR
useE
type
type
} from
import

import
import
import
import
import
import
import
import
import

ef,
ffect,

KeyboardEvent,

ChangeEvent,

"react";

{ UserPlus, X } from "lucide-react";

Button } from "./ui/button”;

cn } from "@/lib/utils”;

useNewMessage } from "@/contexts/use-new-message"”;
useModal } from "@/contexts/use-modal";

ScrollArea } from "./ui/scroll-area”;

NewRecipient } from "@/types/recipient”;
ProfilePic from "./profile-pic";

{ useTranslation } from "react-il8next";

{

N e L e )

Tooltip,
TooltipContent,
TooltipProvider,
TooltipTrigger,

} from

"./ui/tooltip";

const OFF_FOCUSED_RECIPIENT_AMOUNT = 5;

React.

memo(RecipientsInput);

Luigi Matteo Girke 194 Maio 2025



Sistema de envio de SMS com interface web

export default function RecipientsInput({
error,
onFocus,
onBlur,
Fo A
error: boolean;
onFocus: () => void;
onBlur: () => void;
A
const container = useRef<HTMLDivElement | null>(null);
const [isDropdownOpen, setIsDropdownOpen] = useState(false);
const inputElement = useRef<HTMLInputElement | null>(null);

const {
message,
setMessage,
recipients,
addRecipient,
removeRecipient,
suggestedRecipients,
searchRecipients,
showInfoAbout,
focusedInput,

// Which one in the suggested recipients/contacts is currently selected
You can change the selection with up and down arrow Reys.
selectedPhone,
updateSelectedPhone,
} = useNewMessage();
const { setModal } = useModal();
const { t } = useTranslation(["new-message-page"]);

// reset the input's value
function clearInputValue() {
setMessage((m) => ({
coem,
recipientInput: {
...m.recipientInput,

value: ,
¥
)
¥

const handleKeyDown = (e: KeyboardEvent<HTMLInputElement>) => {
setTimeout(() => {
if (container.current) {
// automatically scroll to the bottom of the recipients container w
hen user starts typing
container.current.scrollTop += container.current.scrollHeight;

}
}, 9);

Luigi Matteo Girke 195 Maio 2025



‘ Sistema de envio de SMS com interface web

const trimmedInput = message.recipientInput.value.trim();
if (e.key === "Enter" || e.key === "Tab") {
e.preventDefault();
e.stopPropagation();
if (selectedPhone) {
addRecipient(selectedPhone);
clearInputValue();
} else if (trimmedInput !== "") {
addRecipient(trimmedInput);

clearInputValue();
}
} else if (e.key === "ArrowDown" || e.key === "ArrowUp") {
updateSelectedPhone(e.key);
}
if (e.key === "Backspace" && trimmedInput === "" && recipients.length)

const lastRecipientIndex = recipients.length - 1;
const lastRecipient = recipients[lastRecipientIndex];
if (lastRecipient && lastRecipient.proneForDeletion) {
// Remove the Llast recipient if it 1is already prone for deletion
removeRecipient(lastRecipient);
} else {
setMessage((prev) => {
const lastRecipientIndex = prev.recipients.length - 1;

// Create a new array of recipients with the last recipient marke
d as prone for deletion

const newRecipients = prev.recipients.map((recipient, index) => {

if (index === lastRecipientIndex) {
return { ...recipient, proneForDeletion: true }; // Mark as p
rone for deletion
}
return recipient; // Return the other recipients unchanged
3

// Return the new state with the last recipient marked as prone f
or deletion
return { ...prev, recipients: newRecipients };
})s
}
}
}s

const onInputChange = (e: ChangeEvent<HTMLInputElement>) => {
const value = e.target.value;
setMessage((m) => ({
coem,
recipientInput: {
...m.recipientInput,
value,

Luigi Matteo Girke 196 Maio 2025



' o Sistema de envio de SMS com interface web

}s
1);

setIsDropdownOpen(true);

searchRecipients(value);

3

const showRecipientInfo = (recipient: NewRecipient) => {
showInfoAbout(recipient);
setModal((m) => ({ ...m, contact: { ...m.contact, info: true } }));

3

useEffect(() => {
// automatically collapse the expanded recipients when another input ge
ts selected
if (focusedInput !== "new-recipient" && typeof focusedInput == "string"
) 1
setMessage((prev) => ({
...prev,
recipientInput: { ...prev.recipientInput, recipientsExpanded: false

}s
1);

¥
}, [focusedInput]);

return (
<div className="flex-1 py-1 relative z--[1000]">
<div className="max-h-24 overflow-auto" ref={container}>
<div
className={cn(
"w-full min-h-[2.75rem] flex flex-wrap items-center gap-x-1 py-
1 h-full border-b px-5 z-50",
focusedInput === "new-recipient" && "border-primary",
error && "border-red-500"
)}
>
<span className="my-0.5 mr-0.5 px-0 flex items-center text-sm tex
t-muted-foreground">
{t("common:to")}
</span>
{/* Recipient chips */}
{recipients.map((recipient, index) => {
// Since we have so many recipients, only some should be shown
until the user clicks to see the rest
if (
index >= OFF_FOCUSED_RECIPIENT_AMOUNT &&
message.recipientInput.recipientsExpanded === false

) A

return;
¥

// else, we show all of them
return (
<div
key={recipient.phone}

Luigi Matteo Girke 197 Maio 2025



- R Sistema de envio de SMS com interface web

// Height of the row/container
className="flex items-center h-7"
>
<div
// Height of the contact chip itself
className={cn("h-6")}
>
<TooltipProvider delayDuration={1000}>
<Tooltip>
<TooltipTrigger asChild>
<div
className={cn(

"bg-background flex items-center text-xs border
rounded-x1 hover:bg-muted dark:hover:bg-muted cursor-pointer whitespace-now
rap h-full hover:shadow-none",

error && "error-border-pulse”,

recipient.proneForDeletion && "border-destructi

ve",
lrecipient.isValid &&
"bg-red-100/70 dark:bg-red-900/50",
recipient.error?.type === "warning" &&
"bg-yellow-50 dark:bg-yellow-400/40"
)}
>
<div
onClick={() => showRecipientInfo(recipient)}
className="h-full flex items-center rounded-1-x
1 pl-1.5"
>
{recipient?.contact?.name || recipient.phone}
</div>
<Button

variant="none"
className="h-full py-0 px-1.5 cursor-pointer cl
oseX rounded-1-none rounded-r-x1"
onClick={() => removeRecipient(recipient)}
type="button"
>
<X className="h-4 w-4 text-muted-foreground” />
</Button>
</div>
</TooltipTrigger>
<TooltipContent>
{t(
recipient.error?.message
? recipient.error?.message
) || t("tooltip-more info")}
</TooltipContent>
</Tooltip>
</TooltipProvider>
</div>

Luigi Matteo Girke 198 Maio 2025



- R Sistema de envio de SMS com interface web

</div>
)5
1}

{/* Button to show all recipients, when it's clicked we also focu
s the 1input */}
{message.recipients.length > OFF_FOCUSED_RECIPIENT_AMOUNT &&
message.recipientInput.recipientsExpanded === false ? (
<Button
variant="none"
className="p-0 ml-2"
type="button"
onClick={() => {
setMessage((prev) => ({
...prev,
recipientInput: {
...prev.recipientInput,
recipientsExpanded: true,

}s

1)
setTimeout(() => {

if (inputElement.current) {
inputElement.current.focus();

}
}, 9);
}}
>
{t("x_more", {
X: message.recipients.length - OFF_FOCUSED_RECIPIENT_AMOUNT

1}
</Button>

(

<></>

)
)}

<div
className={cn(
"h-7 min-w-[200px] flex-1 py-1 ml-3", // my-6
message.recipients.length > OFF_FOCUSED_RECIPIENT_AMOUNT &&
message.recipientInput.recipientsExpanded === false &&
"hidden"
)} /* we are taking advantage of the default positioning of abs
olute elements this common parent div */
>
<Input
ref={inputElement}
// this name only used for the focus state, not for submittin
g any value
name="new-recipient"”
className={cn(
"h-min text-sm w-full p-0 ring-© focus:ring-© shadow-none r
ounded-none placeholder:text-muted-foreground" //my-6

Luigi Matteo Girke 199 Maio 2025



' e Sistema de envio de SMS com interface web

)}
placeholder={

message.recipients.length <= OFF_FOCUSED RECIPIENT_AMOUNT |

message.recipientInput.recipientsExpanded
? t("common:phone_number")

}

value={message.recipientInput.value}
onChange={onInputChange}
onKeyDown={handleKeyDown}
onFocus={() => {
setIsDropdownOpen(true);

searchRecipients(message.recipientInput.value);
onFocus();

3}

onBlur={() => {
setMessage((m) => ({

c..m,
recipients: m.recipients.map((r) => ({
R
proneForDeletion: false,
1),

1)
setIsDropdownOpen(false);

// Create recipient from input value on blur 1if not empty
if (message.recipientInput.value.trim() !== "") {
addRecipient(message.recipientInput.value);

}

onBlur();

3}
/>

{/* Begin suggested recipients dropdown */}
{isDropdownOpen && suggestedRecipients.length !== 0 && (
<div className="absolute top-[85%] bg-background rounded-1lg b
order shadow-md dark:shadow-1g-light">
<ScrollArea className="w-[230px] xs:w-[300px] h-[330px]">
<div
className="p-2" /* this is necessary to have a separate
container so that the items scroll all the way up to the end of the contain
er */
>
<h3 className="mb-2 px-2 text-sm font-medium">
{!message.recipientInput.value.length
? t("suggestions")
¢ t("x_found", { x: suggestedRecipients.length })}
</h3>
<div className="flex flex-col gap-1">

Luigi Matteo Girke 200 Maio 2025



‘ Sistema de envio de SMS com interface web

{suggestedRecipients.map((recipient) => (
<button

key={recipient.phone}

className={cn(
"flex items-center w-full gap-2 rounded-1lg bord

er p-3 text-left text-sm transition-all hover:bg-accent”,
selectedPhone === recipient.phone &&
"border-primary"

)}

type="button"

onMouseDown={(e) => {
e.preventDefault();

addRecipient(recipient.phone);

3
>
<ProfilePic
name={recipient.contact?.name || undefined}
size={10}
className="border"
/>

<div className="space-y-1">
<div className="font-semibold">
{recipient.contact?.name || recipient.phone}
</div>
<div className="text-xs font-medium">
{recipient.contact?.name ? recipient.phone :
"}
</div>
</div>
</button>
)}
</div>
</div>
</ScrollArea>
</div>
)}
</div>
</div>
<Button
className="absolute right-2 bottom-[6px] p-2 aspect-1 top-1/2 -tr
anslate-y-1/2 z-10"
variant="ghost"
type="button"
onClick={() =>

setModal((m) => ({ ...m, contact: { ...m.contact, insert: true
}H)
>
<UserPlus className="h-1 w-1" />
</Button>
</div>
</div>

Luigi Matteo Girke 201 Maio 2025



Sistema de envio de SMS com interface web

)s

/components/contacts-list.tsx

"use client";

import { cn } from "@/lib/utils";

import { ScrollArea } from "@/components/ui/scroll-area";
import ProfilePic from "./profile-pic";

import type { DBContact } from "@/types/contact"”;

import { useIsMobile } from "@/hooks/use-mobile";

import { Button } from "./ui/button”;

type ContactListProps = {
contacts: DBContact[];
selectedContactId: string | null;
setSelected: (contact: DBContact) => void;

}s

export default function ContactsList({
contacts,
selectedContactId,
setSelected,
}: ContactListProps) {
const onMobile = useIsMobile();
return (
<ScrollArea
className={
onMobile
? “h-[calc(100vh-var(--simple-header-height)-68px)]"
: "h-[calc(1@0vh-var(--header-height)-68px)]"
}
>
<div className="flex flex-col gap-2 p-4 pt-0">
{contacts.map((contact) => (
<Button
key={contact.id}
variant="ghost"
className={cn(
"h-full flex items-center justify-start gap-2 rounded-lg bord
er p-3 text-left mt-[1px]",
selectedContactId === contact.id && "bg-accent"
)}
onClick={() => setSelected(contact)}
>
<ProfilePic name={contact.name} size={10} className="border" />
<div className="space-y-1">
<div className="font-semibold">{contact.name}</div>
<div className="text-xs font-medium">{contact.phone}</div>

Luigi Matteo Girke 202 Maio 2025



Sistema de envio de SMS com interface web

</div>
</Button>
)}
</div>
</ScrollArea>
)5
}

/components/403.tsx

"use client";

import React from "react";

import ErrorComponent from "./shared/error-component”;
import { useTranslation } from "react-il8next";

import Link from "next/link";

import { buttonVariants } from "./ui/button”;

export default function UnauthorizedPage() {
const { t } = useTranslation(["errors", "common"]);
return (
<ErrorComponent
title={t("403 error-header")}
subtitle={t("403 error-header_ caption")}

>
<Link href="/sent" className={buttonVariants({ variant:
>
{t("common:go_back")}
</Link>
</ErrorComponent>
)
}

/components/new-message-form.tsx

"use client";

./ui/separator";
./ui/textarea";

import { Separator } from
import { Textarea } from
import {

Check,

FileCheck,

Loader2,

Maximize2,

Minimize2,

Save,

Trash2,

X,

Luigi Matteo Girke 203

"default" })}

Maio 2025



‘ Sistema de envio de SMS com interface web

} from "lucide-react";
import SendButton from "./send-button";
import { capitalize, cn, toastActionResult } from "@/1lib/utils"”;
import { useTranslation } from "react-il8next";
import { PageHeader } from "./headers";
import { sendMessage } from "@/lib/actions/message.create";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/ui/tooltip”;

// Form
import { Button, buttonVvariants } from "@/components/ui/button”;
import { Input } from "@/components/ui/input"”;
import React, {
ChangeEvent,
useCallback,
useEffect,
useRef,
useState,
} from "react";

import RecipientsInput from "./recipients-input"”;
import { useNewMessage } from "@/contexts/use-new-message";
import { usePathname, useRouter, useSearchParams } from "next/navigation";
import {
Select,
SelectContent,
SelectItem,
SelectTrigger,
SelectValue,
} from "@/components/ui/select”;
import { toast } from "sonner";
import { NewRecipient } from "@/types/recipient”;

import { uselLayout } from "@/contexts/use-layout"”;

import type { DBMessage, Message } from "@/types"”;

import { ActionResponse } from "@/types/action"”;

import { deleteMessage, saveDraft } from "@/lib/actions/message.actions";
import useDebounce from "@/hooks/use-debounce";

import useIsMounted from "@/hooks/use-mounted";

import { format } from "date-fns";

import { useIsMobile } from "@/hooks/use-mobile";

import { EMPTY_MESSAGE, PT_DATE_FORMAT } from "@/global.config";

import { useModal } from "@/contexts/use-modal";

// apparently, when something gets revalidated or the url gets updated, thi
s component gets re-rendered, while the new-message-context keeps it's stat
e
const NewMessageForm = React.memo(function ({

message_id,

Luigi Matteo Girke 204 Maio 2025



Sistema de envio de SMS com interface web

b A
message_id?: DBMessage;
H A

const formRef = useRef<HTMLFormElement>(null);
const { t } = useTranslation(["new-message-page"]);
const router = useRouter();
const {

recipients,

setMessage,

message,

focusedInput,

setFocusedInput,

form,

setForm,

draft,

setDraft,
} = useNewMessage();
const { setModal } = useModal();
const [loading, setlLoading] = useState(false);
const { isFullscreen, setIsFullscreen } = uselayout();
const pathname = usePathname();
const onMobile = useIsMobile();

const isMounted = useIsMounted();

const debouncedSaveDraft = useDebounce(message, 2000);
const previousDraftRef = useRef(message);

const searchParams = useSearchParams();

// When the controlled inputs value changes, we update the state
const handleInputChange = (
e: ChangeEvent<HTMLInputElement | HTMLTextAreaElement>

) => {
const { name, value } = e.target;
setMessage((prev) => ({ ...prev, [name]: value }));
¥

const handleSubmit = async (e: React.FormEvent<HTMLFormElement>) => {
e.preventDefault();

// Smaller than (<) means it is in the past, while Larger than (>) mean
s in the future

if (
message.scheduledDateModified &&
message.scheduledDateConfirmed === false &&
message.scheduledDate.getTime() < Date.now()
) A

// Prevent the rest of the code of getting executed if the invalid da
te has not been confirmed yet.
return setModal((m) => ({ ...m, scheduleAlert: true }));

}

setLoading(true);

Luigi Matteo Girke 205 Maio 2025



‘ Sistema de envio de SMS com interface web

setMessage((m) => ({ ...m, scheduledDateConfirmed: false }));

const formData = new FormData(e.currentTarget);
const result = await sendMessage(draft.id, {
sender: /*formData.get("sender") as string */ "ETPZP",
recipients: recipients as NewRecipient[],
subject: formData.get("subject") as string,
body: formData.get("body") as string,
secondsUntilSend:
message.scheduledDate.getTime() > new Date().getTime()
? (Math.floor(
(message.scheduledDate.getTime() - Date.now()) / 1000
) as number)
: undefined,

1)

setLoading(false);

// Update the message context with the result errors, so that they can
be persisted between draft re-renders
setMessage((m) => ({
c..m,
serverStateErrors: result.errors,
invalidRecipients: result.invalidRecipients,

1);

if (result.success) {
// Message got sent successfully
if (result.sendDate) {
toast.success(
“${t(result.message[@0])} ${format(result.sendDate, PT_DATE_FORMAT

)
)
} else {
toastActionResult(result, t);
}
} else {
// Unable to send message due to an error:
// 1. Display input specific error messages
const zodErrors = result.errors || {};
let waitTime = 0;
const inBetweenTime = 300;
Object.entries(zodErrors).forEach(
([input, errorArray], index) =>
setTimeout(() => {
toast.error(capitalize(input), {
description: errorArray.map((error) => t(error)).join(", "),
3
waitTime += index * inBetweenTime;
}, index * inBetweenTime) // Increase delay by 56ms for each erro
r

)5

Luigi Matteo Girke 206 Maio 2025



‘ Sistema de envio de SMS com interface web

// 2. Display general error message
setTimeout(() => {
if (result.invalidRecipients) {
toast.error(
“${t(result.message)} ${result.invalidRecipients
.map((r) => r.phone)

.Join(", ")}
)
} else {
toastActionResult(result, t);
}
}, Object.entries(zodErrors).length * inBetweenTime);
}
if (result.clearfForm === true) {

// 3. Reset the form
setMessage (EMPTY_MESSAGE); // technically this isn't even needed
router.push("/new-message");

}
3

// When the user pressed discard at the bottom
const discardDraft = async () => {
if (draft.id) {
// Drafts should also be discarded (deleted) immediately
const result: ActionResponse<null> = await deleteMessage(draft.id);
toastActionResult(result, t);

}

// The navigation already re-fetches the amount indicators
router.push("/sent");

}s

function messageIsEmpty() {
return (
Imessage.body &&
Imessage.subject &&
Imessage.recipients.length &&
message.sender === "ETPZP"
)
}

// Draft saving logic
const handleSaveDraft = =
const save = async () {
if (
JSON.stringify(debouncedSaveDraft) !==
JSON.stringify(previousDraftRef.current)

() =>{
=>

) {
setDraft((prev) => ({ ...prev, pending: true }));
const { draftId } = await saveDraft(draft.id || undefined, message)

Luigi Matteo Girke 207 Maio 2025



‘ Sistema de envio de SMS com interface web

setDraft((prev) => ({ ...prev, pending: false }));

if (draftId) {
setDraft((prev) => ({
...prev,
id: draftId || null,
lastSaveSuccessful: true,
1)
// Updating the URL revalidates the server (including fetching am
ount 1indicators) and re-renders the component.
const params = new URLSearchParams(searchParams.toString());
params.set("message_id", draftId);
router.replace(pathname + "?" + params.toString());
} else {
setDraft((prev) => ({ ...prev, lastSaveSuccessful: false }));

}
}
}s

// Empty drafts should be deleted from db
const discard = async () => {
if (draft.id) {
await deleteMessage(draft.id);

// Updating the URL revalidates the server (including fetching amou
nt indicators) and re-renders the component.

const params = new URLSearchParams(searchParams.toString());

params.delete("message id");

router.replace(pathname + "?" + params.toString());

}
}s

if (messageIsEmpty()) {
// Delete the old draft
discard();
} else {
save();
}
}s
useEffect(() => {
if (!isMounted) return;
handleSaveDraft();
}, [debouncedSaveDraft]);
useEffect(() => {
// Reapply 1input focus state - sender focusing logic not needed as it 1
s a <Select>.
if (focusedInput) {
const inputElement = document.querySelector(
“[name="$%${focusedInput}"]"
) as HTMLElement;

Luigi Matteo Girke 208 Maio 2025



‘ Sistema de envio de SMS com interface web

// Move cursor to end of textarea to prevent default behavior of plac
ing it at the beginning.
if (inputElement) {

if (

focusedInput === "body" &&

inputElement instanceof HTMLTextAreaElement
)

// For textarea, set cursor at the end
inputElement.focus();
inputElement.setSelectionRange(
inputElement.value.length,
inputElement.value.length
)
} else {
inputElement.focus();
}
}

¥
}, [focusedInput]);

useEffect(() => {
if (formRef.current) {
setForm(formRef.current);
}
}, [formRef]);
useEffect(() => {
if (isMounted) {
setMessage((m) => ({ ...m, draft: { id: message _id?.id || null } }));

}, [isMounted]);
return (
<>
<PageHeader
title={
message.subject
? message.subject.length > (onMobile ? 22 : 60)
? message.subject.substring(@, (onMobile ? 22 : 60) - 3) + ".

: message.subject
: t("header")
}
>
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
type="button"
onClick={() => {
// We only disable it if the message is empty so we need mo
re checks here to prevent the user from clicking the button over and over
if (draft.pending || messageIsEmpty()) return; // not empty
and not pending means it 1is saved

Luigi Matteo Girke 209 Maio 2025



' o Sistema de envio de SMS com interface web

handleSaveDraft();
}}
// disabled={messageIsEmpty()}
>
{draft.pending ? (
<Loader2 className="animate-spin" />
) : messageIsEmpty() || !draft.lastSaveSuccessful ? (
// draft is pending either it is saved or not
// this comes first because we don't want to show the resul
t 1f message 1is empty
<Save className="w-4 h-4" />
)
<FileCheck className="h-4 w-4" />
)}
</Button>
</TooltipTrigger>
<TooltipContent>
{draft.pending
? t("draft_btn-saving")
: messageIsEmpty() || !draft.lastSaveSuccessful
? // draft is pending either it 1is saved or not
// this comes first because we don't want to show the resul
t 1f message 1is empty
t("draft_btn-save")
: t("draft_btn-saved")}
</TooltipContent>
</Tooltip>
{!onMobile && (
<>
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
onClick={() =>
setIsFullscreen((prevFullscreen) => !prevFullscreen)

}

>
{isFullscreen ? (
<Minimize2 className="h-4 w-4" />
) o (
<Maximize2 className="h-4 w-4" />

)}
</Button>

</TooltipTrigger>

<TooltipContent>{t("toggle fullscreen")}</TooltipContent>
</Tooltip>

<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
className={cn(

Luigi Matteo Girke 210 Maio 2025



o Sistema de envio de SMS com interface web

buttonVariants({ variant: "ghost" }),
"aspect-1 p-0"

)}

onClick={() => {
setIsFullscreen(false);
router.push("/sent");

}}
>

<X className="h-4 w-4" />
</Button>
</TooltipTrigger>
<TooltipContent>{t("common:close")}</TooltipContent>
</Tooltip>
</>
)}
</PageHeader>
<form
ref={formRef}
onSubmit={handleSubmit}
className="h-screen flex flex-col"

>
<div
className={cn(
"flex flex-col",
isFullscreen || onMobile
? "h-[calc(1@0vh-var(--simple-header-height))]"
: "h-[calc(1@@vh-var(--header-height))]"
)}
>
<div className="flex flex-col px-4 mt-2">
<div

className={cn(
"border-b focus-within:border-primary",
message.serverStateErrors?.sender && "border-red-500"

)}
>

<Select
name="sender"
defaultValue={/**message id?.sender |[| */ "ETPZP"}
onValueChange={(value) => {

setMessage((prev) => ({ ...prev, sender: value }));

}}
disabled

>

{/** It defaults to the first SelectItem */}
<SelectTrigger className="w-full rounded-none border-none s
hadow-none focus:ring-0 px-5 py-1 h-11">
<SelectValue placeholder="ETPZP" />
</SelectTrigger>
<SelectContent>
<SelectItem value="ETPZP">ETPZP</SelectItem>
<SelectItem value="Test">Test</SelectItem>
</SelectContent>

Luigi Matteo Girke 211 Maio 2025



Sistema de envio de SMS com interface web

</Select>
</div>

<RecipientsInput
// Instead of a Zod error, we receive an invalid recipients a
rray for recipient errors.
error={!!message.invalidRecipients?.length}
onFocus={() => setFocusedInput("new-recipient”)}
onBlur={() => setFocusedInput(null)}

/>

<Input
name="subject"
placeholder={t("subject placeholder")}
className={cn(
"new-message-input focus-visible:ring-0 placeholder:text-mu
ted-foreground border-b focus:border-primary"
)}
onChange={handleInputChange}
value={message?.subject || EMPTY_MESSAGE.subject}
onFocus={() => setFocusedInput("subject")}
onBlur={() => setFocusedInput(null)}
/>
</div>
<div className="px-4 flex-grow mt-[1.25rem] mb-2">
<Textarea
name="body"
className={cn(
"border-none rounded-none h-full p-0 focus-visible:ring-0 s
hadow-none resize-none placeholder:text-muted-foreground”,
message.serverStateErrors?.body &&
"ring-red-500 placeholder:text-red-400 dark:placeholder:t
ext-red-400"
)}
placeholder={
message.serverStateErrors?.body
? t(message.serverStateErrors?.body[0])
: t("body placeholder")
}
onChange={handleInputChange}
value={message?.body || EMPTY_MESSAGE.body}
onFocus={() => setFocusedInput("body")}
onBlur={() => setFocusedInput(null)}
/>
</div>

<Separator />
<div className="flex px-4 py-2 justify-end gap-2">
<Button
variant="secondary"
type="button"
className="w-max"
onClick={discardDraft}

Luigi Matteo Girke 212 Maio 2025



>

Sistema de envio de SMS com interface web

<Trash2 className="h-4 w-4" />
<span className="hidden xs:inline">{t("discard")}</span>

</Button>

<SendButton loading={loading} />

</div>
</div>
</form>
{/* <UnloadlListener /> */}
</>
)5
})s

export default NewMessageForm;

/components/headers.tsx

"use client";

import { Separator } from "@/components/ui/separator";
import { useIsMobile } from "@/hooks/use-mobile";
import { ArrowLeft, Menu } from "lucide-react";

import { Button, buttonvariants } from "./ui/button”;
import { uselLayout } from "@/contexts/use-layout";
import Link from "next/link";

import
import
import
import
import

{ cn } from "@/lib/utils";
Account from "./shared/account";

type PageHeaderProps = {
title?: string;
skeleton?: boolean;
marginRight?: boolean;
className?: string;
children?: React.ReactNode;

}s

export function PageHeader({
title,
skeleton,
marginRight =
className,
children,

}: PageHeaderProps) {
const onMobile = useIsMobile();
const pathname = usePathname();

true,

Luigi Matteo Girke

213

Skeleton from "react-loading-skeleton";

{ usePathname } from "next/navigation";
{ useTranslation } from "react-il8next";

Maio 2025



‘ Sistema de envio de SMS com interface web

return (
<>
<div
className={cn(
"flex items-center gap-2 px-4 h-[var(--simple-header-height)]",
title && "border-b",
className
)}
>
<div className="shrink flex items-center min-w-min whitespace-nowra
p">
{onMobile &&
(pathname.includes("/dashboard") ? (
<Link
href="/"
className={buttonVariants({ variant: "ghost", size: "icon"

198

>

<ArrowLeft className="w-4 h-4" />
</Link>
2 (

)
<MobileHamburgerButton className="mr-2" />

)}
{skeleton ? (

<Skeleton
// Consider to set this to 158 later which is the width of "N
ew Message™ title
width=""
height={28}
containerClassName="mr-auto w-[30%]"

- (
<h2 className={marginRight ? "mr-auto" : ""}>{title}</h2>

/>
) .

)}

</div>

<div className="grow flex items-center gap-2 justify-end">
{children}
{onMobile && <Account profilePicPosition="RIGHT" hideNameRole />}

</div>

</div>
</>
)
}

type SectionHeaderProps = {
title: string;
subtitle: string;
children?: React.ReactNode;
anchorName: string;

}s

export function SectionHeader({
title,
subtitle,

Luigi Matteo Girke 214 Maio 2025



Sistema de envio de SMS com interface web

children,
anchorName,
}: SectionHeaderProps) {
return (
<div>
<Link href={ #${anchorName} } className="mr-auto">
<h3 id={anchorName}>{title}</h3>
</Link>
<p className="subtitle">{subtitle}</p>
<Separator className="mt-5 mb-3 lg:max-w-2x1" />
<div className="space-y-5 px-5">{children}</div>
</div>
)
}

export function MobileHamburgerButton({ className }: { className: string })
{
const { setMobileNavPanel } = uselayout();
return (
<Button
variant="ghost"
size="icon"
className={cn("md:hidden", className)}
type="button"
onClick={() => setMobileNavPanel(true)}

<Menu className="h-5 w-5" />
<span className="sr-only">Toggle mobile menu</span>
</Button>
)
}

/components/messages-page.tsx

"use client";

import { DBMessage, CategoryEnums } from "@/types";
import React, { useEffect, useState } from "react";
import ChildrenPanel from "./shared/children-panel”;

import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { uselLayout } from "@/contexts/use-layout";

import { PageHeader } from "./headers";

import { useTranslation } from "react-il8next";

import { Messagelist } from "./messages-list";

import { cn, searchMessages } from "@/lib/utils";
import MessageDisplay from "./message-display";
import { useIsMobile } from "@/hooks/use-mobile";
import Search from "./shared/search"”;

import { useSearchParams } from "next/navigation";

Luigi Matteo Girke 215 Maio 2025



Sistema de envio de SMS com interface web

import useIsMounted from "@/hooks/use-mounted";
import { ModalProvider } from "@/contexts/use-modal";

export default function MessagesPage({
messages,
error,
category,
}: Readonly<{
messages: DBMessage[];
error: boolean;
category: CategoryEnums;
) Ao
const { layout, fallbackLayout } = uselLayout();
const { t } = useTranslation(["messages-page", "common"]); // and more
const [filteredMessages, setFilteredMessages] = useState(messages);
const [selected, setSelected] = useState<DBMessage | null>(
filteredMessages[@] || null
)5
const isMounted = useIsMounted();
const [isLarge, setIslLarge] = useState({
bool: window.matchMedia("(min-width: 1024px)").matches,
breakpoint: window.matchMedia(" (min-width: 1024px)").matches ? 29 : 44,
3
const onMobile = uselIsMobile();
const searchParams = useSearchParams();
const query = searchParams.get("query") || "";
const currentPage = Number(searchParams.get("page")) || 1;

// Update ui based on search term
const onSearch = (searchTerm: string) => {
setFilteredMessages(searchMessages(messages, searchTerm, currentPage));

}s

useEffect(() => {
// Filter the messages with URLsearchParams on page load
setFilteredMessages(searchMessages(messages, query, currentPage));
if (selected && messages.some((msg) => msg.id === selected.id)) {
// Keep the current selection
setSelected(selected);
} else {
// If the selected message 1s not in the new messages, set it to null
or handle accordingly
setSelected(messages[@] || null);
}

}, [messages]);

useEffect(() => {
if (isMounted && onMobile) {
// On mobile, it should show the Llist by default without having the f
irst one selected Like on desktop.
setSelected(null);

}

Luigi Matteo Girke 216 Maio 2025



- R Sistema de envio de SMS com interface web

}, [isMounted]);

return (
<>
<ResizablePanel

className={cn(onMobile && selected !== null && "hidden")} // If we
are on mobile and a message is selected we only want to show the column con
taining the selected message.

// Check if the Llayout is a 3-column middle-bar panel. Use the prev
ious 3-column Layout 1if available; otherwise, render the fallback for diffe
rent or undefined Layouts.

defaultSize={

Array.isArray(layout) && layout.length === 3
? layout[1]
: fallbacklLayout[1]

}

minSize={22}

maxSize={50}

<PageHeader title={t( header_${category.toLowerCase()} )} />
<Search
onSearch={onSearch}
placeholder={t( search_${category.toLowerCase()} )}
className="pl-8 placeholder:text-muted-foreground border"

/>

{filteredMessages.length > @ ? (
<Messagelist
messages={filteredMessages}
selectedMessageId={selected?.id || null}
setSelected={setSelected}

/>
) (
<div className="p-8 text-center text-muted-foreground">
{error || t("none found")}
</div>
)}
</ResizablePanel>

<ResizableHandle withHandle className={cn(onMobile && "hidden")} />

<ChildrenPanel
hasMiddleBar
// reverse lLogic Like above: on mobile and with nothing selected, t
his component should be hidden.
className={cn(onMobile && selected === null && "hidden")}
>
{/* If you need other modals somewhere else, move the provider up t
he component tree. And don't forget to update the skeleton too! */}
<ModalProvider>
<MessageDisplay
message={selected}
reset={() => setSelected(null)}
category={category}

Luigi Matteo Girke 217 Maio 2025



Sistema de envio de SMS com interface web

/>
</ModalProvider>
</ChildrenPanel>
</>
)5
}

/components/nav-1links.tsx

"use client";

import Link from "next/link";
import { LucideIcon } from "lucide-react";
import { cn } from "@/lib/utils";
import { Button, buttonVariants } from "@/components/ui/button";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/ui/tooltip”;
import { usePathname } from "next/navigation";
import { useSettings } from "@/contexts/use-settings";
import { useTranslation } from "react-il8next";

type NavLink = {
title: string;
label?: string;
icon: LucideIcon;
href?: string;
action?: () => void;
variant: "default" | "ghost";
size?: "sm" | "md" | "x1";
hidden?: boolean;
isNewButton?: boolean;

¥

type NavProps = {
isCollapsed: boolean;
links: NavLink[];
onMobile?: boolean;

}s

export default function NavLinks({ links, isCollapsed, onMobile }: NavProps
) {

const pathname = usePathname();

const { i18n } = useTranslation();

const { normalizePath } = useSettings();

const activeStyles =
"bg-accent text-primary-accent hover:bg-accent hover:text-accent-foregr
ound";

Luigi Matteo Girke 218 Maio 2025



' o Sistema de envio de SMS com interface web

// 1sActive takes Link, compares it to the current url, and returns wheth
er 1t is the same Link we are on or not.
const isActive = (href: string, isNewButton: boolean | undefined) => {
return !isNewButton && normalizePath(href) === normalizePath(pathname);
}s
return (
<div
data-collapsed={isCollapsed}
className={cn(
“group flex flex-col gap-4 py-2 data-[collapsed=true]:py-2°,
onMobile && "w-[250px]"
)}
>
<nav className="grid gap-1 px-2 group-[data-collapsed=true](data-coll
apsed=true):justify-center group-[data-collapsed=true](data-collapsed=true)
(px-2">
{links.map((link, index) => {
const desktopItemClassName = cn(
buttonVariants({
variant: link.variant,
size: link.isNewButton ? "lg"
3
"w-full justify-start”,
link.href && isActive(link.href, link.isNewButton) && activeSty

sm",

les,
link.isNewButton && "justify-center",
link.hidden === true && "hidden"
)
return isCollapsed ? ( // NavPanel is collapsed = render with too
Ltips

<Tooltip key={index} delayDuration={0}>
<TooltipTrigger
className={cn(
buttonVariants({ variant: link.variant, size: "icon" }),
link.isNewButton && "mb-3",
"h-9 w-9",
link.href &&
isActive(link.href, link.isNewButton) &&
activeStyles,
link.hidden === true && "hidden"
)}
asChild
>
{link.href ? (
<Link href={link.href}>
<link.icon className="h-4 w-4" />
<span className="sr-only">{link.title}</span>
</Link>
s (
<Button onClick={link.action} variant="none">
<link.icon className="h-4 w-4" />

)

Luigi Matteo Girke 219 Maio 2025



' o Sistema de envio de SMS com interface web

<span className="sr-only">{link.title}</span>
</Button>
)}
</TooltipTrigger>
<TooltipContent side="right" className="flex items-center gap
-4">
{link.title}
{link.label && (
<span className="ml-auto text-muted-foreground">
{link.label}
</span>
)}
</TooltipContent>
</Tooltip>
s (

// NavPanel 1is not collapsed = render Links normally without to

)

oltips
<div key={index}>
{link.href ? (
<Link href={link.href} className={desktopItemClassName}>
{!link.isNewButton && <link.icon className="mr-2 h-4 w-4"
/>}
{link.title}
{link.label && (
<span
className={cn(
"ml-auto”,
link.variant === "default" &&
"text-background dark:text-white"
)}
>
{link.label}
</span>
)}
</Link>
s (
<Button
onClick={link.action}
variant="none"
className={desktopItemClassName}

)

{!link.isNewButton && <link.icon className="mr-2 h-4 w-4"
/>}
{link.title}
{link.label && (
<span
className={cn(
"ml-auto”,
link.variant === "default" &&
"text-background dark:text-white"
)}

>
{link.label}

Luigi Matteo Girke 220 Maio 2025



‘ Sistema de envio de SMS com interface web

</span>
)}
</Button>
)}
</div>
)5
1}
</nav>
</div>

)s
}

/components/example-client.tsx

"use client";
import { useTranslation } from "react-il8next"; // the client side function
for translations from “react”

export default function Greeting() {
const { t } = useTranslation(["Common"]);

// in this case I used username variable interpolation, so pass that as w
ell
const name = "Peter Fox";
return <div>{t("welcome", { name })}
<h2>test: {t("admin_dashboard")}
</h2></div>;

/components/message-display.tsx

"use client";

import styles from "@/app/scattered-profiles.module.css";
import { format } from "date-fns/format";
import {

AlertTriangle,

ArchiveRestore,

ArrowlLeft,

ChevronDown,

Edit,

MessageCircleX,

Send,

Trash2,

X,
} from "lucide-react";
import { Button } from "@/components/ui/button”;
import { Separator } from "@/components/ui/separator";

Luigi Matteo Girke 221 Maio 2025



Sistema de envio de SMS com interface web

import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/ui/tooltip”;
import { CategoryEnums, DBMessage } from "@/types";
import { useIsMobile } from "@/hooks/use-mobile";
import { cn, shuffleArray, toastActionResult } from "@/lib/utils";
import {
cancelCurrentlyScheduled,
deleteMessage,
saveDraft,
toggleTrash,
} from "@/lib/actions/message.actions”;
import { toast } from "sonner";
import { ActionResponse } from "@/types/action";
import { usePathname, useRouter } from "next/navigation"”;
import ProfilePic from "./profile-pic";

import { DBRecipient, NewRecipient } from "@/types/recipient”;
import { useTranslation } from "react-il8next";

import { PT_DATE_FORMAT } from "@/global.config";

import { useContacts } from "@/contexts/use-contacts";

import { PROFILE_COLOR_CSS NAMES } from "@/lib/theme.colors";

import React, { useEffect, useMemo, useState } from "react";
import { useModal } from "@/contexts/use-modal";

import RecipientInfoModal from "./modals/recipient-info";
import { ScrollArea } from "./ui/scroll-area";

function MessageDisplay({
message,
category,
reset,
b A
message: DBMessage | null;
category?: CategoryEnums;
reset: () => void;
H A
const today = new Date();
const onMobile = uselIsMobile();
const router = useRouter();
const { t } = useTranslation(["messages-page"]);
const pathname = usePathname();
const [moreInfoRecipient, setMoreInfoRecipient] =
useState<NewRecipient | null>(null);
const { setModal } = useModal();

const [recipientsExpanded, setRecipientsExpanded] = useState(false);
const { contacts, contactFetchError } = useContacts();
// State to store random colors for each item
const [profileColors, setProfileColors] = useState<string[]>([]);
const showInfoAbout = (recipient: NewRecipient) => {
setMoreInfoRecipient(recipient);
setModal((m) => ({ ...m, contact: { ...m.contact, info: true } }));

Luigi Matteo Girke 222 Maio 2025



‘ Sistema de envio de SMS com interface web

3

const handleTrashButtonClick = async () => {
if (message) {
let result: ActionResponse<null>;

// Drafts should also be discarded (deleted) immediately
if (message.in trash || message.status === "DRAFTED") {
result = await deleteMessage(message.id, pathname);

} else {
result = await toggleTrash(message.id, true);
}

toastActionResult(result, t);

}
}s

const resend = async () => {
if (message) {
const newDraft = await saveDraft(undefined, {
sender: message.sender,
subject: message.subject || undefined,
body: message.body,
// convert DBRecipient to NewRecipient
recipients: message.recipients.map((r) => ({
phone: r.phone,
// This is a temporary solution. Maybe change the type Later to n
ot be NewRecipient[]
isvValid: true,
proneForDeletion: false,
1),
3

if (newDraft.draftId) {
router.push(” /new-message?message_id=${newDraft.draftId} );
}

}
}s
const retry = () => {
if (message) {
router.push(” /new-message?message_id=${message.id} );
}
}s

const putBack = async () => {
if (message) {
const result = await toggleTrash(message.id, false);

toastActionResult(result, t);

}
}s

Luigi Matteo Girke 223 Maio 2025



Sistema de envio de SMS com interface web

const cancelSend = async () => {
if (message) {
const smsReferenceld = parselnt(message.sms_reference id);

if (smsReferenceld && !isNaN(smsReferenceld)) {
const result = await cancelCurrentlyScheduled(smsReferenceld);

toastActionResult(result, t);
} else {

toast.error(t("messages-page:server-cancel_scheduled_invalid_id"));
}

}
}s

const initialColors = PROFILE COLOR_CSS NAMES;

let colors = [...initialColors]; // Create a copy of the array by spreadi
ng it.

useEffect(() => {
if (message) {
shuffleArray(colors);

setProfileColors(

message.recipients.map((recipient, index) => {

// Create a stable color for each item by using the index or item
(in case the order doesn't change)

if (colors.length === 0) {
// ALL items have been used
// Reset the array using the initial array and reshuffle

colors = [...initialColors]; // Reset array to original values
shuffleArray(colors); // Shuffle the reset array
}

// Pick and remove the first item from the shuffled colors
return colors.pop() as string;

)
)5
}

}, [message]);

return (
<div className={cn("flex h-full flex-col")}>
{moreInfoRecipient && (
<RecipientInfoModal
recipient={moreInfoRecipient}
allowContactCreation={false}
/>
)}
{/* Begin top bar with action buttons */}

<div className="flex items-center p-2 h-[var(--simple-header-height)]
border-b">

<div className="flex items-center gap-2">
{onMobile && (

Luigi Matteo Girke 224 Maio 2025



‘ Sistema de envio de SMS com interface web

<Tooltip>
<TooltipTrigger asChild>
<Button variant="ghost" size="icon" onClick={() => reset()}

>
<ArrowLeft className="h-4 w-4" />
<span className="sr-only">{t("common:go_back")}</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("common:go_back")}</TooltipContent>
</Tooltip>
)}
{/* Move message to trash or delete it */}
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
disabled={!message}
onClick={handleTrashButtonClick}
>
<Trash2 className="h-4 w-4" />
<span className="sr-only">
{message?.in trash || message?.status === "DRAFTED"
? t("common:delete permanently")
: t("common:move to_trash")}
</span>
</Button>
</TooltipTrigger>
<TooltipContent>
{message?.in trash || message?.status === "DRAFTED"
? t("common:delete permanently")
: t("common:move to trash")}
</TooltipContent>
</Tooltip>
{/* Cancel the sending of a scheduled message */}
{category === "SCHEDULED" && (
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
disabled={!message}
onClick={cancelSend}
>
<MessageCircleX className="w-4 h-4" />
<span className="sr-only">{t("btn-cancel_scheduled")}</sp
an>
</Button>
</TooltipTrigger>
<TooltipContent>{t("btn-cancel scheduled")}</TooltipContent>
</Tooltip>

Luigi Matteo Girke 225 Maio 2025



‘ Sistema de envio de SMS com interface web

)}

{/* Put back / restore trashed message */}
{category === "TRASH" && (
<Tooltip>
<TooltipTrigger asChild>
<Button

variant="ghost"
size="icon"
disabled={!message}
onClick={putBack}

<ArchiveRestore className="w-4 h-4" />
<span className="sr-only">{t("btn-restore")}</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("btn-restore")}</TooltipContent>
</Tooltip>

)}

{/* Reply to all recipients in the message */}
{category !== "DRAFTS" && category !== "FAILED" && (
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
onClick={resend}
disabled={!message}

<Send className="h-4 w-4" />
<span className="sr-only">{t("btn-resend")}</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("btn-resend")}</TooltipContent>
</Tooltip>
)}
{/* On Failed page we want a retry button */}
{category === "FAILED" && (
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
onClick={retry}
disabled={!message}

<Send className="h-4 w-4" />
<span className="sr-only">{t("btn-retry")}</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("btn-retry")}</TooltipContent>
</Tooltip>

Luigi Matteo Girke 226 Maio 2025



' o Sistema de envio de SMS com interface web

)}

{/* Reply to all recipients in the message */}
{category === "DRAFTS" && (
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
onClick={() =>
message
? router.push(’ /new-message?message_id=${message.id}"

}

disabled={!message}

<Edit className="h-4 w-4" />
<span className="sr-only">{t("btn-continue_draft")}</span

</Button>
</TooltipTrigger>
<TooltipContent>{t("btn-continue draft")}</TooltipContent>
</Tooltip>
)}
</div>
<div className="ml-auto flex items-center gap-2">
{/* Close (deselect) the selected message */}
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
onClick={() => reset()}
disabled={!message}

<X className="h-4 w-4" />
<span className="sr-only">{t("common:close")}</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("common:close")}</TooltipContent>
</Tooltip>
</div>
</div>
{/* End top bar */}
{/* <Separator /> */}
{/* Begin message content */}
<ScrollArea>
<div
className={
onMobile
? “h-[calc(100vh-var(--simple-header-height))]"
: "h-[calc(10@vh-var(--header-height))]"

Luigi Matteo Girke 227 Maio 2025



' e Sistema de envio de SMS com interface web

}

<div className="flex flex-col h-full">
{message ? (
<div className="grow flex flex-col">
<div className="flex justify-between p-4">
<div className="flex gap-4 text-sm w-full">
<div className="flex relative min-w-[50px] min-h-[50px]
h-[50px]">
{message.recipients.map(
(recipient: DBRecipient, index) => {
if (index >= 5) return; // Max recipients reached
; remaining will be shown as a single picture with count

let foundContactName: string | undefined = undefi
ned;

foundContactName = contacts.find(
(contact) => contact.phone === recipient.phone
)?.name;

if (index == 4) {
// the fifth recipient should be the number of
missing recipients
const missingRecipients =
message.recipients.length - index;
if (missingRecipients > 1) {
// 1f there are many missing recipients,
foundContactName = "+ ${missingRecipients} ;
}
}

return (
<ProfilePic
key={index}
// size={10}
name={foundContactName}
className={cn(
styles["profile-absolute"],
index === 0 &&
cn("center-absolute”, styles["profile-big

D

index === 1 && styles["profile-top-left"],
index === 2 && styles["profile-bottom-left"
1
index === 3 && styles["profile-top-right"],
index === 4 && styles["profile-bottom-right
"]
)}

// The dynamically generated class “bg-${chos
enColor}™ won't work because Tailwind purges unused classes in production,
and it doesn't recognize dynamically created class names.

Luigi Matteo Girke 228 Maio 2025



' o Sistema de envio de SMS com interface web

style={{
// Only show color for saved contacts
backgroundColor: foundContactName
? profileColors[index]

un
J

}}
/>
)
}
)}
</div>
<div className="flex flex-col gap-1 grow overflow-hidde
n">
<div className="flex justify-between items-center rel
ative">

<span className="font-semibold ellipsis">
{message.subject || t("no_subject")}
</span>
{message.send _time && (
<span
className="text-xs text-muted-foreground relati
ve whitespace-nowrap"
style={{ top: "1px" }}
>
{format(
new Date(message.send_time),
PT_DATE_FORMAT
)}
</span>
)}
<Button
onClick={() =>
setRecipientsExpanded(
(prevExpanded) => !prevExpanded
)

}

variant="none"
className="p-0 pl-1 h-min absolute right-0 bottom
-[-20px] bg-background z-10 rounded-none"
>
<ChevronDown
className={cn(
"duration-200",
IrecipientsExpanded && "rotate-90"
)}
/>
</Button>
</div>
<div className={cn("flex text-xs gap-1 relative")}>
{!recipientsExpanded && (
<div
// Have a div cover the recipients so that the
user has to expand the recipients first to be able to view more info

Luigi Matteo Girke 229 Maio 2025



‘ Sistema de envio de SMS com interface web

className="container-overlay"
onClick={() => setRecipientsExpanded(true)}
/>
)}
<div
className={cn(
"flex gap-1",
recipientsExpanded ? "flex-wrap mr-5" : ""

)}

>

<div className="font-medium">{t("common:to")}:</d
iv>

{message.recipients.map(
(recipientWithoutContact, index) => {
const recipient: NewRecipient = {
...recipientWithoutContact,
contact: contacts.find(
(contact) =»>

contact.phone ===

recipientWithoutContact.phone
)

// This is a temporary solution. Maybe chan
ge the type Llater to not be NewRecipient[]

isValid: true,
proneForDeletion: false,

}s
return (
<div key={recipient.phone} className="flex"
>
<Button
variant="none"
onClick={() => showInfoAbout(recipient)
}

className="whitespace-nowrap p-0 text-x
s h-min hover:bg-muted px-[2px]"

>
{recipient.contact?.name || recipient.p
hone}
</Button>
{index < message.recipients.length - 1 &&
")
</div>
)
}
)}
</div>
</div>
</div>
</div>
</div>

<Separator />

Luigi Matteo Girke 230 Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

<div className="flex-1 whitespace-pre-wrap p-4 text-sm">
{message.body}

</div>

</div>

©(

<div className="p-8 text-center text-muted-foreground">
{t("none_selected")}

</div>

)}

)

{message && message.status === "FAILED" && (
<>
<Separator className="" />

<div className="flex w-full p-4 gap-2">
<AlertTriangle className="relative top-2 text-destructive
min-w-6 min-h-6" />
<div className="flex flex-col gap-2">
<p className="text-destructive text-sm font-semibold ">
{t( api_error_${message.api error_code} )}
</p>
<pre className="max-w-max whitespace-pre-wrap break-wor
ds bg-muted border p-2 rounded-lg text-xs"»>
{message.api_error_details json
? JSON.stringify(
JSON.parse(message.api_error_details json),

null,
2
)
: t("no_json_available")}
</pre>
</div>
</div>

{/* <p className="text-muted-foreground text-sm mb-4">
{t("api_error_caption")}
</p> */}
</>

)}

{/* You can remove the message check if you want to, I Like it
better that this bottom bar only shows up on selection */}
{message && message.status === "DRAFTED" ? (
<>
<Separator className="mt-auto" />
<div className="flex px-4 py-2 justify-end gap-2">
<Button
variant="default"
type="button"
className="w-max"
disabled={!message}
onClick={() =>

Luigi Matteo Girke 231 Maio 2025



Sistema de envio de SMS com interface web

message
? router.push(’ /new-message?’message id=${message.id
1)
}
>
<Edit className="h-4 w-4" />
{t("btn-continue_draft")}
</Button>
</div>
</>
) .:...(
)}
</div>
</div>
</ScrollArea>
</div>
)5
}

export default React.memo(MessageDisplay);

/components/settings-item.tsx

"use client";

import { Input } from "@/components/ui/input";
import { updateSetting } from "@/lib/actions/user.actions";
import { cn } from "@/lib/utils";
import React, { SetStateAction } from "react";
import {
useState,
useTransition,
type FormEvent,
type InputHTMLAttributes,
useEffect,
} from "react";
import type { UpdateSettingResponse } from "@/types/action";
import { useSettings } from "@/contexts/use-settings";

export type RenderInputArgs = {
value: string;
onChange: (newValue: string) => void;
onBlur: (e?: FormEvent<Element>, submittedValue?: string) => void;
id: string;
initialValue?: string;
className?: string;
isPending: boolean;
setServerState?: React.Dispatch<SetStateAction<UpdateSettingResponse>>;

}s

Luigi Matteo Girke 232 Maio 2025



Sistema de envio de SMS com interface web

type SettingsItemProps = InputHTMLAttributes<HTMLInputElement> & {
name: string;
initialValue?: string;
label?: string;
caption?: string;
inputType?: string;
renderInput?: (props: RenderInputArgs) => React.ReactNode;
onUpdate?: (newValue: string) => void;

}s

const initialState: UpdateSettingResponse = {
success: false,

input: s

}s

export function SettingsItem({
name,
initialvalue = "",
label,
caption,
inputType = "text",
renderInput,
onUpdate,
...1inputProps
}: SettingsItemProps) {
const [value, setValue] = useState<string>(initialValue);
const [isPending, setIsPending] = useState<boolean>(false);
const [serverState, setServerState] = useState(initialState);
const { setSettings } = useSettings();

async function handleSubmit(e?: FormEvent, submittedValue?: string) {
if (e) e.preventDefault();
setIsPending(true);

const formData = new FormData();
formData.append("name", name);
formData.append(“value", submittedvalue || value);

const result = await updateSetting(formData);
setServerState(result);
if (onUpdate) onUpdate(value);

// these are currently the settings that we store in localstorage as we
LL as state
const stateSettingNames = [
"display_name",
"profile color_id",
"appearance_layout",
1;
if (stateSettingNames.includes(name)) {
// 1. Update localstorage itself

Luigi Matteo Girke 233 Maio 2025



Sistema de envio de SMS com interface web

localStorage.setItem(name, result.data || initialValue);

// 2. Update state since LlocalStorage changes don't trigger re-render

s.
setSettings((prev) => ({
displayName: name === "display name" ? result.data : prev.displayNa
me,
profileColorlId:
name === "profile color_id" ? result.data : prev.profileColorld,
layout: name === "appearance_layout" ? result.data : prev.layout,
1)
setIsPending(false);

}

const handleChange = (newValue: string) => {
setValue(newValue);

1

const defaultInput = (
<Input
id={name}
type={inputType}
value={value}
onChange={(e) => handleChange(e.target.value)}
onBlur={(e?: any, v?: any) => handleSubmit(e, v)}
className="w-max"
disabled={isPending}
{...inputProps}
/>
)

const inputElement = renderInput
? renderInput({

value,
onChange: handleChange,
onBlur: (e, submittedValue) => handleSubmit(e, submittedValue),
id: name,
initialVvalue,
isPending,
setServerState,

})
: defaultInput;

return (
<form
onSubmit={handleSubmit}
style={{ marginBottom: "lrem" }}
className="space-y-2 flex flex-col"
>
<label
className="text-sm font-medium leading-none peer-disabled:cursor-no

Luigi Matteo Girke 234 Maio 2025



Sistema de envio de SMS com interface web

t-allowed peer-disabled:opacity-70"

htmlFor={name}
>

{(isPending && "Saving...") || label || name}
</label>
{inputElement}
<p

className={cn(

"text-[0.8rem] order-1",

serverState.error ? "text-destructive" : "text-muted-foreground"
)}
>
{serverState.error || caption}
</p>
</form>

);
}

export default SettingsItem;

/components/nav-panel.tsx

"use client";

import { useCallback, useEffect, useState } from "react"”;
import {
Sheet,
SheetContent,
SheetTitle,
SheetTrigger,
} from "@/components/ui/sheet";
import { Button, buttonVariants } from "@/components/ui/button";
import {
AlertTriangle,
Calendar,
LogOut,
Menu,
UserRoundPen,
} from "lucide-react"”;
import {
MonitorCog,
Settings,
Trash2,
Contact2,
Pencil,
MailCheck,
FileText,
} from "lucide-react"”;
import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { cn } from "@/lib/utils";

Luigi Matteo Girke 235 Maio 2025



Sistema de envio de SMS com interface web

import { Separator } from "./ui/separator";
import NavLinks from "./nav-links";

import { useTranslation } from "react-il8next";
import { uselLayout } from "@/contexts/use-layout"”;
import { ScrollArea } from "./ui/scroll-area";
import { useIsMobile } from "@/hooks/use-mobile";
import { usePathname, useRouter } from "next/navigation";
import { useSession } from "@/hooks/use-session"”;
import { logout } from "@/lib/auth";
import {

AlertDialog,

AlertDialogAction,

AlertDialogCancel,

AlertDialogContent,

AlertDialogbescription,

AlertDialogFooter,

AlertDialogHeader,

AlertDialogTitle,

AlertDialogTrigger,

} from "@/components/ui/alert-dialog";
import { useSettings } from "@/contexts/use-settings";
import Account from "./shared/account";
import AppLogo from "./logo";
export default function NavPanel() {

const { layout, isCollapsed, setIsCollapsed, fallbackLayout, isFullscreen
}:

uselLayout();

// In case we need to check for large screens

let isExtralargeScreen = window.innerWidth >= 1200;

// the nav panel 1is a bit bigger than that, but the elements inside keep
it at its minimum size

const COLLAPSED_SIZE = 2;

const hidePanelClassName =
((isFullscreen || useIsMobile()) && "hidden") || undefined;
return (
<>
<ResizablePanel
className={cn(
isCollapsed && "min-w-[50px] transition-all duration-300 ease-in-
out”,
hidePanelClassName
)}
defaultSize={layout ? layout[@] : fallbackLayout[@]}
collapsedSize={COLLAPSED_SIZE}
collapsible={true}
minSize={13}
maxSize={35}
onCollapse={() => {
setIsCollapsed(true);
const cookieValue = JSON.stringify(true);

const cookiePath = "/";

Luigi Matteo Girke 236 Maio 2025



‘ Sistema de envio de SMS com interface web

document.cookie = “react-resizable-panels:collapsed=${cookieValue
}; path=${cookiePath}; ;
}}
onResize={() => {
setIsCollapsed(false);
const cookieValue = JSON.stringify(false);

const cookiePath = "/";
document.cookie = “react-resizable-panels:collapsed=${cookieValue
}; path=${cookiePath}; ;
}}
>
<NavPanelContent isCollapsed={isCollapsed} />
</ResizablePanel>
<ResizableHandle withHandle className={hidePanelClassName} />
</>

)s
}

export function MobileNavPanel() {
const { mobileNavPanel, setMobileNavPanel } = uselayout();
const router = useRouter();
const { t } = useTranslation(["navigation"]);

useEffect(() => {
setMobileNavPanel(false);
}, [router]);

// add a click event Listener to the nav element
const handleNavClick = useCallback((event: React.MouseEvent<HTMLElement>)
=>{
const target = event.target as HTMLElement;
// when user clicks inside of this NavPanel, we check if the element cl
icked is a <Link> and close the NavPanel. This is so that we can have the n
ice closing animation

if (target.tagName === "A" || target.closest("a")) {
setMobileNavPanel(false);
}
Y, [
return (
<Sheet

open={mobileNavPanel}
onOpenChange={setMobileNavPanel}
/* You can change the animation duration inside the shadCn component
(easiest way) */
>
<SheetContent side="1left" className="w-[300px] p-0">
<SheetTitle className="sr-only">{t("sr_only-nav_menu")}</SheetTitle

<nav onClick={handleNavClick}>

<NavPanelContent
isCollapsed={false} // on mobile it will never be collapsed

Luigi Matteo Girke 237 Maio 2025



Sistema de envio de SMS com interface web

/>
</nav>
</SheetContent>
</Sheet>
)5
}

// We have to data sources for the user's profile:
// 1. Sensitive information 1is extracted from the encrypted session
// 2. Stuff that can be changed in the settings is encrypted from Localstor
age
function NavPanelContent({ isCollapsed }: { isCollapsed: boolean }) {
const { t, i18n } = useTranslation(["navigation", "modals", "common"]);
const { amountIndicators } = uselayout();
const router = useRouter();
const { session, loading } = useSession();
const { settings, resetlLocalSettings } = useSettings();
const onMobile = useIsMobile();

const [confirmLogoutOpen, setConfirmLogoutOpen] = useState(false);
const showAlertDialog = () => {

// show the alert dialog

setConfirmLogoutOpen(true);

}s

const handlelLogout = async () => {
const { success } = await logout();
if (success) {
resetlLocalSettings();
router.push("/login");

}
}s
return (
<>
{(onMobile || settings.layout === "SIMPLE") && (
<div
className={cn(
"h-[var(--simple-header-height)] border-b flex items-center gap
-2",
lisCollapsed && "px-2",
isCollapsed && "justify-center”
)}
>
<AppLogo isCollapsed={isCollapsed} />
</div>
)}
{/* <Separator /> */}
<NavLinks
isCollapsed={isCollapsed}
links={[

Luigi Matteo Girke 238 Maio 2025



Prof Zona do Pinhal Sistema de envio de SMS com interface web

title: t("new _message"),
icon: Pencil,
variant: "default",
size: "x1",
isNewButton: true,
action: () => {
// We need to manually refresh so all the inputs actually get
refreshed
router.push("/new-message");
router.refresh();
)
¥
1}
/>

{/* Maybe we need a fixed height here, but if everything works, all g
ood. Use div 1instead of ScrollArea, because otherwise it the Sheet componen
t glitches out */}

<div className="overflow-auto">

<div
className="flex flex-col"
// In tailwind, this doesn't work, and I don't know why
style={{
// 56 1s the new-message button
height: “calc(1@@vh - var(--simple-header-height) - 56px${

isCollapsed ? " - 8px" : ""
1)
width: "100%",
3}
>
<div className="grow">
<NavLinks
isCollapsed={isCollapsed}
links={[
{
title: t("sent"),
label:
amountIndicators?.sent == 0

? nn

: amountIndicators?.sent.toString(),
icon: MailCheck,
variant: "ghost",
href: "/sent",
¥
{
title: t("scheduled"),
label:
amountIndicators?.scheduled ==
5 wu
: amountIndicators?.scheduled.toString(),
icon: Calendar,
variant: "ghost",

Luigi Matteo Girke 239 Maio 2025



Sistema de envio de SMS com interface web

href: "/scheduled",

¥
{
title: t("failed"),
label:
amountIndicators?.failed ==
5 wu
: amountIndicators?.failed.toString(),
icon: AlertTriangle,
variant: "ghost",
href: "/failed",

}s

{
title: t("drafts"),

label:
amountIndicators?.drafts == 0
5 nn
: amountIndicators?.drafts.toString(),
icon: FileText,
variant: "ghost",
href: "/drafts",

3
{
title: t("trash"),
label:
amountIndicators?.trash == 0

? nn

: amountIndicators?.trash.toString(),
icon: Trash2,
variant: "ghost",
href: "/trash",

3
1}
/>

<Separator />
<NavLinks
isCollapsed={isCollapsed}
links={[
{
title: t("settings"),
label: "",
icon: Settings,
variant: "ghost",
href: "/settings",
3

{
title: t("contacts"),

label:

amountIndicators?.contacts == 0
? mmn

: amountIndicators?.contacts.toString(),
icon: Contact2,

Luigi Matteo Girke 240 Maio 2025



‘ Sistema de envio de SMS com interface web

variant: "ghost",
href: "/contacts",

}s

{
title: t("dashboard"),

label: "",
icon: MonitorCog,
variant: "ghost",
href: "/dashboard",
hidden: !session?.isAdmin,
¥
1}
/>
</div>

<Separator />
<div className="shrink h-[var(--simple-header-height)] flex flex-
col justify-center">

{/* Also show Logout button in the mobile sheet, regardless of
the current Llayout */}

{!onMobile && settings.layout === "SIMPLE" ? (
<Account hideNameRole={isCollapsed} className="px-2" />
)+ (
<>
<NavLinks
isCollapsed={isCollapsed}
links={[
{
title: t("log out"),
label: "",

icon: LogOut,

variant: "ghost",

action: showAlertDialog,
¥

1}
/>

{/* "Confirm Logout" dialog */}
<AlertDialog
open={confirmLogoutOpen}
onOpenChange={setConfirmLogoutOpen}
>
<AlertDialogContent>
<AlertDialogHeader>
<AlertDialogTitle>
{t("modals:logout-header")}
</AlertDialogTitle>
<AlertDialogDescription>
{t("modals:logout-header caption")}
</AlertDialogDescription>
</AlertDialogHeader>
<AlertDialogFooter>
<AlertDialogCancel>

Luigi Matteo Girke 241 Maio 2025



Sistema de envio de SMS com interface web

{t("common:cancel")}
</AlertDialogCancel>
<AlertDialogAction onClick={handleLogout}>

{t("common:continue")}
</AlertDialogAction>

</AlertDialogFooter>
</AlertDialogContent>
</AlertDialog>
</>
)}
</div>
</div>
</div>
</>

)s

/components/admin-dashboard/index.tsx

"use client";

import MessagePieChart from "@/components/admin-dashboard/message-pie-chart
5

import MessageAreaChart from "@/components/admin-dashboard/message-area-cha
rt";

import UserRankingTable from "@/components/admin-dashboard/user-table";
import { PageHeader } from "@/components/headers";

import Account from "@/components/shared/account”;

import { Button, buttonvariants } from "@/components/ui/button”;

import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/c
ard";

import { useSettings } from "@/contexts/use-settings";

import { cn, extractFirstWord, getPercentageChange } from "@/lib/utils";
import { DBUser } from "@/types/user";

import Link from "next/link";

import { useTranslation } from "react-il8next";

import { CountryStat } from "../../app/[locale]/dashboard/page";
import { LightDBMessage } from "@/types/dashboard";

import { ScrollArea } from "../ui/scroll-area";

import { useIsMobile } from "@/hooks/use-mobile";

import { ArrowLeft } from "lucide-react";

export type TimeRange = {
from: Date;
to: Date;

}s

export default function AdminDashboard({
messages,
users,

Luigi Matteo Girke 242 Maio 2025



‘ Sistema de envio de SMS com interface web

countryStats,
b A
messages: LightDBMessage[];
users: DBUser[];
countryStats: CountryStat[] | undefined;
H A
const { t } = useTranslation(["dashboard-page", "errors", "common"]);
const messageCounts = countMessages(messages);
const { settings } = useSettings();
const onMobile = useIsMobile();
const onBigScreen = false;

return (
<div className="flex flex-col">
<PageHeader
title={
onBigScreen
? t("header_long", {
first_name: settings.displayName
? extractFirstWord(settings.displayName)
"User",
})
: t("header")
}
marginRight={onMobile}
>
{!onMobile && (
<>
<Link
href="/"
className={cn(buttonvariants({ variant: "link" }), "mx-2")}
>
<ArrowLeft className="h-4 w-4" />
{t("back_to_app")}
</Link>

<Account className="ml-auto" profilePicPosition="RIGHT" />
</>

)}

</PageHeader>

<ScrollArea
/** We always want simple header height here due to only having 1 s
imple nav-panel, regardless of any Llayout*/
className="h-[calc(100vh-var(--simple-header-height))]"
>
<div
className="p-4" /* Inside Looks better with rimless bottom on scr
oLl */
>
<div className="flex flex-col md:grid grid-cols-3 gap-4">
<TextCard
label={t("text card 1-title")}

Luigi Matteo Girke 243 Maio 2025



o Sistema de envio de SMS com interface web

value={messageCounts.today}
caption={
getPercentageChange(
messageCounts.today,
messageCounts.todayBefore
) <@
? // Negative change (Lower than before)
t("text_card 1-caption_lower", {
percentage: ~${
getPercentageChange(
messageCounts.today,
messageCounts.todayBefore
) * -1
3%,
})
: // Positive change (higher than before)
t("text_card_1-caption_higher", {
percentage: ~${getPercentageChange(
messageCounts. today,
messageCounts.todayBefore
V1%,
}
}
/>
<TextCard
label={t("text card 2-title")}
value={messageCounts.last7Days}
caption={
getPercentageChange(
messageCounts.last7Days,
messageCounts.last7DaysBefore
) <0
? // Negative change (Lower than before)
t("text_card 2-caption_lower", {
percentage: ~${
getPercentageChange(
messageCounts.last7Days,
messageCounts.last7DaysBefore
) * -1
3%,
})
: // Positive change (higher than before)
t("text_card_2-caption_higher", {
percentage: ~${getPercentageChange(
messageCounts.last7Days,
messageCounts.last7DaysBefore
V1%,
}
}
/>
<TextCard
label={t("text card 3-title")}
value={messageCounts.lastMonth}

Luigi Matteo Girke 244 Maio 2025



Prof Zona do Pinhal Sistema de envio de SMS com interface web

caption={
getPercentageChange(
messageCounts.lastMonth,
messageCounts. lastMonthBefore
) <@
? // Negative change (Lower than before)
t("text_card 3-caption_lower", {
percentage: ~${
getPercentageChange(
messageCounts.lastMonth,
messageCounts.lastMonthBefore
) * -1
Y%,
})
: // Positive change (higher than before)
t("text_card_3-caption_higher", {
percentage: ~${getPercentageChange(
messageCounts. lastMonth,
messageCounts.lastMonthBefore
V1%,
}
}
/>
{/* <Card>
<CardHeader>
<CardTitle>Sent This week</CardTitle>
</CardHeader>
<CardContent>{messageCounts. last7Days }</CardContent>
</Card>
<Card>
<CardHeader>
<CardTitle>Sent This Month</CardTitle>
</CardHeader>
<CardContent>{messageCounts. last3Months }</CardContent>
</Card> */}
<div className="col-span-3">
<div className="h-min">

<MessageAreaChart messages={messages || []} />
</div>
</div>
<div className={cn("col-span-2", onMobile && "order-6")}>
<UserRankingTable users={users || []} messages={messages || [
13 7>
</div>
<MessagePieChart data={countryStats} />
</div>
</div>
</ScrollArea>
</div>
)5
}

function TextCard({

Luigi Matteo Girke 245 Maio 2025



Sistema de envio de SMS com interface web

label,
value,
caption,
b A
label: string;
value: string | number;
caption: string;
H A
return (
<Card className="min-h-min">
<CardContent className="p-6 flex flex-col gap">
<p className="text-sm font-semibold text-foreground">{label}</p>
<hl className="leading-tight">{value}</hl>
<p className="text-sm text-muted-foreground">{caption}</p>
</CardContent>
</Card>
)
}

function countMessages(messages: LightDBMessage[]) {
const now = new Date();
const todayStart = new Date(now.getFullYear(), now.getMonth(), now.getDat
e());
const yesterdayStart = new Date(todayStart);
yesterdayStart.setDate(todayStart.getDate() - 1);
const yesterdaykEnd = new Date(todayStart);
yesterdayEnd.setDate(todayStart.getDate() - 1);
yesterdayEnd.setHours (23, 59, 59, 999); // End of yesterday

const sevenDaysAgo = new Date(now);

sevenDaysAgo.setDate(now.getDate() - 7);

const weekBeforeStart = new Date(sevenDaysAgo);

weekBeforeStart.setDate(sevenDaysAgo.getDate() - 7); // Start of the week
before last 7 days

const oneMonthAgo = new Date(now);

oneMonthAgo.setMonth(now.getMonth() - 1);

const oneMonthBeforeStart = new Date(oneMonthAgo);

oneMonthBeforeStart.setMonth(oneMonthAgo.getMonth() - 1); // Start of the
3 months before Last 3 months

const counts = {
today: 0,
todayBefore: 0,
last7Days: 0,
last7DaysBefore: 0, // New property for the week before lLast 7 days
lastMonth: 0,

lastMonthBefore: 0, // New property for the 3 months before Last 3 mont
hs

1

messages.forEach((message) => {

Luigi Matteo Girke 246 Maio 2025



Sistema de envio de SMS com interface web

const sentAt = new Date(message.send time);

// Count messages sent today

if (sentAt >= todayStart) {
counts.today++;

}

// Count messages sent yesterday

if (sentAt >= yesterdayStart && sentAt <= yesterdayEnd) {
counts.todayBefore++;

}

// Count messages sent in the last 7 days

if (sentAt >= sevenDaysAgo) {
counts.last7Days++;

}

// Count messages sent in the week before the last 7 days

if (sentAt >= weekBeforeStart && sentAt < sevenDaysAgo) {
counts.last7DaysBefore++;

}

// Count messages sent in the last 3 months

if (sentAt >= oneMonthAgo) {
counts.lastMonth++;

}

// Count messages sent in the 3 months before the last 3 months

if (sentAt >= oneMonthBeforeStart && sentAt < oneMonthAgo) {
counts.lastMonthBefore++;

}

1)

return counts;

}

/components/admin-dashboard/message-pie-chart.tsx

"use client";

import { useState, useEffect, useMemo } from "react";
import { TrendingUp } from "lucide-react";
import { Cell, Pie, PieChart, ResponsiveContainer, Tooltip } from "recharts

",
J

import {
Card,
CardContent,
CardDescription,
CardFooter,
CardHeader,
CardTitle,
} from "@/components/ui/card";

Luigi Matteo Girke 247 Maio 2025



import
import
import
import
import
import
import

e L L e ey

Sistema de envio de SMS com interface web

useTranslation } from "react-il8next";

capitalize, cn, shuffleArray } from "@/lib/utils"”;
CountryStat } from "@/app/[locale]/dashboard/page"”;
themesArray } from "@/lib/theme.colors”;

useTheme as useNextTheme } from "next-themes"”;

ThemeMode } from "@/types/theme";

useThemeContext } from "@/contexts/theme-data-provider";

export default function MessagePieChart({

data,

A

data: CountryStat[] | undefined;

N A

const { theme } = useNextTheme();

const { themeColor } = useThemeContext();

const userlLikesZinc = themeColor === 1;

const slicedArray = [
...themesArray.slice(

userLikesZinc ? © : 1, // remove Zinc color if the user doesn't Like

it, because it lLooks bad with the other colors. If he does, lLeave it 1in

)
15

themesArray.length

const [pieChartColors, setPieChartColors] = useState<string[]>([]);

const totalMessages = useMemo(() => {
return data?.reduce((acc, curr) => acc + curr.amount, 0);

}, [data]);
const { t } = useTranslation();

const totalCost = useMemo(() => {
return data?.reduce((acc, curr) => acc + curr.cost, 0).toFixed(2);

}, [data]);

// Find the country with the most messages
const topCountry = useMemo(() => {
if (datar?.length === @) return null;
return data?.reduce((max, curr) => (max.amount > curr.amount ? max : cu

rr));

}, [data]);

// Custom center Label renderer
const renderCustomLabel = ({ cx, cy }: any) => {
return (

<g>
<text

x={cx}

y={cy}
fill="hsl(var(--foreground))"
textAnchor="middle"
dominantBaseline="central"

Luigi Matteo Girke 248 Maio 2025



' o Sistema de envio de SMS com interface web

className="text-3x1l font-bold"
>
{totalMessages}
</text>
<text
x={cx}
y={cy + 24}
fill="hsl(var(--foreground))"
textAnchor="middle"
dominantBaseline="central”
className="text-sm text-muted-foreground opacity-75"
>
{t("messages_amount")}
</text>
</g>
)
}s

useEffect(() => {
// Randomize colors on component mount only, so that when user changes
the input the colors don't change
shuffleArray(slicedArray);
setPieChartColors(
slicedArray.map(
(themeColor) =>
“hsl(${themeColor.value[ (theme as ThemeMode) || "light"].primary}

)
)5
o [

return (
<Card className="flex flex-col min-h-[400px]">
<CardHeader className="items-center md:items-start pb-0">
<CardTitle>{t("pie_chart-title")}</CardTitle>
<CardDescription>{t("pie chart-title caption")}</CardDescription>
</CardHeader>

{/* Error case */}

{!data || !data.length ? (
<CardContent className="h-full">
{data === undefined ? (

<p className="h-full centered text-destructive">
{t("pie_chart-error")}
</p>
o (
data?.length === 0 && (
<p className="h-full centered">
{/* No data case */}
{t("pie_chart-no_data")}
</p>
)
)}

Luigi Matteo Girke 249 Maio 2025

)



' e Sistema de envio de SMS com interface web

</CardContent>
) (
<>
{/* Content gets rendered in all other conditions */}
<CardContent className="flex-1 pb-0 h-[300px]">
<div className="mx-auto aspect-square h-full max-w-[300px] flex
justify-center">
<ResponsiveContainer
/* Docs say percentages, but numerical values work better *

width={250}
aspect={1}
>
<PieChart className="">
<Tooltip content={<CustomTooltip />} />

<Pie
data={data}
cx="50%"
cy="50%"
labellLine={false}
label={renderCustomLabel}
innerRadius={60}
outerRadius={105}
// strokeWidth={3}
dataKey="amount"
nameKey="country"

{data.map((entry, index) => (
<Cell
key={ cell-${index} }
fill={pieChartColors[index % pieChartColors.length]

// Adjust these values
strokeWidth={0.5}
stroke="hsl(var(--background))"
// strokeOpacity={6.3}
/>
))}
</Pie>
</PieChart>
</ResponsiveContainer>
{/* </ChartContainer> */}
</div>
</CardContent>
<CardFooter className="flex-col gap-2 text-sm pt-4">
<div className="flex items-center gap-2 font-medium leading-non
e">
{topCountry && (
<>
{t("pie_chart-leading country", {
country: topCountry.country,
amount: topCountry.amount,

Luigi Matteo Girke 250 Maio 2025



- R Sistema de envio de SMS com interface web

1}

<TrendingUp className="h-4 w-4" />
</>
)}
</div>
<div className="leading-none text-muted-foreground">
{t("pie_chart-total cost")} ${totalCost}
</div>
</CardFooter>
</>
)}
</Card>
)
}

function CustomTooltip({ active, payload }: any) {
const { t } = useTranslation();
if (active && payload && payload.length) {
return (
<div
className={cn(

"grid min-w-[8rem] items-start gap-1.5 rounded-lg border border-s
late-200/50 bg-background px-2.5 py-1.5 text-xs shadow-x1 dark:border-slate
-800 dark:border-slate-800/50"

)}

>
<div className="grid gap-1.5">
{payload.map((item: any, index: number) => {

const key = item.name || item.datakey || "value";
// const itemConfig = getPayloadConfigFromPayload(
//  config,
// item,
//  key
/)5

const indicatorColor = item.payload.fill || item.color;

return (
<div
key={item.dataKey}
className={cn("flex w-full flex-col items-stretch gap-2 ")}
//[&>svg]:h-2.5 [&>svg]:w-2.5 [&>svg]:text-muted-foreground dark:[&>svg]:te
xt-muted-foreground
>
<div className="flex items-center gap-1">
<div
style={{
width: 10,
height: 10,
borderRadius: 2,
backgroundColor: indicatorColor,
}}
/>

<div className="font-medium">{item.name}</div>

Luigi Matteo Girke 251 Maio 2025



Sistema de envio de SMS com interface web

</div>

{/* Key value pairs */}
<KeyValueInTooltip name={t("cost")} value={item.payload.cos

t} />
<KeyValueInTooltip
name={t("messages_amount")}
value={item.payload.amount}
/>
</div>
)
1}
</div>
</div>
)
}
return null;
}
function KeyValueInTooltip({
name,
value,
b A

name: string;
value?: string | number;
» A
return (
<div className={cn("flex flex-1 justify-between leading-none")}>
<div className="grid gap-1.5">
<span className="text-muted-foreground ">{name}</span>
</div>
{value && (
<span className="font-mono font-medium tabular-nums text-slate-950
dark:text-slate-50">
{value}
</span>
)}
</div>
)
}

/components/admin-dashboard/user-table.tsx

"use client";

import {
Card,
CardContent,
CardDescription,

Luigi Matteo Girke 252 Maio 2025



‘ Sistema de envio de SMS com interface web

CardHeader,
CardTitle,
} from "@/components/ui/card";
import { DBUser } from "@/types/user";
import ProfilePic from "../profile-pic";
import { useTranslation } from "react-il8next";
import { useMemo } from "react";
import { LightDBMessage } from "@/types/dashboard";

export default function UserRankingTable({
users,
messages,
Fo A
users: DBUser[];
messages: LightDBMessage[];
A
const { t } = useTranslation();
const usersWithMessageCounts = useMemo(() => {
return users
.map((user) => ({
...user,
messageCount: messages.filter((m) => m.user_id === user.id).length,
1))
.sort((a, b) => b.messageCount - a.messageCount);
}, [users, messages]);

return (
<Card className="h-full">

<CardHeader>
<CardTitle>{t("users_table-title")}</CardTitle>
<CardDescription>{t("users table-title caption")}</CardDescription>

</CardHeader>

<CardContent className="">
<div className="max-h-[300px] overflow-auto">

<table className="w-full">

<tbody>
{usersWithMessageCounts.map((user, index) => (
<tr key={user.id || index} className="text-left">

<td className="w-1/12 p-2">
{/* First column for 1index */}
<p>{index + 1}.</p>
</td>
<td className="w-1/12 p-2">
{/* Second column for profile picture */}
<ProfilePic name={user.name} className="border" />
</td>
<td className="p-2">
{/* Last column for user details */}
<div className="flex flex-col">
<p className="text-sm font-medium leading-none">
{user.name}
</p>
<p className="text-sm text-muted-foreground">

Luigi Matteo Girke 253 Maio 2025



o Sistema de envio de SMS com interface web

{user.email}

</p>
</div>
</td>
<td className="w-1/12 p-2 text-sm font-semibold">
{messages.filter((m) => m.user_id == user.id).length}
</td>
</tr>
)}
</tbody>
</table>
</div>
</CardContent>
</Card>
)
}
/**
<Popover>

<PopoverTrigger asChild»>
<Button variant="outline" size="sm" className="ml-auto">
Owner <ChevronDown className="text-muted-foreground" />
</Button>
</PopoverTrigger>
<PopoverContent className="p-0" align="end">
<Command>
<CommandInput placeholder="Select new role..." />
<CommandList>
<CommandEmpty>No roles found.</CommandEmpty>
<CommandGroup>
<CommandItem className="teamaspace-y-1 flex flex-col it
ems-start px-4 py-2">
<p>Viewer</p>
<p className="text-sm text-muted-foreground">
Can view and comment.
</p>
</CommandItem>
<CommandItem className="teamaspace-y-1 flex flex-col it
ems-start px-4 py-2">
<p>Developer</p>
<p className="text-sm text-muted-foreground">
Can view, comment and edit.
</p>
</CommandItem>
<CommandItem className="teamaspace-y-1 flex flex-col it
ems-start px-4 py-2">
<p>Billing</p>
<p className="text-sm text-muted-foreground">

Luigi Matteo Girke 254 Maio 2025



Sistema de envio de SMS com interface web

Can view, comment and manage billing.
</p>
</CommandItem>
<CommandItem className="teamaspace-y-1 flex flex-col it
ems-start px-4 py-2">
<p>Owner</p>
<p className="text-sm text-muted-foreground">
Admin-Llevel access to all resources.
</p>
</CommandItem>
</CommandGroup>
</CommandList>
</Command>
</PopoverContent>
</Popover>
*/

/components/admin-dashboard/message-area-chart.tsx

"use client";

import { useEffect, useMemo, useState } from "react";
import { Area, AreaChart, CartesianGrid, XAxis } from "recharts";

import {
Card,
CardContent,
CardDescription,
CardHeader,
CardTitle,
} from "@/components/ui/card";
import {
ChartConfig,
ChartContainer,
ChartLegend,
ChartLegendContent,
ChartTooltip,
ChartTooltipContent,
} from "@/components/ui/chart";
import {
Select,
SelectContent,
SelectItem,
SelectTrigger,
SelectValue,
} from "@/components/ui/select”;
import { format, parseISO, subDays } from "date-fns";
import { capitalize, cn, getDateFnsLocale } from "@/1lib/utils";
import { useTranslation } from "react-il8next";
import { usePathname, useRouter, useSearchParams } from "next/navigation";

Luigi Matteo Girke 255 Maio 2025



Sistema de envio de SMS com interface web

import {
DEFAULT_START_DATE,
1S08601_DATE_FORMAT,
PT_DATE_FORMAT_NO_TIME,

} from "@/global.config";

import { LightDBMessage } from "@/types/dashboard";
import { zodISODate } from "@/lib/form.schemas";

import { buttonVariants } from "../ui/button”;

import { useIsMobile } from "@/hooks/use-mobile";
import { getThemeByIndex } from "@/lib/theme.colors";
import { useSettings } from "@/contexts/use-settings";
import { useTheme as useNextTheme } from "next-themes";
import { ThemeMode } from "@/types/theme";

export default function MessageAreaChart({
messages,
b A
messages: LightDBMessage[];
» A
const now = new Date();
const { i18n, t } = useTranslation(["dashboard-page"]);
const data = toChartData(messages);
const router = useRouter();
const pathname = usePathname();
const onMobile = useIsMobile();
const searchParams = useSearchParams();
const { settings } = useSettings();
const { theme } = useNextTheme();
const areaChartColors = |
“hs1(${
getThemeByIndex(settings.profileColorId || 1, theme as ThemeMode)?.pr
imary
Y) ', // Current profile theme color-props
"hsl(var(--primary))", // Current appearance theme color-props

15

// This should get updated by re-renders, if not, turn it into a useState
that gets set by a useEffect
const selectedStartDate = {
ISO_date: searchParams.get("start_date"),
isValid: zodISODate.safeParse(searchParams.get("start date")).success,

}s

function toISO(date: Date) {
return format(date, IS08601_DATE_FORMAT);
}

const selectItems = [
{
label: t("area_chart-week"),
date: subDays(now, 7), // Subtract 7 days
s
{

label: t("area_chart-month"),

Luigi Matteo Girke 256 Maio 2025



‘ Sistema de envio de SMS com interface web

date: subDays(now, 30), // Subtract 36 days (assuming a 36-day month)

label: t("area_chart-3 months"),
date: subDays(now, 90), // Subtract 96 days (assuming a 30-day months

}s

{
label: t("area_chart-all time"),

date: new Date(DEFAULT_START_DATE),
¥
1;

const chartConfig = {
amount: {
label: t("messages_amount"),
¥
price: {
label: t("cost"),

¥
} satisfies ChartConfig;

return (
<Card>
<CardHeader className="flex items-center gap-2 space-y-0 border-b py-
5 sm:flex-row">
<div className="grid flex-1 gap-1 text-center sm:text-left">
<CardTitle>
{t("area_chart-title")} ({data.length})
</CardTitle>
<CardDescription>{t("area chart-title caption")}</CardDescription

</div>
<Select
defaultValue={searchParams.get("start date") || DEFAULT_START_DAT
E}
onValueChange={(value) => {
const params = new URLSearchParams(searchParams);

if (value) {
params.set("start_date", value);
} else {
params.delete("start_date");
}
if (params.has("end date")) params.delete("end date");
router.replace( ${pathname}?${params.toString()} , {
scroll: false, // persist current scroll for better ux
3
}}

>
<SelectTrigger
className={cn(
buttonVariants({ variant: "outline" }),

Luigi Matteo Girke 257 Maio 2025



Sistema de envio de SMS com interface web

"w-min appearance-none font-normal justify-between"
)}
// className="w-[160px] rounded-lLg sm:ml-auto"
aria-label={t("common:aria_label-select")}

>
<SelectValue placeholder={t("area_chart-3 months")} />

</SelectTrigger>

<SelectContent align={onMobile ? "center" : "end"}>

{selectItems.map((item) => (
<SelectItem key={item.date.getTime()} value={toISO(item.date)

{item.label}
</SelectItem>
)}
{selectedStartDate.ISO date &&
I'selectItems.some(
(item) => toISO(item.date) === selectedStartDate.ISO date
) && (
<SelectItem value={selectedStartDate.ISO date} disabled>
{selectedStartDate.isVvalid
? format(
new Date(selectedStartDate.ISO date),
PT_DATE_FORMAT_NO_TIME
)
: selectedStartDate.ISO date}
</SelectItem>
)}
</SelectContent>
</Select>
</CardHeader>

<CardContent className="px-2 pt-4 sm:px-6 sm:pt-6">
<ChartContainer
config={chartConfig}
className="aspect-auto h-[250px] w-full"
>
<AreaChart data={data}>
<defs>
{/* Gradient of the chart waves */}
<linearGradient id="fillPrice" x1="0" y1="0" x2="0" y2="1">
<stop
offset="5%"
stopColor={areaChartColors[0]}
stopOpacity={0.8}
/>
<stop
offset="95%"
stopColor={areaChartColors[0]}
stopOpacity={0.1}
/>
</linearGradient>
<linearGradient id="fillAmount" x1="0" yl1l="0" x2="0" y2="1">
<stop

Luigi Matteo Girke 258 Maio 2025



' o Sistema de envio de SMS com interface web

offset="5%"
stopColor={areaChartColors[1]}
stopOpacity={0.8}
/>
<stop
offset="95%"
stopColor={areaChartColors[1]}
stopOpacity={0.1}
/>
</linearGradient>
</defs>
<CartesianGrid vertical={false} />
<XAxis
dataKey="date"
tickLine={false}
axisLine={false}
tickMargin={8}
minTickGap={32}
tickFormatter={(value) => {
return format(new Date(value), "MMM d, yyyy", {
locale: getDateFnsLocale(il8n.language),

3
}}
/>
<ChartTooltip
cursor={false}
wrapperClassName="z-80"
content={
<ChartTooltipContent
className="z-80"
labelFormatter={(dateString: string) => {

// The error we were having is that between state updat
es and re-renders, sometimes the label date was not a valid date, so we nee
d to handle the date formatting gracefully to prevent a thrown error from f

ormat
const parsedDate = parseISO(dateString);

return isNaN(parsedDate.getTime()) // check 1if the date

is valid before trying to format it
? t("invalid_date")
: format(parsedDate, "MMM d, yyyy", {
locale: getDateFnsLocale(il8n.language),

3
}}
indicator="dot"
/>
}
/>
{/* Line at the top of the chart waves */}
<Area

dataKey="price"
type="natural™
fill="url(#fillPrice)"
stroke={areaChartColors[0]}

Luigi Matteo Girke 259

Maio 2025



Sistema de envio de SMS com interface web

stackId="a"

/>

<Area
dataKey="amount"
type="natural™
fill="url(#fillAmount)"
stroke={areaChartColors[1]}
stackId="a"

/>

<ChartLegend content={<ChartLegendContent />} />

</AreaChart>
</ChartContainer>
</CardContent>
</Card>
)
}

const toChartData = (
messages: LightDBMessage[ ]
): { date: string; price: number; amount: number }[] => {
const chartDataMap: {
[key: string]: { totalCost: number; messageCount: number };

F= Ak

messages.forEach((message) => {
// Format the date to YYYY-MM-DD
const date = message.send time.toISOString().split("T")[@];

// Initialize the entry for the date if it doesn't exist
if (!chartDataMap[date]) {

chartDataMap[date] = { totalCost: @, messageCount: 0 };
}

// Increment the message count
chartDataMap[date].messageCount += 1;

// Add to the total cost if the cost is not null
if (message.cost) {
// Ensure cost 1is treated as a number
const costValue =
typeof message.cost === "string"
? parseFloat(message.cost)
. message.cost;
chartDataMap[date].totalCost += costValue;
}
3

// Convert the map to an array

return Object.entries(chartDataMap).map(([date, counts]) => ({
date,
price: counts.totalCost,
amount: counts.messageCount,

Luigi Matteo Girke 260 Maio 2025



Sistema de envio de SMS com interface web

)
}s

/components/modals/schedule-modals.tsx

"use client";

import React, { ChangeEvent, useEffect, useState } from "react";

import {
Dialog,
DialogContent,
DialogTrigger,
DialogTitle,
DialogFooter,
DialogDescription,
DialogHeader,

} from "../ui/dialog";

import {
AlertDialog,
AlertDialogAction,
AlertDialogCancel,
AlertDialogContent,
AlertDialogDescription,
AlertDialogFooter,
AlertDialogHeader,
AlertDialogTitle,
AlertDialogTrigger,

} from "@/components/ui/alert-dialog";

import { Calendar } from "../ui/calendar";

import { Input } from "../ui/input"”;

import { Label } from "../ui/label";

import { Button, buttonvariants } from "../ui/button”;
import { useTranslation } from "react-il8next";

import { useModal } from "@/contexts/use-modal";

import { useNewMessage } from "@/contexts/use-new-message";

export default function ScheduleMessageModal() {
const now = new Date();
const { t } = useTranslation();
const { modal, setModal } = useModal();
const { message, setMessage } = useNewMessage();
const [selectedDate, setSelectedDate] = useState(message.scheduledDate);

const handleCancelButtonClick = () => {
if (selectedDate > new Date()) {
// date is in the future - so reset it to now
setSelectedDate(now);
} else {
setModal((m) => ({ ...m, schedule: false }));

}

Luigi Matteo Girke 261 Maio 2025



‘ Sistema de envio de SMS com interface web

3

const applySelectedDate = () => {
setMessage((m) => ({
...m,
scheduledDate: selectedDate,
scheduledDateModified: true,

1)
setModal((m) => ({ ...m, schedule: false }));
¥
const handleKeyPress = (event: KeyboardEvent) => {
if (modal.schedule === true && event.key === "Enter") {
applySelectedDate();
}
¥

useEffect(() => {
// Add event Listener for keydown
document.addEventListener("keydown", handleKeyPress);

// Cleanup the event Listener on component unmount
return () => {
document.removeEventListener("keydown", handleKeyPress);
};
}, [modal.schedule]);

return (
<Dialog
open={modal.schedule}
onOpenChange={() => setModal((m) => ({ ...m, schedule: false }))}
>
<DialogContent className="p-6 overflow-y-auto">
<DialogHeader className="mb-5">
<DialogTitle>{t("modals:schedule message-header")}</DialogTitle>
<DialogDescription>
{t("modals:schedule_message-header caption")}
</DialogDescription>
</DialogHeader>
<div
className="flex flex-col gap-4 items-center xs:items-start xs:fle
x-row h-[325px] max-w-[250px] xs:max-w-full mx-auto xs:mx-0 p-0" /** This 1
s the exact maximum height of the calendar */
>
<Calendar
mode="single"
selected={selectedDate}
onSelect={(date: Date | undefined) => {
setSelectedDate((prev) => (date ? date : prev));
}}

className="rounded-md border"

Luigi Matteo Girke 262 Maio 2025



‘ Sistema de envio de SMS com interface web

/>
<div className="flex flex-col justify-between h-full w-full pb-6
xs:pb-0">
<div /** className="flex flex-col h-full justify-center" */>
<div className="flex flex-col gap-2 mb-3">
<Label htmlFor="hour">
{t("modals:schedule_message-hour_ label")}
</Label>
<TimeInput
id="hour"
min={0}
max={23}
value={selectedDate.getHours()}
onChange={(value) => {
setSelectedDate((prev) => new Date(prev.setHours(value)

))s
}}
/>
</div>
<div className="flex flex-col gap-2 mb-3">
<Label htmlFor="minute">
{t("modals:schedule_message-minute_label")}
</Label>
<TimeInput
id="minute"
min={0}
max={59}
value={selectedDate.getMinutes()}
onChange={(value) =>
setSelectedDate((prev) => new Date(prev.setMinutes(valu
e)))
}
/>
</div>
</div>
<div className="flex flex-wrap gap-2 justify-end">
<Button

variant="outline"
onClick={handleCancelButtonClick}
className="flex-1"
>
{selectedDate > now
? t("modals:schedule_message-reset")
: t("common:cancel”)}
</Button>
<Button onClick={applySelectedDate} className="flex-1">
{selectedDate > now
? t("modals:schedule_message-submit")
: t("modals:schedule_message-submit_now")}
</Button>
</div>
</div>
</div>

Luigi Matteo Girke 263 Maio 2025



‘ Sistema de envio de SMS com interface web

</DialogContent>
</Dialog>
)
}

export function ScheduleAlertModal() {
const [shouldSubmit, setShouldSubmit] = useState(false);
const { modal, setModal } = useModal();
const { form } = useNewMessage();
const { t } = useTranslation();
const { setMessage } = useNewMessage();

useEffect(() => {
if (shouldSubmit) {
// Check if the form ref is set and then call requestSubmit
form?.requestSubmit();
setShouldSubmit(false); // Reset the flag after submission
}
}, [shouldSubmit]); // This effect runs when shouldSubmit changes
return (
<>
{/* "Confirm Invalid Date" dialog */}
<AlertDialog
open={modal.scheduleAlert}
onOpenChange={(value) =>
setModal((m) => ({ ...m, scheduleAlert: value }))

}

<AlertDialogContent>
<AlertDialogHeader>
<AlertDialogTitle>
{t("modals:schedule_alert-header")}
</AlertDialogTitle>
<AlertDialogDescription>
{t("modals:schedule_alert-header caption")}
</AlertDialogDescription>
</AlertDialogHeader>
<AlertDialogFooter>
<AlertDialogCancel>{t("common:cancel")}</AlertDialogCancel>
<AlertDialogAction
onClick={() => {
setMessage((m) => ({ ...m, scheduledDateConfirmed: true }))

>

J
// Can't submit directly from here, because we need to wait
for the scheduleDateConfirmed flag to be set
setShouldSubmit(true);
}}
>
{t("common:continue")}
</AlertDialogAction>
</AlertDialogFooter>
</AlertDialogContent>
</AlertDialog>

Luigi Matteo Girke 264 Maio 2025



Sistema de envio de SMS com interface web

</>
)5
}

// Define the props type for the TimeInput component
type TimeInputProps = {

id: string;

value: number;

onChange: (value: number) => void;

min: number;

max: number;

}s

// TimeInput component
function TimeInput({ id, value, onChange, min, max }: TimeInputProps) {
const [displayValue, setDisplayValue] = useState<string>(
value < 10 ? "0%${value} : value.toString()
)

const [isFocused, setIsFocused] = useState(false);

const handleChange = (e: React.ChangeEvent<HTMLInputElement>) => {
const inputValue = e.target.value;
setDisplayValue(inputValue);

const numericValue = Number(inputValue);
if (numericValue >= min && numericValue <= max) {
onChange(numericValue);
}
}s

const handleBlur = () => {
setIsFocused(false);
const numericValue = Number(displayValue);
if (numericValue >= min && numericValue <= max) {
setDisplayValue(
numericValue < 10 ? ~0%${numericValue} : numericValue.toString()
)
}
¥

useEffect(() => {
// reflect the current date object in the 1inputs whenever they change
if (isFocused === false) {
setDisplayValue(value < 10 ? "0%${value} : value.toString());
}

}, [value]);

return (
<Input
id={id}
type="number"
min={min}

Luigi Matteo Girke 265 Maio 2025



Sistema de envio de SMS com interface web

max={max}
value={displayValue}
onChange={handleChange}
onBlur={handleBlur} // Add onBlur event handler
onFocus={() => setIsFocused(true)}
/>
)

/components/modals/recipient-info.tsx

"use client";

import {

Dialog,

DialogContent,

DialogDescription,

DialogHeader,

DialogTitle,

DialogFooter,
} from "../ui/dialog";
import { DialogClose } from "@/components/ui/dialog";
import { useModal } from "@/contexts/use-modal";
import { Separator } from "../ui/separator";
import { CopyButton } from "../shared/copy-button";
import { Button } from "../ui/button";
import { NewRecipient } from "@/types/recipient”;
import { useTranslation } from "react-il8next";

import ProfilePic from "../profile-pic";
import { useEffect, useState } from "react";

export default function RecipientInfoModal({
recipient,
allowContactCreation = true,
Fo A
recipient: NewRecipient;
allowContactCreation: boolean;
A
const { modal, setModal } = useModal();
const { t } = useTranslation(["modals"]);
const [watchCreateModalClose, setWatchCreateModalClose] = useState(false)

const showCreateModal = () => {
setModal((m) => ({ ...m, contact: { ...m.contact, info: false } }));
setModal((m) => ({ ...m, contact: { ...m.contact, create: true } }));
setWatchCreateModalClose(true);

}s

useEffect(() => {
if (watchCreateModalClose && modal.contact.create

== false) {

Luigi Matteo Girke 266 Maio 2025



@E@ cosTecnoligese

setWatchCreateModalClose(false);
setModal((m) => ({ ...m, contact: { ...m.contact, info: true } }));

}
}, [modal.contact]);
return (
<Dialog
/* We do need these shits unfortunately */
open={modal.contact.info}
onOpenChange={(value: boolean) =>

setModal((m) => ({ ...m, contact: { ...m.contact, info: value } }))
}

>
<DialogContent>
<DialogHeader>
<DialogTitle>
{/* make it so we can interpolate a one of these translations u
sing {{name}} into the actual one */}
{recipient.contact
? t("info-header_contact")
: t("info-header_recipient")}
</DialogTitle>
<DialogDescription>
{recipient.contact
? t("info-header_caption_contact")
: t("info-header_caption_recipient")}
</DialogDescription>
</DialogHeader>
<div className="flex flex-1 flex-col">
<div className="flex items-start p-4">
<div className="flex items-center gap-4 text-sm">
<ProfilePic name={recipient.contact?.name} className="border"

Sistema de envio de SMS com interface web

/>
<h2>{recipient.contact?.name || t("info-name_fallback")}</h2>
</div>
</div>
<Separator />
<div className="flex gap-4 justify-between items-center p-4 text-
sm">
<div>{t("common:phone_number")}</div>
<CopyButton text={recipient.phone} variant="none" className="pr
_ell>
{recipient.phone}
</CopyButton>
</div>
{recipient.contact & & ( // Contact description information
<>
<Separator />
<div className="flex gap-4 justify-between p-4 text-sm">
<p>{t("common:description”)}</p>
{recipient.contact?.description?.trim() ? (
<p className="text-right">{recipient.contact?.description
}</p>

Luigi Matteo Girke 267 Maio 2025



Sistema de envio de SMS com interface web

) (

<p className="italic text-right">
{t("common:no_description")}
</p>
)}
</div>
</>
)}
</div>
{allowContactCreation && (
<DialogFooter>
<DialogClose asChild>
<Button variant="outline">{t("common:close")}</Button>
</DialogClose>
{!recipient.contact?.id && (
<Button onClick={showCreateModal}>
{t("info-button_create_contact")}
</Button>
)}

</DialogFooter>

)}

</DialogContent>

</Dialog>

);
}

/components/modals/edit-contact.tsx

"use client";

import React, { useEffect, useState } from "react";
import { useActionState } from "react";

import {

Dialog,

DialogContent,

DialogDescription,

DialogHeader,

DialogTitle,

DialogTrigger,

DialogFooter,
} from "../ui/dialog";
import { Button, buttonvariants } from "../ui/button”;
import { Input } from "@/components/ui/input";
import { Label } from "../ui/label";
import { updateContact } from "@/lib/actions/contact.actions";
import { DBContact } from "@/types/contact";
import { ContactSchema } from "@/lib/form.schemas";
import { CircleAlert, Loader2 } from "lucide-react";
import { DialogClose } from "@/components/ui/dialog";
import { cn, toastActionResult } from "@/lib/utils";

Luigi Matteo Girke 268

Maio 2025



Sistema de envio de SMS com interface web

import { Textarea } from "../ui/textarea";

import { Alert, AlertDescription } from "../ui/alert";
import { useModal } from "@/contexts/use-modal";
import { ActionResponse } from "@/types/action";
import { useTranslation } from "react-il8next";

import { useContacts } from "@/contexts/use-contacts";

const initialState: ActionResponse<undefined> = {
success: false,
message: [],

}s

export default function EditContactModal({ contact }: { contact:

N A

const { modal, setModal } = useModal();

const [serverState, action, pending] = useActionState(
updateContact.bind(null, contact.id),
initialState

);

const { refetchContacts } = useContacts();
const { t } = useTranslation(["modals"]);

useEffect(() => {
if (serverState.success) {

toastActionResult(serverState, t);
handleOpenChange(false);
// Refetch contacts context after mutation.
refetchContacts();

}

}, [serverState]);

const handleOpenChange = (value: boolean) => {

DBContact

setModal((m) => ({ ...m, contact: { ...m.contact, edit: value } }));

clearInputs();
}s

const clearInputs = () => {

// This 1is unfortunately the easiest way to reset this shit

serverState.errors = undefined;
serverState.message = [];
serverState.inputs = {};
}s
return (
<Dialog
/* We do need these shits unfortunately */
open={modal.contact.edit}
onOpenChange={handleOpenChange}
>
<DialogContent>
<DialogHeader>
<DialogTitle>{t("edit contact-header")}</DialogTitle>
<DialogDescription>
{t("edit_contact-header_caption")}

Luigi Matteo Girke 269

Maio 2025



Zona do Pinhal Sistema de envio de SMS com interface web

</DialogDescription>
</DialogHeader>
<form action={action} className="space-y-6">
<div className="space-y-2">
<Label htmlFor="name">{t("common:name")}</Label>

<Input
name="name"
id="name"
placeholder={t("name_placeholder")}
defaultValue={serverState.inputs?.name || contact.name}

// required
// minLength={5}
// maxLength={100}
aria-describedby="name-error"
className={serverState.errors?.name ? "border-red-500" : ""}
/>
{serverState.errors?.name && (
<p id="name-error" className="text-sm text-red-500">
{t(serverState.errors.name[0])}
</p>
)}

</div>

<div className="space-y-2">
<Label htmlFor="phone">{t("common:phone number")}</Label>

<Input
name="phone"
id="phone"
placeholder={t("phone_placeholder")}
defaultValue={serverState.inputs?.phone || contact.phone}

// required
// minLength={5}
// maxLength={100}
aria-describedby="phone-error"
className={serverState.errors?.phone ? "border-red-500" : ""}
/>
{serverState.errors?.phone && (
<p id="phone-error" className="text-sm text-red-500">
{t(serverState.errors.phone[0])}
</p>
)}

</div>

<div className="space-y-2">
<Label htmlFor="description">{t("common:description")}</Label>
<Textarea
name="description”
id="description”
placeholder={t("description placeholder")}

defaultValue={
serverState.inputs?.description || contact.description

}
// required

Luigi Matteo Girke 270 Maio 2025



‘ Sistema de envio de SMS com interface web

// minLength={5}
// maxLength={100}
aria-describedby="description-error"
className={
serverState.errors?.description ? "border-red-500" : ""
}

/>
{serverState.errors?.description && (
<p id="description-error" className="text-sm text-red-500">
{t(serverState.errors.description[0])}
</p>
)}

</div>

{serverState.message.length > 0 && (
<Alert variant={serverState.success ? "default" : "destructive"
>
{!serverState.success && <CircleAlert className="w-4 h-4" />}
<AlertDescription className="relative top-1">
{t(serverState.message)}

</AlertDescription>

</Alert>

)}

<DialogFooter>
<DialogClose
type="button"
className={cn(buttonVariants({ variant: "outline" }))}
>
{t("common:cancel")}
</DialogClose>
<Button type="submit" disabled={pending}>
{pending && <Loader2 className="h-4 w-4 animate-spin" />}{" "

{t("common:update")}
</Button>
</DialogFooter>
</form>
</DialogContent>
</Dialog>
)
}

/components/modals/insert-contact.tsx

"use client";
import { useEffect, useState } from "react";

import {
Dialog,

Luigi Matteo Girke 271 Maio 2025



Sistema de envio de SMS com interface web

DialogContent,
DialogDescription,
DialogHeader,
DialogTitle,
DialogTrigger,
DialogFooter,
DialogPortal,
DialogClose,
} from "../ui/dialog";
import { Button, buttonvariants } from "../ui/button”;
import { cn } from "@/lib/utils";
import {
Table,
TableBody,
TableCaption,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/ui/table";

import { Checkbox } from "../ui/checkbox";

import { useNewMessage } from "@/contexts/use-new-message";
import { useModal } from "@/contexts/use-modal";

import { DBContact } from "@/types/contact";

import { useTranslation } from "react-il8next";

import { useContacts } from "@/contexts/use-contacts";

export default function InsertContactModal() {

const { contacts } = useContacts();

const { modal, setModal } = useModal();

const { addRecipient, showInfoAbout, message, removeRecipient } =
useNewMessage();

const initialSelected: DBContact[] = [];

message.recipients.forEach((r) => {
const contactInMessage = contacts.find((c) => c.phone === pr.phone);
if (contactInMessage) initialSelected.push(contactInMessage);

1)

const [selected, setSelected] = useState<DBContact[]>(initialSelected);
const { t } = useTranslation(["modals", "common"]);
const [watchCreateModalClose, setWatchCreateModalClose] = useState(false)

// Only those contacts that are selected here should be inside the messag
e object
const onInsert = () => {
// 1. Remove the ones from the message that were deselected here
const deselectedContacts = contacts.filter(
(contact) =»>

Iselected.some((selectedContact) => selectedContact === contact)
)
message.recipients.map((recipient) => {
if (deselectedContacts.find((c) => c.phone === recipient.phone)) {

Luigi Matteo Girke 272 Maio 2025



Sistema de envio de SMS com interface web

removeRecipient(recipient);

}
1)

// 2. Add the ones that don't exist yet.
const contactsNotInMessage = contacts.filter(
(contact) =»>
Imessage.recipients.some(
(messageContact) => messageContact.phone === contact.phone

)
);

selected.forEach((selectedContact: DBContact) => {
// pass add each selected selectedContact to the recipients context
if (
contactsNotInMessage.find(
(notContact) => notContact.phone === selectedContact.phone
)
) o
addRecipient(selectedContact.phone);
}
3

// close the modal
setInsertModal(false);

}s

const onSelectOne = (contact: DBContact) => {
const isSelected = !!selected.find((item) => item.id === contact.id);
isSelected

? // it 1s already checked, so uncheck it:
setSelected((prevSelected) =>
prevSelected.filter((s) => s.id !== contact.id)
)
: // it 1s not checked yet, so add it to the selectedArr
setSelected((prevSelected) => [...prevSelected, contact]);

}s
const onSelectAll = () => {
selected.length === contacts.length
? setSelected([])
setSelected(contacts);
}s
const showCreateModal = () => {
showInfoAbout(null);

setInsertModal(false);
setModal((m) => ({ ...m, contact: { ...m.contact, create: true } }));
setWatchCreateModalClose(true);

}s
const setInsertModal = (value: boolean) => {

setModal((m) => ({ ...m, contact: { ...m.contact, insert: value } }));
}s

Luigi Matteo Girke 273 Maio 2025



Sistema de envio de SMS com interface web

useEffect(() => {
if (watchCreateModalClose && modal.contact.create === false) {
setWatchCreateModalClose(false);
setInsertModal(true);
}
if (modal.contact.insert) setSelected(initialSelected);
}, [modal.contact]);
return (
<>
<Dialog open={modal.contact.insert} onOpenChange={setInsertModal}>
<DialogContent>
<DialogHeader>
<DialogTitle>{t("insert contact-header")}</DialogTitle>
<DialogDescription>
{t("insert_contact-header_caption")}
</DialogDescription>
</DialogHeader>
{contacts.length ? (
<div className="max-h-[400px] overflow-auto">
<Table>
{/* <TableCaption>A List of your contacts.</TableCaption> *

/}
<TableHeader>
<TableRow className="cursor-pointer"” onClick={onSelectAll
>
<TableHead className="flex items-center">
<Checkbox
className="w-6 h-6 rounded-md"
checked={selected.length === contacts.length}
onClick={onSelectAll}
/>
</TableHead>
<TableHead>{t("common:name")}</TableHead>
<TableHead>{t("common:phone number")}</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{contacts.map((contact) => {
const isSelected = !!selected.find(
(item) => item.id === contact.id
)
return (
<TableRow
key={contact.id}
className="cursor-pointer"
onClick={() => onSelectOne(contact)}
>
<TableCell
// This fixes the Layout shifting
className="flex items-center h-[36.5px] font-medi
um"
>

<Checkbox

Luigi Matteo Girke 274 Maio 2025



‘ Sistema de envio de SMS com interface web

className="h-6 w-6 rounded-md mb-1"
style={{
height: "24px !important",
width: "24px !important",
}}
checked={isSelected}
onClick={() => onSelectOne(contact)}
/>
</TableCell>
<TableCell>{contact.name}</TableCell>
<TableCell>{contact.phone}</TableCell>
</TableRow>
)
1}
</TableBody>
</Table>
</div>
)
<div className="flex flex-col items-center gap-4 py-4">
<DialogDescription className="self-start sm:self-center text-
center text-red-400">
{t("insert_contact-no_contacts")}
</DialogDescription>
<Button
className="w-min"
onClick={() => {
setInsertModal(false);
showCreateModal();
1}
>
{t("insert_contact-button_create new")}
</Button>
</div>
)}
<DialogFooter>
<DialogClose
className={cn(
"w-full sm:w-min",
buttonvariants({ variant: "outline" })
)}
>
{t("common:cancel")}
</DialogClose>
{contacts.length !== 0 && (
<Button
onClick={onInsert}
/* uncomment this if you prefer
disabled={!selected.length} */
>
{selected.length === 1
? t("insert_contact-button_insert_one")
: t("insert_contact-button_insert x", {
amount: selected.length,

Luigi Matteo Girke 275 Maio 2025



Sistema de envio de SMS com interface web

I3k;
</Button>

)}
</DialogFooter>
</DialogContent>
</Dialog>
</>
)
}

/components/modals/create-contact.tsx

"use client";

import React, { useEffect, useState } from "react";
import { useActionState } from "react";

import {

Dialog,

DialogContent,

DialogDescription,

DialogHeader,

DialogTitle,

DialogTrigger,

DialogFooter,
} from "../ui/dialog";
import { Button, buttonvariants } from "../ui/button”;
import { Input } from "@/components/ui/input";
import { Label } from "../ui/label";
import { createContact } from "@/lib/actions/contact.actions";
import { CircleAlert, Loader2 } from "lucide-react";
import { DialogClose } from "@/components/ui/dialog";
import { cn, toastActionResult } from "@/lib/utils";
import { Textarea } from "../ui/textarea";
import { Alert, AlertDescription } from "../ui/alert";
import { useModal } from "@/contexts/use-modal";
import { CreateContactResponse } from "@/types/action";
import { useTranslation } from "react-il8next";
import { DBContact } from "@/types/contact";
import { useContacts } from "@/contexts/use-contacts";

const initialState: CreateContactResponse = {
success: false,
message: [],

}s

export default function CreateContactModal({
defaultPhone,
onCreateSuccess,

A

defaultPhone?: string;

Luigi Matteo Girke 276 Maio 2025



Sistema de envio de SMS com interface web

onCreateSuccess?: (contact: DBContact) => void;
H A

const { modal, setModal } = useModal();

const [serverState, action, pending] = useActionState(
createContact,
initialState

)

const { refetchContacts } = useContacts();

const { t } = useTranslation(["modals"]);

useEffect(() => {

if (serverState.success) {
toastActionResult(serverState, t);
// Refetch contacts context after creation.
refetchContacts();
handleOpenChange(false);
if (onCreateSuccess && serverState.data)

onCreateSuccess(serverState.data);

}

}, [serverState]);

const handleOpenChange = (value: boolean) => {
setModal((m) => ({ ...m, contact: { ...m.contact, create: value } }));
clearInputs();

}s

const clearInputs = () => {
// This 1is unfortunately the easiest way to reset this shit
serverState.errors = undefined;
serverState.message = [];
serverState.inputs = {};

¥
return (
<Dialog
/* We do need these shits unfortunately */
open={modal.contact.create}
onOpenChange={handleOpenChange}
>
<DialogContent>
<DialogHeader>
<DialogTitle>{t("create contact-header")}</DialogTitle>
<DialogDescription>
{t("create_contact-header_ caption")}
</DialogDescription>
</DialogHeader>

<form action={action} className="space-y-6">
<div className="space-y-2">
<Label htmlFor="name">{t("common:name")}</Label>

<Input
name="name"
id="name"

placeholder={t("name_placeholder")}
defaultValue={serverState.inputs?.name}
// required

Luigi Matteo Girke 277 Maio 2025



- R Sistema de envio de SMS com interface web

// minLength={5}
// maxLength={100}
aria-describedby="name-error"
className={serverState.errors?.name ? "border-red-500" : ""}
/>
{serverState.errors?.name && (
<p id="name-error" className="text-sm text-red-500">
{t(serverState.errors.name[0])}
</p>
)}

</div>

<div className="space-y-2">
<Label htmlFor="phone">{t("common:phone number")}</Label>

<Input
name="phone"
id="phone"

placeholder={t("phone_placeholder")}
defaultValue={serverState.inputs?.phone || defaultPhone}
// required
// minLength={5}
// maxLength={100}
aria-describedby="phone-error"
className={serverState.errors?.phone ? "border-red-500" : ""}
/>
{serverState.errors?.phone && (
<p id="phone-error" className="text-sm text-red-500">
{t(serverState.errors.phone[0])}
</p>
)}

</div>

<div className="space-y-2">
<Label htmlFor="description">{t("common:description")}</Label>
<Textarea
name="description”
id="description”
placeholder={t("description placeholder")}
defaultValue={serverState.inputs?.description}
// required
// minLength={5}
// maxLength={100}
aria-describedby="description-error"
className={
serverState.errors?.description ? "border-red-500"
}
/>
{serverState.errors?.description && (
<p id="description-error" className="text-sm text-red-500">

{t(serverState.errors.description[0])}
</p>
)}

</div>

Luigi Matteo Girke 278 Maio 2025



Sistema de envio de SMS com interface web

{serverState.message.length > 0 && (
<Alert variant={serverState.success ? "default" : "destructive"
>
{!serverState.success && <CircleAlert className="w-4 h-4" />}
<AlertDescription className="relative top-1">
{t(serverState.message.join(", "))}

</AlertDescription>

</Alert>

)}

<DialogFooter>
<DialogClose
type="button"
className={cn(buttonVariants({ variant: "outline" }))}
>
{t("common:cancel")}
</DialogClose>
<Button type="submit" disabled={pending}>
{pending && <Loader2 className="h-4 w-4 animate-spin" />}{" "
{t("common:create")}
</Button>
</DialogFooter>
</form>
</DialogContent>
</Dialog>
)
}

/components/messages-page-skeleton.tsx

"use client";

import ChildrenPanel from "./shared/children-panel”;

import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { uselLayout } from "@/contexts/use-layout"”;

import { useTranslation } from "react-il8next";

import { cn } from "@/lib/utils";

import MessageDisplay from "./message-display";

import { useIsMobile } from "@/hooks/use-mobile";

import { PageHeader } from "./headers";

import Skeleton from "react-loading-skeleton";

import "react-loading-skeleton/dist/skeleton.css";

import { AmountIndicators, CategoryEnums } from "@/types";
import { ModalProvider } from "@/contexts/use-modal";

export default function MessagesPageSkeleton({
category,

Luigi Matteo Girke 279 Maio 2025



o Sistema de envio de SMS com interface web

o A
category: CategoryEnums;
H A

const { layout, fallbackLayout, amountIndicators } = uselLayout();
const { t } = useTranslation(["messages-page", "common"]);
const onMobile = useIsMobile();
const selected = null;
const skeletonsAmount: number = amountIndicators
? amountIndicators[category.toLowerCase() as keyof AmountIndicators]
: 4,
return (
<>
<ResizablePanel

className={cn(onMobile && selected !== null && "hidden")} // If we
are on mobile and a message is selected we only want to show the column con
taining the selected message.

// Check if the Llayout is a 3-column middle-bar panel. Use the prev
ious 3-column Layout 1if available; otherwise, render the fallback for diffe
rent or undefined Layouts.

defaultSize={

Array.isArray(layout) && layout.length === 3
? layout[1]
: fallbacklLayout[1]

}

minSize={22}

maxSize={50}

<PageHeader title={t( header_${category.toLowerCase()} )} />

<div className="rounded-md p-4 h-[68px]">
<Skeleton className="h-9" style={{ borderRadius: "©.375rem" }} />
</div>

<div className="flex flex-col gap-2 p-4 pt-0 mt-2 overflow-hidden">
{skeletonsAmount > @ ? (
// Math.min() makes it so that the maximum will be x, even 1if t
he variable has a Llarger number
Array.from({ length: Math.min(skeletonsAmount, 10) }).map(
(L, 1) =>H
return <MessageSkeleton key={i} />;
}

)
)
<div className="p-8 text-center text-muted-foreground">
<Skeleton className="w-full" />
</div>
)}
</div>
</ResizablePanel>
<ResizableHandle withHandle className={cn(onMobile && "hidden")} />
<ChildrenPanel
hasMiddleBar
className={cn(onMobile && selected === null && "hidden")} // Like a

Luigi Matteo Girke 280 Maio 2025



- R Sistema de envio de SMS com interface web

bove we are using reverse logic here. If we are on mobile, and nothing is s
elected, this component should not be displayed.
>
{/* If you need other modals somewhere else, move the provider up t
he component tree. And don't forget to update the skeleton too! */}
<ModalProvider>
<MessageDisplay message={null} reset={() => {}} category={categor
y} />
</ModalProvider>
</ChildrenPanel>
</>
)
}

function MessageSkeleton() {
return (
<div className="flex flex-col items-start gap-2 rounded-1lg border p-3 t
ext-left text-sm">
<div className="flex w-full flex-col gap-1">
<div className="flex items-center h-[20px] w-full">
<h2 className="flex-1 mr-20">
<Skeleton />
</h2>
<p className="w-[15%] self-center">
<Skeleton height={16} />
</p>
</div>
<div className="text-xs font-medium w-[40%] ">
<Skeleton />
</div>
</div>
<div className="line-clamp-2 text-xs text-muted-foreground w-full">
<Skeleton count={2} />
</div>
</div>
)
}

/components/shared/copy-button.tsx

"use client";

import React, { useState, useEffect, useRef, MouseEvent } from "react";
import { Copy, Check } from "lucide-react";

import { Button } from "@/components/ui/button”;

import { cn } from "@/1lib/utils”;

import { toast } from "sonner";

import { useTranslation } from "react-il8next";

interface CopyButtonProps {

Luigi Matteo Girke 281 Maio 2025



‘ Sistema de envio de SMS com interface web

children?: React.ReactNode;

text: string;

className?: string;

variant?: "outline" | "none" | "ghost" | "link";
size?: "sm" | "lg";

}

export function CopyButton({
children,
text,
className = "",
variant,
size,

}: CopyButtonProps) {
const [copied, setCopied] = useState(false);
const timerRef = useRef<NodelS.Timeout | null>(null);
const { t } = useTranslation(["common"]);
const successMessage = t("copy btn-success");

// We need this complex Logic or it won't work in some browsers
const handleCopy = async (e: MouseEvent<HTMLButtonElement>) => {
if (!copied) {
try {

// Check if the Clipboard API is supported

if (navigator.clipboard) {
await navigator.clipboard.writeText(text);
setCopied(true);
toast.success(successMessage); // Notify success

} else {
// Fallback for browsers that do not support the Clipboard API
const textarea = document.createElement("textarea");
textarea.value = text;
textarea.style.position = "fixed"; // Prevent scrolling to bottom

of page in MS Edge.

textarea.style.opacity = "@"; // Make it invisible
textarea.setAttribute("readonly", ""); // Make it read-only
document.body.appendChild(textarea);
textarea.select();
const successful = document.execCommand("copy");
document.body.removeChild(textarea);

if (successful) {

setCopied(true);
toast.success(successMessage); // Notify success
} else {
throw new Error("Copy command was unsuccessful.");

}
}

if (timerRef.current) clearTimeout(timerRef.current);
timerRef.current = setTimeout(() => setCopied(false), 2000);
} catch (error) {

Luigi Matteo Girke 282 Maio 2025



Sistema de envio de SMS com interface web

// Handle any errors that occur during the copy process
toast.error("copy btn-error™);

}
}
1

return (
<Button
variant={variant}
size={size}
className={cn(className, "flex items-center")}
onClick={handleCopy}

>
{copied ? (
<Check style={{ width: ".8rem", height: ".8rem" }} />
) (
<Copy style={{ width: ".8rem", height: ".8rem" }} />
YH" "}
<span>{children}</span>
</Button>
)

/components/shared/account.tsx

use client";

import React, { useState } from "react";

import ProfilePic from

../profile-pic";

import { useSession } from "@/hooks/use-session";
import { cn } from "@/lib/utils";

import { useTranslation } from "react-il8next";
import {

}

DropdownMenu,

DropdownMenuContent,
DropdownMenuGroup,

DropdownMenuItem,

DropdownMenulLabel,
DropdownMenuSeparator,
DropdownMenuTrigger,

from "@/components/ui/dropdown-menu”;

import Link from "next/link";

import { LogOut, MonitorCog, Settings, UserRoundPen } from "lucide-react";
import { useSettings } from "@/contexts/use-settings";

import { logout } from "@/lib/auth";

import { usePathname, useRouter } from "next/navigation"”;

import { getThemeByIndex, themes } from "@/lib/theme.colors";

import { useTheme as useNextTheme } from "next-themes";

import { ThemeMode } from "@/types/theme";

export default function Account({

Luigi Matteo Girke 283 Maio 2025



Sistema de envio de SMS com interface web

hideNameRole = false,
hideNameRoleOnXS,
profilePicPosition = "LEFT",
className,

Fo A
hideNameRole?: boolean;
hideNameRoleOnXS?: boolean;

profilePicPosition?: "LEFT" | "RIGHT";
className?: string;
B A

const { t } = useTranslation(["common"]);
const { session, loading } = useSession();
const { theme } = useNextTheme();

const pathname = usePathname();
const router = useRouter();
const { settings, resetlLocalSettings } = useSettings();

const handlelLogout = async () => {
const { success } = await logout();
if (success) {
resetLocalSettings();
router.push("/login");
}
}s

return (
<div
// className={className}
className={cn(
"flex h-[var(--header-header-height)] items-center justify-center",
// border-b
className
)}
>
<DropdownMenu>
<DropdownMenuTrigger
className={cn(
"flex gap-3 items-center justify-start w-full focus-primary-rin

hideNameRole && "w-9 h-9"
)}
>
<ProfilePic
size={9}
name={settings.displayName}
colorObj={getThemeByIndex(
settings.profileColorid || 1,
theme as ThemeMode
)}
loading={loading}
className={cn(profilePicPosition === "RIGHT" && "order-2")}
/>

Luigi Matteo Girke 284 Maio 2025



‘ Sistema de envio de SMS com interface web

<div
className={cn(
"flex flex-col",
profilePicPosition === "RIGHT" && "items-end", // align the t
ext to the right depending on Layout
(hideNameRole || loading) && "hidden",
hideNameRoleOnXS && "hidden xs:flex"

)}

<p className="font-semibold mb-[-3px]">
{settings.displayName || t("common:account-no_name")}
</p>
<p className="text-xs text-muted-foreground text-start">
{session?.isAdmin ? t("common:admin") : t("common:user")}
</p>
</div>
</DropdownMenuTrigger>
<DropdownMenuContent
align={profilePicPosition === "LEFT" ? "start" : "end"}
className="z-10"
>
<DropdownMenuGroup>
<Link href="/settings#profile"”>
<DropdownMenuItem>
<UserRoundPen />
{t("common:account-edit _profile")}
</DropdownMenuItem>
</Link>
<Link href="/settings">
<DropdownMenuItem>
<Settings />
{t("common:account-settings")}
</DropdownMenuItem>
</Link>
{session?.isAdmin && (
<Link href={pathname.includes("/dashboard") ?» "/" : "/dashboa

>

rd"}>
<DropdownMenuItem>
<MonitorCog />
{pathname.includes("/dashboard")
? t("common:account-dashboard leave")
: t("common:account-dashboard enter")}
</DropdownMenuItem>
</Link>
)}
</DropdownMenuGroup>
<DropdownMenuSeparator />
<DropdownMenuItem onClick={handlelLogout}>
<LogOut />
{t("common:account-log out")}
</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>

Luigi Matteo Girke 285 Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

</div>

)s

/components/shared/search.tsx

"use client";

import { Input } from "@/components/ui/input"”;
import { Search as SearchIcon } from "lucide-react";

type SearchProps = React.InputHTMLAttributes<HTMLInputElement> & {
onSearch: (term: string) => void;

}s

export default function Search({ onSearch, ...props }: SearchProps) {
const url = new URL(window.location.href);
const params = new URLSearchParams(url.search);
const handleSearch = (term: string) => {
// update data by calling parent function
onSearch(term);

// Use vanilla javascript to update the url.

// According to the Next.js docs we should use useSearchParams, usePath
name, and useRouter, but that causes the component to re-render and re-fetc
h data.

// For optimization purposes, we just fetch once for each page, and the
n filter that data using client-side javascript.

// Update the search parameter or delete it 1if search bar is empty

if (term) {
params.set("query”, term);

} else {
params.delete("query");

}

// Update the URL quietly without reloading the page
url.search = params.toString();
window.history.pushState({}, ""
}s
return (
<div className="p-4">
<div className="relative">
<SearchIcon className="absolute left-2 top-2.5 h-4 w-4 text-muted-f
oreground" />
<Input /** this input is not part of a form, we are just using the
input element as it has handy event Listeners */
onChange={(e) => {
handleSearch(e.target.value);

}}

Luigi Matteo Girke 286 Maio 2025

, url);



Sistema de envio de SMS com interface web

className="focus-visible:ring-1 focus-visible:ring-primary"
defaultValue={params.get("query")?.toString()}
{...props}
/>
</div>
</div>
)
}

/components/shared/children-panel.tsx

"use client";
import { ResizablePanel } from "../ui/resizable";
import { uselLayout } from "@/contexts/use-layout";

export default function ChildrenPanel({
children,
hasMiddleBar,
className,
Fo A
children: Readonly<React.ReactNode>;
hasMiddleBar?: boolean;
className?: string;
A
const { layout, fallbackLayout } = uselayout();
const middleBarWidth =
Array.isArray(layout) && layout.length === 3 ? layout[2] : undefined;

const fallbackWidth = Array.isArray(layout)
? 100 - layout[@]
: fallbackLayout[@];

return (
<ResizablePanel
// width at null means don't specify any width, if it has a value use
that, else use fallback
defaultSize={hasMiddleBar ? middleBarWidth : fallbackWidth}
className={className}
>
{children}
</ResizablePanel>
)
}

/components/shared/error-component.tsx

Luigi Matteo Girke 287 Maio 2025



Sistema de envio de SMS com interface web

"use client";
import { Frown } from "lucide-react";

type ErrorComponentProps = {
children?: React.ReactNode;
title: string;
subtitle: string;

}s
export default function ErrorComponent({
children,
title,
subtitle,
}: ErrorComponentProps) {
return (
<div className="h-full flex flex-col items-center justify-center gap-3"
>
<div className="flex flex-col items-center gap-1">
<Frown className="text-muted-foreground h-10 w-10 stroke-[1.2px]" /
>
<div className="flex flex-col items-center">
<h2>{title}</h2>
<p className="text-sm">{subtitle}</p>
</div>
</div>
{children}
</div>
)
}

/components/shared/submit-button.tsx

import React from "react";

import { Button } from "../ui/button”;
import { Loader2 } from "lucide-react";
import { useFormStatus } from "react-dom";

export default function SubmitButton({
children,
...props
}: React.ButtonHTMLAttributes<HTMLButtonElement>) {
const { pending } = useFormStatus();
return (
<Button disabled={pending} {...props}>
{pending && <Loader2 className="w-4 h-4 animate-spin" />}
{children}
</Button>
)
}

Luigi Matteo Girke 288 Maio 2025



‘ Sistema de envio de SMS com interface web

/components/shared/unload-listener.tsx

"use client";
import React, { useEffect } from "react";

export default function UnloadListener() {
useEffect(() => {
const handleBeforeUnload = (event: Event) => {
const message =
"You have unsaved changes. Are you sure you want to leave this page
Su
event.preventDefault();
event.returnValue = !lmessage; // For most browsers
return message; // For some older browsers

}s
window.addEventListener("beforeunload"”, handleBeforeUnload);

// Cleanup function to remove the event Listener
return () => {
window.removeEventListener("beforeunload"”, handleBeforeUnload);
};
oD

return <></>;

}

/components/shared/input.tsx

import * as React from "react";
import { cn } from "@/1lib/utils”;

const Input = React.forwardRef<HTMLInputElement, React.ComponentProps<"inpu
t">>(
({ className, type, ...props }, ref) => {
return (
<input
type={type}
className={cn(

"focus-visible:ring-b-1 focus-visible:ring-ring flex h-9 w-full r
ounded-md bg-transparent px-3 py-1 text-base shadow-sm transition-colors fi
le:border-0 file:bg-transparent file:text-sm file:font-medium file:text-acc
ent-foreground placeholder:text-muted-foreground focus-visible:outline-none
disabled:cursor-not-allowed disabled:opacity-50 md:text-sm",

className

)}
ref={ref}

Luigi Matteo Girke 289 Maio 2025



)
I

e

/

i
i

}

Sistema de envio de SMS com interface web

{...props}
/>
)
}

nput.displayName = "Input";

xport { Input };

components/clock-icon.tsx

mport React, { JSX } from "react";
mport {

Clock1,

Clock2,

Clock3,

Clock4,

Clock5s,

Clockeé,

Clock7,

Clocks8,

Clock9,

Clockio,

Clock11,

Clock12,

from "lucide-react";

function ClockIcon({ hour }: { hour: number }) {

}

// Ensure the hour is between 1 and 12
const validHour = Math.max(1, Math.min(12, hour));

// Map the hour to the corresponding icon

const icons: { [key: number]: JSX.Element } = {
1: <Clock1l />,

<Clock2 />,

<Clock3 />,

<Clock4 />,

<Clock5 />,

<Clock6 />,

<Clock?7 />,

<Clock8 />,

9: <Clock9 />,

10: <Clockile />,

11: <Clock11l />,

12: <Clock12 />,

coNOuUVThWN

1

return <div className="flex-centered h-4 w-4">{icons[validHour]}</div>;

Luigi Matteo Girke 290

Maio 2025



Sistema de envio de SMS com interface web

export default ClockIcon;

/components/resizable-panel-wrapper.tsx

"use client";

import { ResizablePanelGroup } from "@/components/ui/resizable";
import { uselLayout } from "@/contexts/use-layout"”;

export default function ResizablePanelWrapper({
children,

}: Readonly<{ children: React.ReactNode }>) {
const { setlLayout } = uselayout();

return (
<ResizablePanelGroup
direction="horizontal"
onLayout={(sizes: number[]) => {
setLayout(sizes);
const cookieValue = JSON.stringify(sizes);
const cookiePath = "/"; // Specify a url path. The Layout should be
the same, no matter where it got saved.
document.cookie = “react-resizable-panels:layout:app=%${cookieValue}
; path=${cookiePath}; ;
}}
className="h-full items-stretch”
>
{children}
</ResizablePanelGroup>
)
}

/components/messages-list.tsx

"use client";

import { cn, getDateFnsLocale } from "@/lib/utils";

import { ScrollArea } from "@/components/ui/scroll-area";

import { ComponentProps } from "react";

import { formatDistanceToNow } from "date-fns/formatDistanceToNow";
import { Badge } from "@/components/ui/badge";

import type { DBMessage } from "@/types";

import { useTranslation } from "react-il8next";

import ClockIcon from "./clock-icon";

import { useIsMobile } from "@/hooks/use-mobile";

import { Button } from "./ui/button”;

Luigi Matteo Girke 291 Maio 2025



Sistema de envio de SMS com interface web

type MessagelListProps = {
messages: DBMessage[];
selectedMessageld: string | null;
setSelected: (message: DBMessage) => void;

}s

export function Messagelist({
messages,
selectedMessageld,
setSelected,
}: MessagelListProps) {
const { t, i18n } = useTranslation(["messages-page"]);
const onMobile = useIsMobile();

return (
<ScrollArea
className={
onMobile
? “h-[calc(1@00vh-var(--simple-header-height)-68px)]"
: "h-[calc(1l@0vh-var(--header-height)-68px)]"
}
>
<div className="flex flex-col gap-2 p-4 pt-0">
{messages.map((message) => {
const sendInFuture = message.send time.getTime() > Date.now();
const statusTranslationString = (
message.status !== "SCHEDULED"
? message.status
: sendInFuture
? "SCHEDULED"
: "SENT"
) .toLowerCase();
return (
<Button
key={message.id}
variant="ghost"
className={cn(
"h-full flex flex-col items-start gap-2 rounded-1lg border p
-3 text-left mt-[1px]",
selectedMessageld === message.id && "bg-accent"
)}
onClick={() => setSelected(message)}
>
<div className="flex w-full flex-col">
<div className="flex items-center gap-1">
<div className="flex items-center gap-2">
<div className="font-semibold">
{message.subject
? message.subject
: t("common:no_subject")}
</div>
{sendInFuture && message.status === "SCHEDULED" && (

Luigi Matteo Girke 292 Maio 2025



' o Sistema de envio de SMS com interface web

<ClockIcon
hour={
Math.round(message.send time.getHours() % 12) ||
12
}
/>
)}
{message.status === "FAILED" && (

<div className="flex items-center gap-1 text-destruct
ive text-xs"»>
<div className="flex h-2 w-2 rounded-full bg-destru
ctive" />
{message.api_error_code}
</div>
)}
</div>
<div
className={cn(
"ml-auto text-xs",
selectedMessageld === message.id
? "text-foreground"
"text-muted-foreground"
)}
>
{formatDistanceToNow(new Date(message.send _time), {
addSuffix: true,
locale: getDateFnsLocale(il8n.language),
1}
</div>
</div>
</div>
<div className="line-clamp-2 text-xs text-muted-foreground">
{message.body.substring(@, 300)}
</div>

{/* If we are on the trash page, render a badge to show what
the message was before it got moved to the trash */}
{message.in_trash == true && (
<Badge
variant="outline"
className="tracking-widest text-xs text-muted-foreground”
style={{ letterSpacing: "1px" }}
>
{/* Play around with the styles */}
{t( status_${statusTranslationString} ).toUpperCase()}
</Badge>
)}
</Button>
)
1}
</div>
</ScrollArea>

)s

Luigi Matteo Girke 293 Maio 2025



‘ Sistema de envio de SMS com interface web

}

function getBadgeVariantFromLabel(
label: string

): ComponentProps<typeof Badge>["variant"] {
// 1f (["success"].includes(label.toLowerCase())) {
//  return "positive";

/7 }

if (["FAILED"].includes(label.toLowerCase())) {
return "destructive";

}
if (["SCHEDULED"].includes(label.toLowerCase())) {

return "outline";

}

return "secondary";

/components/cards.tsx

import React from "react";
import { Card, CardHeader, CardTitle } from "./ui/card";
import Link from "next/link";

type LinkCardProps = {
href: string;
title: string;
heroValue: string | number;
Icon: any;
}s
export default function LinkCard({
href,
title,
heroValue,
Icon,
}: LinkCardProps) {
return (
<Link
href={href}
className="flex-1 max-w-[350px] focus-primary-ring rounded-x1"
>
<Card className="shadow-none hover:bg-muted dark:hover:bg-muted relat
ive overflow-hidden ">
<CardHeader>
<div className="flex justify-between items-center gap-8">
<div>
<CardTitle>{title}</CardTitle>
<hl className="font-medium leading-tight">{heroValue}</h1>

Luigi Matteo Girke 294 Maio 2025



‘ Sistema de envio de SMS com interface web

</div>
<div className=""»>
<Icon
fill="hsl(var(--primary))"
height={65}
width={65}
className="absolute rotate-[-15deg] bottom-[-3px] right-[25
px] opacity-25"
/>
{/* you may change the order of these to see what works best
<Icon
fill="hsl(var(--primary))"
height={70}
width={70}
className="absolute rotate-[-7deg] bottom-[-2px] right-[-5p
x] opacity-80"
/>
</div>
</div>
</CardHeader>
</Card>
</Link>
)
}

/components/contacts-page.tsx

"use client";

import React, { useEffect, useState } from "react";

import ChildrenPanel from "./shared/children-panel”;

import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { uselLayout } from "@/contexts/use-layout"”;

import { PageHeader } from "./headers";

import { useTranslation } from "react-il8next";

import ContactsList from "./contacts-list";

import { cn, searchContacts } from "@/lib/utils"”;

import ContactDisplay from "./contact-display";

import { useIsMobile } from "@/hooks/use-mobile";

import Search from "./shared/search"”;

import { useRouter, useSearchParams } from "next/navigation";
import { CirclePlus, Plus } from "lucide-react"”;

import { Button } from "./ui/button”;

import { useModal } from "@/contexts/use-modal";

import { DBContact } from "@/types/contact";

import CreateContactModal from "./modals/create-contact”;
import useIsMounted from "@/hooks/use-mounted";

import { useContacts } from "@/contexts/use-contacts”;

Luigi Matteo Girke 205 Maio 2025



Sistema de envio de SMS com interface web

export default function ContactsPage() {
const { layout, fallbackLayout } = uselayout();
const { t } = useTranslation(["contacts-page"]);
const { contacts, contactFetchError } = useContacts();
const [filteredContacts, setFilteredContacts] = useState(contacts);
const onMobile = uselIsMobile();
const isMounted = useIsMounted();
const { modal, setModal } = useModal();

const [selected, setSelected] = useState<DBContact | null>(
filteredContacts[0] || null

);
const searchParams = useSearchParams();

const onSearch = (searchTerm: string) => {
setFilteredContacts(searchContacts(contacts, searchTerm));
}s
const showCreateModal = () => {
setModal((m) => ({
...m,
contact: { ...m.contact, create: true },
1)
}s

useEffect(() => {
const oldSelected = contacts.find((c) => c.id === selected?.id);
setFilteredContacts(searchContacts(contacts, searchParams.get("query"))
)
if (oldSelected) {
// Keep the current selection
setSelected(oldSelected);
}

}, [contacts]);

useEffect(() => {
if (isMounted && onMobile) {
// On mobile, it should show the List by default without having the f
irst one selected Like on desktop.
setSelected(null);
}

}, [isMounted]);

return (
<>

<CreateContactModal
onCreateSuccess={(contact: DBContact) => setSelected(contact)}

/>

<ResizablePanel
className={cn("relative"”, onMobile && selected !== null && "hidden"

Y} // If we are on mobile and a contact is selected we only want to show th

Luigi Matteo Girke 296 Maio 2025



o Sistema de envio de SMS com interface web

e column containing the selected contact.

// Check if the Llayout is a 3-column middle-bar panel. Use the prev
ious 3-column Layout 1if available; otherwise, render the fallback for diffe
rent or undefined Layouts.

defaultSize={

Array.isArray(layout) && layout.length === 3
? layout[1]
: fallbacklLayout[1]

}

minSize={22}

maxSize={50}

<PageHeader title={t("header")}>
{!'onMobile && (
<Button size="sm" onClick={showCreateModal}>
<CirclePlus />
{t("new")}
</Button>
)}
</PageHeader>
<Search
onSearch={onSearch}
placeholder={t("search _contacts")}
className="pl-8 placeholder:text-muted-foreground border"
/>
{filteredContacts.length > @ ? (
<ContactsList
contacts={filteredContacts}
selectedContactId={selected?.id || null}
setSelected={setSelected}

(

<div className="p-8 text-center text-muted-foreground">
{contactFetchError || t("none found")}
</div>
)}
{onMobile && (
<Button
className="absolute w-11 h-11 bg-primary bottom-0 right-0 m-8 r
ounded-full"
onClick={() => {
setModal((m) => ({
coem,
contact: { ...m.contact, create: true },
1)
}}

>
<Plus />
</Button>
)}
</ResizablePanel>
<ResizableHandle withHandle className={cn(onMobile && "hidden")} />

/>
) .

Luigi Matteo Girke 297 Maio 2025



- R Sistema de envio de SMS com interface web

<ChildrenPanel
hasMiddleBar
// reverse lLogic Like above: on mobile and with nothing selected, t
his component should be hidden.
className={cn(onMobile && selected === null && "hidden")} // Like a
bove we are using reverse lLogic here. If we are on mobile, and nothing is s
elected, this component should not be displayed.
>
<ContactDisplay contact={selected} reset={() => setSelected(null)}
/>
</ChildrenPanel>
</>
)
}

/components/logo.tsx

import Image from "next/image";
import Link from "next/link";
import React from "react";

export default function AppLogo({ isCollapsed }: { isCollapsed: boolean })
{
return (
<>
<Link
href="/"
className="flex items-center gap-2 user-select-none focus-primary-r
ing"
<Image
src="/etpzp_sms-logo.png"
alt="Application logo"
width={48}
height={48}
className="user-select-none relative bottom-[2px]"
/>
{!isCollapsed && (
<span
className="font-bold user-select-none tracking-tight text-x1 fo
nt-disket-mono-regular" // or text-2xl
>
ETPZP-SMS
</span>
)}
</Link>
</>
)
}

Luigi Matteo Girke 298 Maio 2025



Sistema de envio de SMS com interface web

/components/form-input.tsx

"use client";
import React from "react";
import {
FormControl,
FormField,
FormItem,
FormLabel,
FormMessage,
} from "./ui/form";
import { Input as ShadcnInput } from "./shared/input";
import { Control, FieldPath, FieldValues } from "react-hook-form";
import { cn } from "@/lib/utils";

interface InputProps<T extends FieldValues>
extends React.InputHTMLAttributes<HTMLInputElement> {
name: FieldPath<T>;
control: Control<T>;
label?: string;
error?: boolean;

}

export function Input<T extends FieldValues>({
name,
control,
label,
error,
...props
}: InputProps<T>) {
return (
<FormField
control={control}
name={name}
render={({ field }) => (
<FormItem>
{label && (
<FormLabel
className={cn("text-foreground", error && "text-destructive")

>
{label}

</FormLabel>
)}
<FormControl>

<ShadcnInput {...field} {...props} />
</FormControl>
<FormMessage />

</FormItem>

)}

Luigi Matteo Girke 299 Maio 2025



/

Sistema de envio de SMS com interface web
/>
)5
components/login-form.tsx

use client”;

import {

}

Card,

CardContent,
CardDescription,

CardHeader,

CardTitle,

from "@/components/ui/card";

import Image from "next/image";

import { Button } from "@/components/ui/button”;
import { Input } from "@/components/ui/input";
import { login } from "@/lib/auth";

import { FormEvent, useState } from "react";
import { useRouter } from "next/navigation";
import { Label } from "./ui/label";

import { ActionResponse } from "@/types/action";
import { Login } from "@/lib/auth/config";

import SubmitButton from "./shared/submit-button”;
import { Eye, Router } from "lucide-react";

import { useSettings } from "@/contexts/use-settings";
import { useTranslation } from "react-il8next";

import { toastActionResult } from "@/lib/utils";

C

}

onst initialState: ActionResponse<Login> = {
success: false,
message: [],

.
J

export default function LoginForm() {

const [passInputType, setPassInputType] = useState("password");
const [serverState, setServerState] = useState(initialState);
const [pending, setPending] = useState(false);

const { syncWithDB } = useSettings();

const router = useRouter();

const { t } = useTranslation(["login-page", "common"]);

async function handleSubmit(event: FormEvent<HTMLFormElement>) {
event.preventDefault();
setPending(true);
// Create a FormData from the HTML form element
const formData = new FormData(event.currentTarget);

const result = await login(formData);
setServerState(result);

Luigi Matteo Girke 300 Maio 2025



- R Sistema de envio de SMS com interface web

toastActionResult(result, t);

if (result.success) {
await syncWithDB(); // Fetch users settings from database on Login
router.replace("/");

}
setPending(false);

}
return (
<main className="flex items-center justify-center w-screen h-screen p-3
">
<form onSubmit={handleSubmit}>
<Card className="mx-auto max-w-sm">
<CardHeader>
<div className="relative w-[60%] overflow-hidden mb-2">
{/* Set a height for the parent */}
<Image
src="/etpzp_sms-logo.png"
width={80}
height={80}
alt="Microsoft logo"
// Layout="filLL" // This makes the image fill the parent co
ntainer
// objectFit="cover" // This will crop the image to fill th
e container
quality={100}
/>
</div>
<CardTitle className="text-2x1">{t("header")}</CardTitle>
<CardDescription>{t("header caption")}</CardDescription>
</CardHeader>
<CardContent className="flex flex-col gap-2">
<div>
<Label htmlFor="email">{t("email label")}</Label>
<Input
name="email"
id="email"
type="email"
defaultValue={serverState.inputs?.email}
placeholder={t("email placeholder")}
aria-describedby="email"
disabled={pending}
/>
{serverState.errors?.email && (
<p id="email-error" className="text-sm text-red-500">
{t(serverState.errors.email[@])}
</p>
)}
</div>
<div>
<Label htmlFor="password">{t("password label")}</Label>
<div className="flex items-center gap-1 relative">
<Input
name="password"

Luigi Matteo Girke 301 Maio 2025



tton>

)s
}

Sistema de envio de SMS com interface web

id="password"
type={passInputType}
defaultValue={serverState.inputs?.password}
aria-describedby="password"
disabled={pending}

/>

<Button
className="absolute right-0 z-10
type="button"
variant="none"
onClick={() =>

setPassInputType((prev) =>

prev === "text" ? "password" : "text"
)
}
>
<Eye className="w-4 h-4" />
</Button>
</div>

{serverState.errors?.password && (
<p id="password-error" className="text-sm text-red-500">
{t(serverState.errors.password[0])}
</p>
)}
</div>
{!serverState.success && (
<p className="text-sm text-destructive text-center">
{t(serverState.message[0])}
</p>
)}
<SubmitButton className="w-full">{t("button_submit")}</SubmitBu

</CardContent>
</Card>
</form>
</main>

/components/profile-pic.tsx

"use client";

import React from "react";

import { cn, getNameInitials } from "@/lib/utils"”;
import { UserRound } from "lucide-react";

import Skeleton from "react-loading-skeleton";
import { ThemeProperties } from "@/types/theme";

type ProfilePicProps = {

Luigi Matteo Girke 302 Maio 2025



o Sistema de envio de SMS com interface web

size?: number;
name?: string;
colorObj?: ThemeProperties | undefined;
loading?: boolean;
className?: string;
} & React.HTMLAttributes<HTMLDivElement>;

export default function ProfilePic({
size = 9,
name,
// Will be filled use the colorObj's properties if it is provided
coloroObj,
loading,
className,
...props
}: ProfilePicProps) {
if (loading)
return (
<Skeleton
width={36}
height={36}
circle
containerClassName={cn("flex", className)}
/>
)

return (
<div
className={cn(
“flex justify-center items-center rounded-full", // border border-m
uted-foreground - Don't Like this
className // add additional passed in classNames
)}
// For some reason we need to use inline styles for this, as it seems
to get overridden
style={{
width: ~${size * 4}px",
height: “${size * 4}px’,
backgroundColor: “hsl(${colorObj?.primary})",
color: "hsl(${colorObj?.primaryForeground})",

}}
{...props}
>
{name ? (
<p className={cn("text-sm")}>{getNameInitials(name)}</p>
) (
<UserRound
className="height-full text-accent-foreground"
strokeWidth={1.14}
/>
)}
</div>

Luigi Matteo Girke 303 Maio 2025



Sistema de envio de SMS com interface web

)s

/components/app-layout.tsx

"use client";

import ResizablePanelWrapper from "@/components/resizable-panel-wrapper";
import NavPanel, { MobileNavPanel } from "@/components/nav-panel”;
import { useTheme as useNextTheme } from "next-themes";

import { SkeletonTheme } from "react-loading-skeleton";

import { uselLayout } from "@/contexts/use-layout"”;

import { useSettings } from "@/contexts/use-settings";

import TranslationsProvider from "@/contexts/translations-provider";
import AppLogo from "./logo";

import { useIsMobile } from "@/hooks/use-mobile";

import Account from "./shared/account";

import { useEffect } from "react"”;

type LayoutProps = Readonly<{
children: React.ReactNode;
resources: any;
locale: string;
namespaces: string[];

}>;

export default function AppLayout({
children,
resources,
locale,
namespaces,

}: LayoutProps) {
const { theme } = useNextTheme();
const { settings } = useSettings();
const onMobile = useIsMobile();
const { isFullscreen } = uselayout();

useEffect(() => {

// Check if there's a hash in the URL

if (window.location.hash) {
// Scroll to the anchor
const anchor = document.querySelector(window.location.hash);
if (anchor) {

anchor.scrollIntoView({ behavior: "smooth" });

}

}
}, [1); // Empty dependency array to run only on mount

return (
<SkeletonTheme

Luigi Matteo Girke 304 Maio 2025



Prof Zona do Pinhal Sistema de envio de SMS com interface web

// we are adjusting loading skeleton colors for dark mode - defaults
for Light mode already Look good
baseColor={theme === "dark" ? "#2a2a2a" : undefined}
highlightColor={theme === "dark" ? "#3a3a3a" : undefined}
>
{/* Modern Layout bar here */}
{settings.layout === "MODERN" && !isFullscreen && !onMobile && (
<TranslationsProvider
resources={resources}
locale={locale}
/* Currently account only uses “~common™ namespace */
namespaces={["common"]}
>
<div className="w-full min-h-[var(--simple-header-height)] flex j
ustify-between items-center border-b px-2">
<div className="flex items-center gap-2">
<AppLogo isCollapsed={onMobile} />
</div>
<div className="">
<Account profilePicPosition="RIGHT" />
</div>
</div>
</TranslationsProvider>
)}
<ResizablePanelWrapper>
<TranslationsProvider
/* Only wrap what's necessary with the TranslationsProvider */
resources={resources}
locale={locale}
/* should be ["navigation", "modals", "common"] */
namespaces={namespaces}
>
{/* error.tsx catchall file would get its translations from here,
1f one existed in /app/[locale]/(root)/error.tsx */}
<NavPanel /* resizableHandle 1is inside here */ [>
<MobileNavPanel /* open state is managed in uselayout context */

/>
</TranslationsProvider>
{children}
</ResizablePanelWrapper>
</SkeletonTheme>
)5
}

/components/contact-display.tsx

"use client";

import { format } from "date-fns/format";

Luigi Matteo Girke 305 Maio 2025



Sistema de envio de SMS com interface web

import { ArrowLeft, Edit, Trash2, X } from "lucide-react";
import { Button } from "@/components/ui/button”;
import { Separator } from "@/components/ui/separator";
import {

Tooltip,

TooltipContent,

TooltipTrigger,
} from "@/components/ui/tooltip”;

import { useIsMobile } from "@/hooks/use-mobile";

import { cn, getNameInitials, toastActionResult } from "@/lib/utils";
import { CopyButton } from "./shared/copy-button";

import { deleteContact } from "@/lib/actions/contact.actions"”;

import { useModal } from "@/contexts/use-modal";

import EditContactModal from "./modals/edit-contact";
import { useRouter } from "next/navigation";

import { DBContact } from "@/types/contact";

import { saveDraft } from "@/lib/actions/message.actions";
import { useTranslation } from "react-il8next";

import ProfilePic from "./profile-pic";

import { PT_DATE_FORMAT } from "@/global.config";

import { ScrollArea } from "./ui/scroll-area";

import { useContacts } from "@/contexts/use-contacts”;

export default function ContactDisplay({
contact,
reset,
b A
contact: DBContact | null;
reset: () => void;
» A
const onMobile = useIsMobile();
const router = useRouter();
const { t } = useTranslation(["contacts-page", "common"]);
const { setModal } = useModal();
const { refetchContacts } = useContacts();

const handleDelete = async () => {
if (contact) {
const result = await deleteContact(contact.id);
toastActionResult(result, t);
if (result.success) refetchContacts();
}
}s
const messageContact = async () => {
if (contact) {
const newDraft = await saveDraft(undefined, {

body: IIII)
recipients: [
{

phone: contact.phone,

// This is a temporary solution. Maybe change the type Later to
not be NewRecipient|[]

isValid: true,

Luigi Matteo Girke 306 Maio 2025



‘ Sistema de envio de SMS com interface web

proneForDeletion: false,
¥
1,
3

if (newDraft.success && newDraft.draftId) {
router.push(” /new-message?message_id=${newDraft.draftId} );
} else {
toastActionResult(newDraft, t);
}
}
}s
return (
<div className={cn("flex h-full flex-col")}>
{contact && <EditContactModal contact={contact} />}
<div className="flex items-center p-2 h-[var(--simple-header-height)]
border-b">
<div className="flex items-center gap-2">
{onMobile && (
<Tooltip>
<TooltipTrigger asChild>
<Button variant="ghost" size="icon" onClick={() => reset()}

<ArrowLeft className="h-4 w-4" />
<span className="sr-only">{t("common:go_back")}</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("common:go back")}</TooltipContent>
</Tooltip>
)}

<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
disabled={!contact}
onClick={handleDelete}

<Trash2 className="h-4 w-4" />
<span className="sr-only">
{t("common:delete_permanently")}
</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("common:delete permanently")}</TooltipConten
t
</Tooltip>

<Tooltip>
<TooltipTrigger asChild>
<Button
variant="ghost"

Luigi Matteo Girke 307 Maio 2025



‘ Sistema de envio de SMS com interface web

size="icon"
onClick={() =>
setModal((m) => ({

...m,
contact: { ...m.contact, edit: true },
)
¥
disabled={!contact}

<Edit className="h-4 w-4" />
<span className="sr-only">{t("common:edit")}</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("common:edit")}</TooltipContent>
</Tooltip>
</div>
<div className="ml-auto flex items-center gap-2">
{contact && (
<Tooltip>
<TooltipTrigger asChild>
<Button variant="ghost" size="icon" onClick={() => reset()}

<X className="h-4 w-4" />
<span className="sr-only">{t("common:close")}</span>
</Button>
</TooltipTrigger>
<TooltipContent>{t("common:close")}</TooltipContent>
</Tooltip>
)}
</div>
</div>
{/* End top bar */}
{/* <Separator /> */}

<ScrollArea>
<div
className={
onMobile
? “h-[calc(100vh-var(--simple-header-height))]"
: "h-[calc(10@vh-var(--header-height))]"
}
>
{contact ? (
<div className="flex flex-1 flex-col"»
<div className="flex items-start p-4">
<div className="flex items-center gap-4 text-sm">

<ProfilePic
name={contact.name}
size={10}
className="border"
/>
<h2>{contact.name}</h2>
</div>

Luigi Matteo Girke 308 Maio 2025



' o Sistema de envio de SMS com interface web

{contact.created at && (
<div className="ml-auto text-xs text-muted-foreground">
{"${t("common:created_on")} ${format(
new Date(contact.created at),
PT_DATE_FORMAT
)}
</div>
)}
</div>
<Separator />
<div className="flex gap-4 justify-between items-center p-4 t
ext-sm">
<p>{t("common:phone_number")}</p>
<div className="flex">
<CopyButton
text={contact.phone}
variant="none"
className="pr-1"
/>
<Button
variant="1ink"
className="p-0"
onClick={messageContact}
>
{contact.phone}
</Button>
</div>
</div>
<Separator />
<div className="flex gap-4 justify-between p-4 text-sm">
<p>{t("common:description”)}</p>

{contact.description?.trim() ? (
<p className="text-right">{contact.description}</p>
c (
<p className="italic text-right">
{t("common:no_description")}
</p>
)}
</div>
</div>
)
<div className="p-8 text-center text-muted-foreground">
{t("none_selected")}
</div>
)}
</div>
</ScrollArea>
</div>
)
}

)

Luigi Matteo Girke 309 Maio 2025



Sistema de envio de SMS com interface web

/components/send-button.tsx

"use client";

import { SetStateAction, useEffect, useState } from "react"”;
import { Button, buttonVariants } from "./ui/button";

import { ChevronDown, Clock, Loader2, Send } from "lucide-react";
import {

DropdownMenu,

DropdownMenuContent,

DropdownMenuItem,

DropdownMenuLabel,

DropdownMenuSeparator,

DropdownMenuTrigger,
} from "./ui/dropdown-menu";
import { cn } from "@/lib/utils";
import { useTranslation } from "react-il8next";
import { format } from "date-fns";
import { useNewMessage } from "@/contexts/use-new-message";
import { useModal } from "@/contexts/use-modal";
import { PT_DATE_FORMAT } from "@/global.config";

export default function SendButton({ loading }: { loading: boolean }) {

const now = new Date();

now.setMinutes(now.getMinutes() + 1); // Add one or two minutes margin so
that when the page lLoads slowly, the now date will appear to be in the past
, displaying send now on the button

const { modal, setModal, scheduleDropdown, setScheduleDropdown } = useMod
al();

const { message, setMessage } = useNewMessage();

const { t } = useTranslation(["messages-page", "modals", "common"]);

function tomorrowAt(hour: number) {
// Create a new Date object for the current date
const now = new Date();

// Create a new Date object for tomorrow
const tomorrow: Date = new Date(now);
tomorrow.setDate(now.getDate() + 1);

// Set the specified hour and default minutes to ©
tomorrow. setHours(hour, 6, 9, 9);

return tomorrow;

}

return (
<div className="flex">
<Button

Luigi Matteo Girke 310 Maio 2025



‘ Sistema de envio de SMS com interface web

type="submit"
className="rounded-tr-none rounded-br-none border-primary-foregroun
d border-r"
disabled={loading}
>
{loading ? (
<Loader2 className="animate-spin" />
)
<Send className="w-4 h-4" />
)}
{message.scheduledDate > now
? " ${t("submit_btn-scheduled", {
time: "", // 118n messes up the output when passing it in Lik
e this
1)} ${format(message.scheduledDate, PT_DATE_FORMAT)}"
: t("submit _btn-normal")}
</Button>

<DropdownMenu open={scheduleDropdown} onOpenChange={setScheduleDropdo

wn}>
<DropdownMenuTrigger
className={cn("flex gap-3 items-center justify-start w-full")}
asChild
>
<Button
className={cn(
"px-[1px] rounded-tl-none rounded-bl-none shadow-none",
scheduleDropdown && "bg-primary/90"
)}
type="button"
disabled={loading}
>
<ChevronDown
className={cn(
"h-4 w-4 transition-transform duration-300",
scheduleDropdown && "rotate-180"
)}
/>
</Button>
</DropdownMenuTrigger>
<DropdownMenuContent align="end">
<DropdownMenulLabel>
<h6 className="font-bold">{t("schedule_dropdown-header")}</h6>
<p className="text-muted-foreground font-normal"”>
{t("schedule_dropdown-header caption")}
</p>
</DropdownMenulLabel>
<DropdownMenuSeparator />
{message.scheduledDate > now && (
<DropdownMenuItem
onSelect={() => setMessage((m) => ({ ...m, scheduledDate: now
M)}

>
{t("schedule_dropdown-reset")}

Luigi Matteo Girke 31 Maio 2025



Sistema de envio de SMS com interface web

</DropdownMenuItem>

)}
{message.scheduledDate.getTime() !== tomorrowAt(9).getTime() && (

<DropdownMenuItem
onSelect={() =>
setMessage((m) => ({

c..m,
scheduledDate: tomorrowAt(9),
1)
}
>
{t("schedule_dropdown-tomorrow_morning")}
</DropdownMenuItem>
)}
{message.scheduledDate.getTime() !== tomorrowAt(15).getTime() &&
(
<DropdownMenuItem
onSelect={() =>
setMessage((m) => ({
c..m,
scheduledDate: tomorrowAt(15),
1)
}
>
{t("schedule_dropdown-tomorrow_afternoon")}
</DropdownMenuItem>
)}
<DropdownMenuItem
onSelect={() => setModal((m) => ({ ...m, schedule: true }))}
>
<span>{t("schedule dropdown-custom")}</span>
</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>
</div>
)
}
/ .dockerignore

# Ignore the .env.docker file
.env.docker

# Ignore other files and directories
node_modules
*.log

/.gitignore

Luigi Matteo Girke 312 Maio 2025



Sistema de envio de SMS com interface web

# See https://help.github.com/articles/ignoring-files/ for more about ignor
ing files.

# dependencies
/node_modules
/.pnp

.pnp.*

.yarn/*
I.yarn/patches
!.yarn/plugins
I.yarn/releases
!.yarn/versions

# testing
/coverage

# next.js
/.next/
/out/

# production
/build

# misc
.DS_Store
*. pem

# debug

npm-debug.log*
yarn-debug.log*
yarn-error.log*

# env files (can opt-in for committing if needed)
.env**

# vercel
.vercel

# typescript
*.tsbuildinfo
next-env.d.ts

# Languages
/locales/

# Example data
/lib/data/*

/package.json

Luigi Matteo Girke 313 Maio 2025



' o Sistema de envio de SMS com interface web

"name": "etpzp-sms-app",

"version": "0.1.0",

"private": true,

"scripts": {
"dev": "il8nexus pull && next dev",
"build": "il8nexus pull && next build",
"start": "il8nexus pull && next start",
"lint": "next lint",
"dev-simple": "next dev"

¥

"overrides": {
"react-is": "719.0.0-rc-69d4b800-20241021"

¥

"dependencies": {
"@hookform/resolvers": "7~3.9.1",
"@radix-ui/react-accordion": "71.2.3",
"@radix-ui/react-alert-dialog": "~1.1.6",
"@radix-ui/react-avatar": "~1.1.1",
"@radix-ui/react-checkbox": "”~1.1.3",

"@radix-ui/react-collapsible": "~1.1.1",
"@radix-ui/react-dialog": "~1.1.2",

"@radix-ui/react-dropdown-menu": "72.1.2",
"@radix-ui/react-label": "7~2.1.0",
"@radix-ui/react-popover": "~1.1.2",
"@radix-ui/react-radio-group": "~1.2.2",
"@radix-ui/react-scroll-area": "~1.2.1",
"@radix-ui/react-select": "72.1.2",

"@radix-ui/react-separator": "~1.1.0",
"@radix-ui/react-slot": "7~1.1.0",
"@radix-ui/react-switch": "~1.1.1",
"@radix-ui/react-tabs": "~1.1.1",
"@radix-ui/react-tooltip": "~1.1.4",
"@svgr/webpack": "78.1.0",
"@types/pg": "78.11.10",
"activedirectory2": "72.2.0",
"class-variance-authority": ""0.7.0",
"clsx": "~2.1.1",

"cmdk": "1.0.0",

"date-fns": "7.1.0",

"il8next": ""24.0.0",
"il8next-resources-to-backend": "~1.2.1",
"iron-session": "78.0.4",
"libphonenumber-js": "~1.11.17",
"lucide-react": "70.483.0",

"next": "15.1.6",

"next-il18n-router": "~5.5.1",
"next-themes": "70.4.3",

"node": "723.8.0",

"pg": "78.13.1",

"react": "19.0.0",
"react-day-picker": "8.10.1",

Luigi Matteo Girke 314 Maio 2025



Sistema de envio de SMS com interface web

"react-dom": "19.0.0",
"react-hook-form": "~7.54.1",
"react-il8next": "~15.1.1",
"react-loading-skeleton": "~3.5.0",
"react-resizable-panels": "~2.1.7",
"recharts": "72.15.1",

"sonner": "~1.7.1",
"tailwind-merge": "72.5.4",
"tailwindcss-animate": "71.0.7",

"zod": "73.24.1"

¥

"devDependencies": {
"@tailwindcss/aspect-ratio": "70.4.2",
"@types/activedirectory2": "71.2.6",
"@types/node": ""20",
"@types/react": "19.0.8",
"@types/react-dom": "19.0.3",
"@types/validator": "~13.12.2",

"eslint": "~8",
"eslint-config-next": "15.1.6",
"il8nexus-cli": "~3.5.0",
"postcss™: "~8",

"tailwindcss": "73.4.1",

"typescript": "A5"

/hooks/use-mounted.ts

"use client";
import { useState, useEffect } from "react";

export default function useIsMounted() {
const [isMounted, setIsMounted] = useState(false);

useEffect(() => {
setIsMounted(true);

return () => {
setIsMounted(true);
}s
o[

return isMounted;

}

/hooks/use-mobile.tsx

Luigi Matteo Girke 315 Maio 2025



Sistema de envio de SMS com interface web

import * as React from "react"
const MOBILE BREAKPOINT = 768

export function uselIsMobile() {

const [isMobile, setIsMobile] = React.useState<boolean | undefined>(undef

ined)

React.useEffect(() => {

const mgl = window.matchMedia( (max-width: ${MOBILE_BREAKPOINT - 1}px)°

const onChange = () => {
setIsMobile(window.innerWidth < MOBILE_BREAKPOINT)

}

mgl.addEventListener("change", onChange)
setIsMobile(window.innerWidth < MOBILE_BREAKPOINT)
return () => mgl.removeEventListener("change", onChange)

oD

return !!isMobile

}

/hooks/use-session.ts

"use client";

import { SessionData } from "@/lib/auth/config";
import { getSessionOnClient } from "@/lib/auth/sessions";
import { useState, useEffect } from "react";

export function useSession() {
const [session, setSession]
const [loading, setlLoading]

useState<SessionData | null>(null);
useState(true);

useEffect(() => {
async function fetchSession() {

try {
const data = await getSessionOnClient();

setSession(data);
} catch (error) {
console.error("Failed to fetch session:", error);
} finally {
setLoading(false);
}
}

fetchSession();

Luigi Matteo Girke 316

Maio 2025



Sistema de envio de SMS com interface web

o 01

return { session, loading };

}

/hooks/use-debounce.ts

"use client";
import { useEffect, useState } from "react";

// You can pass 1in any value or a function and the time in milliseconds tha
t you want it to updated/debounced after
export default function useDebounce(value: any, delay: number) {

const [debouncedValue, setDebouncedValue] = useState(value);

useEffect(() => {
const handler = setTimeout(() => {
setDebouncedValue(value);
}, delay);

return () => {
clearTimeout(handler);
}s
}, [value, delay]);

return debouncedValue;

}

/1lib/theme.colors.ts

import { Theme, ThemeColors, ThemeProperties, Themes } from "@/types/theme"

J

export const themes: Themes = {
Zinc: {
light: {
background: "© 0% 100%",
foreground: "240 10% 3.9%",
card: "0 0% 100%",
cardForeground: "240 10% 3.9%",
popover: "© 0% 100%",
popoverForeground: "240 10% 3.9%",
primary: "240 5.9% 10%",
primaryForeground: "©@ 0% 98%",
secondary: "240 4.8% 95.9%",
secondaryForeground: "240 5.9% 10%",

Luigi Matteo Girke 317 Maio 2025



}s

muted: "240 4.8% 95.9%",
mutedForeground: "240 3.8% 46.1%",
accent: "240 4.8% 95.9%",
accentForeground: "240 5.9% 10%",
destructive: "0 84.2% 60.2%",
destructiveForeground: "© 0% 98%",
border: "240 5.9% 90%",

input: "240 5.9% 90%",

ring: "240 5.9% 10%",

radius: "©.5rem",

dark: {

background: "240 10% 3.9%",
foreground: "© 0% 98%",

card: "24 9.8% 10%",
cardForeground: "© 0% 98%",
popover: "240 10% 3.9%",
popoverForeground: "©@ 0% 98%",
primary: "@ 0% 98%",
primaryForeground: "240 5.9% 10%",
secondary: "240 3.7% 15.9%",
secondaryForeground: "© 0% 98%",
muted: "240 3.7% 15.9%",
mutedForeground: "240 5% 64.9%",
accent: "240 3.7% 15.9%",
accentForeground: "© 0% 98%",
destructive: "0 62.8% 30.6%",
destructiveForeground: "© 0% 98%",
border: "240 3.7% 15.9%",

input: "240 3.7% 15.9%",

ring: "240 4.9% 83.9%",

radius: "©.5rem",

¥

¥

Rose: {
light: {

background: "© 0% 100%",
foreground: "240 10% 3.9%",

card: "0 0% 100%",

cardForeground: "240 10% 3.9%",
popover: "@ 0% 100%",
popoverForeground: "240 10% 3.9%",
primary: "346.8 77.2% 49.8%",

primaryForeground: "355.7 100% 97.3%",

secondary: "240 4.8% 95.9%",

secondaryForeground: "240 5.9% 10%",

muted: "240 4.8% 95.9%",
mutedForeground: "240 3.8% 46.1%",
accent: "240 4.8% 95.9%",
accentForeground: "240 5.9% 10%",
destructive: "0 84.2% 60.2%",
destructiveForeground: "© 0% 98%",
border: "240 5.9% 90%",

Luigi Matteo Girke 318

Sistema de envio de SMS com interface web

Maio 2025



Prof Zona do Pinhal Sistema de envio de SMS com interface web

input: "24@ 5.9% 90%",
ring: "346.8 77.2% 49.8%",
radius: "0.5rem",

¥

dark: {
background: "20 14.3% 4.1%",
foreground: "© 0% 95%",
card: "24 9.8% 10%",
cardForeground: "© 0% 95%",
popover: "@ 0% 9%",
popoverForeground: "@ 0% 95%",
primary: "346.8 77.2% 49.8%",
primaryForeground: "355.7 100% 97.3%",
secondary: "240 3.7% 15.9%",
secondaryForeground: "© 0% 98%",
muted: "© 0% 15%",
mutedForeground: "240 5% 64.9%",
accent: "12 6.5% 15.1%",
accentForeground: "© 0% 98%",
destructive: "0 62.8% 30.6%",
destructiveForeground: "0 85.7% 97.3%",
border: "240 3.7% 15.9%",
input: "240 3.7% 15.9%",
ring: "346.8 77.2% 49.8%",
radius: "@.5rem",

¥

¥

Blue: {
light: {

background: "0 0% 100%",
foreground: "222.2 84% 4.9%",
card: "0 0% 100%",
cardForeground: "222.2 84% 4.9%",
popover: "© 0% 100%",
popoverForeground: "222.2 84% 4.9%",
primary: "221.2 83.2% 53.3%",
primaryForeground: "210 40% 98%",
secondary: "210 40% 96.1%",
secondaryForeground: "222.2 47.4% 11.2%",
muted: "210 40% 96.1%",
mutedForeground: "215.4 16.3% 46.9%",
accent: "210 40% 96.1%",
accentForeground: "222.2 47.4% 11.2%",
destructive: "0 84.2% 60.2%",
destructiveForeground: "210 40% 98%",
border: "214.3 31.8% 91.4%",
input: "214.3 31.8% 91.4%",
ring: "221.2 83.2% 53.3%",
radius: "©.5rem",

¥

dark: {
background: "222.2 84% 4.9%",
foreground: "210 40% 98%",

Luigi Matteo Girke 319 Maio 2025



Prof Zona do Pinhal Sistema de envio de SMS com interface web

card: "24 9.8% 10%",

cardForeground: "210 40% 98%",
popover: "222.2 84% 4.9%",
popoverForeground: "210 40% 98%",
primary: "217.2 91.2% 59.8%",
primaryForeground: "222.2 47.4% 11.2%",
secondary: "217.2 32.6% 17.5%",
secondaryForeground: "210 40% 98%",
muted: "217.2 32.6% 17.5%",
mutedForeground: "215 20.2% 65.1%",
accent: "217.2 32.6% 17.5%",
accentForeground: "210 40% 98%",
destructive: "0 62.8% 30.6%",
destructiveForeground: "210 40% 98%",
border: "217.2 32.6% 17.5%",

input: "217.2 32.6% 17.5%",

ring: "224.3 76.3% 48%",

radius: "©.5rem",

}s
}s

Green: {

light: {
background: "0 0% 100%",
foreground: "240 10% 3.9%",
card: "0 0% 100%",
cardForeground: "240 10% 3.9%",
popover: "© 0% 100%",
popoverForeground: "240 10% 3.9%",
primary: "142.1 76.2% 36.3%",
primaryForeground: "128 83% 97%",
secondary: "240 4.8% 95.9%",
secondaryForeground: "240 5.9% 10%",
muted: "240 4.8% 95.9%",
mutedForeground: "240 3.8% 46.1%",
accent: "240 4.8% 95.9%",
accentForeground: "240 5.9% 10%",
destructive: "0 84.2% 60.2%",
destructiveForeground: "© 0% 98%",
border: "240 5.9% 90%",
input: "240 5.9% 90%",
ring: "142.1 76.2% 36.3%",
radius: "©.5rem",

¥

dark: {
background: "20 14.3% 4.1%",
foreground: "© 0% 95%",
card: "24 9.8% 10%",
cardForeground: "©@ 0% 95%",
popover: "@ 0% 9%",
popoverForeground: "@ 0% 95%",
primary: "142.1 70.6% 45.3%",
primaryForeground: "144.9 80.4% 10%",
secondary: "240 3.7% 15.9%",

Luigi Matteo Girke 320 Maio 2025



}s
}s

secondaryForeground: "© 0% 98%",
muted: "© 0% 15%",
mutedForeground: "240 5% 64.9%",
accent: "12 6.5% 15.1%",
accentForeground: "© 0% 98%",
destructive: "0 62.8% 30.6%",
destructiveForeground: "0 85.7% 97.3%",
border: "240 3.7% 15.9%",

input: "240 3.7% 15.9%",

ring: "142.4 71.8% 29.2%",
radius: "©.5rem",

Orange: {
light: {

}s

background: "© 0% 100%",
foreground: "20 14.3% 4.1%",

card: "0 0% 100%",

cardForeground: "20 14.3% 4.1%",
popover: "© 0% 100%",
popoverForeground: "20 14.3% 4.1%",
primary: "24.6 95% 53.1%",
primaryForeground: "60 9.1% 97.8%",
secondary: "60 4.8% 95.9%",
secondaryForeground: "24 9.8% 10%",
muted: "60 4.8% 95.9%",
mutedForeground: "25 5.3% 44.7%",
accent: "60 4.8% 95.9%",
accentForeground: "24 9.8% 10%",
destructive: "0 84.2% 60.2%",
destructiveForeground: "60 9.1% 97.8%",
border: "20 5.9% 90%",

input: "20 5.9% 90%",

ring: "24.6 95% 53.1%",

radius: "@.5rem",

dark: {

background: "20 14.3% 4.1%",
foreground: "60 9.1% 97.8%",

card: "24 9.8% 10%",

cardForeground: "60 9.1% 97.8%",
popover: "20 14.3% 4.1%",
popoverForeground: "60 9.1% 97.8%",
primary: "20.5 90.2% 48.2%",
primaryForeground: "60 9.1% 97.8%",
secondary: "12 6.5% 15.1%",
secondaryForeground: "60 9.1% 97.8%",
muted: "12 6.5% 15.1%",
mutedForeground: "24 5.4% 63.9%",
accent: "12 6.5% 15.1%",
accentForeground: "60 9.1% 97.8%",
destructive: "0 72.2% 50.6%",
destructiveForeground: "60 9.1% 97.8%",

Luigi Matteo Girke 321

Sistema de envio de SMS com interface web

Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

border: "12 6.5% 15.1%",
input: "12 6.5% 15.1%",
ring: "20.5 90.2% 48.2%",
radius: "©.5rem",

}s

¥
Yellow: {

light: {
background: "0 0% 100%",
foreground: "48 14.3% 4.1%",
card: "0 0% 100%",
cardForeground: "48 14.3% 4.1%",
popover: "©@ 0% 100%",
popoverForeground: "48 14.3% 4.1%",
primary: "51 100% 50%",
primaryForeground: "© 0% 98%", // Maybe make this dark, or make the

primary color darker to increase contrast

secondary: "60 4.8% 95.9%",
secondaryForeground: "48 9.8% 10%",
muted: "60 4.8% 95.9%",
mutedForeground: "50 5.3% 44.7%",
accent: "60 4.8% 95.9%",
accentForeground: "48 9.8% 10%",
destructive: "0 84.2% 60.2%",
destructiveForeground: "60 9.1% 97.8%",
border: "48 5.9% 90%",
input: "48 5.9% 90%",
ring: "51 100% 50%",
radius: "0.5rem",

¥

dark: {
background: "48 14.3% 4.1%",
foreground: "60 9.1% 97.8%",
card: "48 9.8% 10%",
cardForeground: "60 9.1% 97.8%",
popover: "48 14.3% 4.1%",
popoverForeground: "60 9.1% 97.8%",
primary: "51 100% 50%",
primaryForeground: "240 5.9% 10%",
secondary: "48 6.5% 15.1%",
secondaryForeground: "60 9.1% 97.8%",
muted: "48 6.5% 15.1%",
mutedForeground: "50 5.4% 63.9%",
accent: "48 6.5% 15.1%",
accentForeground: "60 9.1% 97.8%",
destructive: "0 72.2% 50.6%",
destructiveForeground: "60 9.1% 97.8%",
border: "48 6.5% 15.1%",
input: "48 6.5% 15.1%",
ring: "51 100% 50%",
radius: "@.5rem",

¥

¥

Luigi Matteo Girke 322 Maio 2025



Sistema de envio de SMS com interface web

}s

// Function to get theme by 1index starting at 1, not @
export function getThemeByIndex(
index: number,

themeMode: "light" | "dark" | undefined = "light"
) {
const theme = themesArray.find((theme) => theme.index === index);

return theme?.value[themeMode] as ThemeProperties | undefined; // Return
the theme value or undefined if not found

}
export default function setGlobalColorTheme(
themeMode: "light" | "dark",
colorIndex: number
) {
const theme = getThemeByIndex(colorIndex, themeMode);
if (theme === undefined)

throw new Error("Theme not found. The theme color is probably invalid")

for (const key in theme) {
// Use type assertion to specify that key is a key of ThemeProperties
document.documentElement.style.setProperty(

“--${key}",

theme[key as keyof ThemeProperties]

)
}

}

// Create a new array to hold the themes in a 1-based index format
export const themesArray = Object.keys(themes).map((key, index) => {
return { index: index + 1, name: key, value: themes[key] };

1)

export const PROFILE_COLOR_CSS NAMES = [
"salmon",
"dodgerblue",
llgoldll,
"mediumorchid",

1;

/1lib/form.schemas.ts

import { z } from "zod";

import { parsePhoneNumberFromString } from "libphonenumber-js";
import { appearancelLayoutValues } from "@/types/user";

import { parseISO, isValid } from "date-fns";

const CustomString = (options?: { message: string }) => {

Luigi Matteo Girke 323 Maio 2025



' o Sistema de envio de SMS com interface web

return z.string({
message: options?.message || "common:error-not_string",

3
}s
const CustomPhone = () => {
return CustomString().refine(
// this returns a boolean telling zod whether the phone data is valid o
r not
(input: string) => {
const parsedPhone = parsePhoneNumberFromString(input);

return (parsedPhone && parsedPhone.isValid()) || false;

¥
{
message: "common:error-invalid_phone",
}
)
}s
// Our one source of truth is the form schema. When you create a new field,
add it here.
export const MessageSchema = z.object({
sender: CustomString().optional(),
// recipients are handled internally for more thorough error messages
subject: CustomString().optional(),
body: CustomString().min(1, "new-message-page:zod error-body empty"),
secondsUntilSend: z
.number({ message: "new-message-page:zod error-invalid schedule date" }

)

// .positive({ message: "new-message-page:zod_error-negative schedule d
ate" })

.optional(),

1)

export const LoginSchema = z.object({
email: CustomString().email({
message: "login-page:zod error-invalid email",
3

password: CustomString(),

1)

export const ContactSchema = z.object({

// id: z.string(),

name: z
.string()
.min(2, { message: "modals:zod error-short_name" })
.max(50, { message: "modals:zod error-long name" }),

phone: CustomPhone(),

description: CustomString()
.max(255, { message: "modals:zod error-long contact description” })
.optional(),

1)

Luigi Matteo Girke 324 Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

// Create a schema that handles each setting separately
export const UpdateSettingSchema = z.discriminatedUnion("name", [
// For the language setting (“lang”) we expect a 2-character string (ISO 6
39-1 code)
z.object({
name: z.literal("lang"),
value: z
.string()
.min(2, "Language code must be exactly 2 characters")
.max(2, "Language code must be exactly 2 characters"),
3
// For profile color _1id, convert the incoming string to a number and requ
ire an 1integer.
z.object({
name: z.literal("profile color_id"),
value: z.preprocess(
(val) => Number(val),
z
.number({
invalid type _error: "Profile color id must be a number",
})
.int("Profile color id must be an integer")
)
3
// For primary color _1id, use similar Llogic as profile color 1id.
z.object({
name: z.literal("primary color_id"),
value: z.preprocess(
(val) => Number(val),

z
.number ({
invalid type_error: "Primary color id must be a number",
})
.int("Primary color id must be an integer")
)

3
// For display name, require a non-empty string with a max lLength of 56 c
haracters.
z.object({
name: z.literal("display name"),
value: z
.string()
.nonempty("Display name cannot be empty")
.max(50, "Display name cannot exceed 50 characters"),
3
// For Application Layout we have a string enum defined in a type file
z.object({
name: z.literal("appearance layout"),
value: z.enum(appearancelLayoutValues),
3
// For dark_mode, convert the string "true"/"false" to a boolean.
z.object({
name: z.literal("dark_mode"),

Luigi Matteo Girke 325 Maio 2025



Sistema de envio de SMS com interface web

value: z.preprocess((val) => {
// Convert strings "true" and "false" to actual booleans.
if (val === "dark") return true;
if (val === "light") return false;
return val;
}, z.boolean({ invalid_type error: "Dark mode must be a boolean value"
1),
3
1)

// Admin dashboard page schemas
export const zodISODate = z.string().refine(
(date) => {
// Check if the date is a valid ISO 8601 date string
const parsedDate = parseISO(date);
return isValid(parsedDate);
¥
{
message: "Invalid date format. Expected ISO 8601 format.",
}
)

export const DateRangeSchema = z.object({
startDate: zodISODate.optional(),
endDate: zodISODate.optional(),

1)

/1ib/.DS_Store

Budl% @@ @@ @8 @E%DSDB B @ @2 @

/1lib/auth/activedirectory/authenticate.ts

"use server";

import ActiveDirectory from "activedirectory2";

import { activeDirectoryConfig, SessionData } from "@/lib/auth/config";
import userExists from "./user";

import userInGroup from "./group"”;

import saveUser, { dummySaveUser } from "@/lib/actions/user.actions";
import type { DBUser } from "@/types/user";

export default async function authenticate({
email,
password,

b A

email: string;

Luigi Matteo Girke 326 Maio 2025



Sistema de envio de SMS com interface web

password: string;
}): Promise<SessionData & { errors: string[] }> {
const ad = new ActiveDirectory(activeDirectoryConfig);

// 1. Check if user even exists in the active directory server
const exists = await userExists(ad, email, password);
if (l!exists.success) {
return {
isAuthenticated: false,
isAdmin: false,
errors: [exists.error ? exists.error : ""],
}s
}
// 2. Check if user 1is allowed to use the app
const userGroup = "Utilizadores-SMS";
const hasAppPermission = await userInGroup(ad, email, userGroup);

// 3. Check if user has admin privileges
const adminGroup = "Administradores-SMS";
const hasAdminPermission = await userInGroup(ad, email, adminGroup);

// 4. Sync all of this with the database
const userResult = await saveUser(ad, email, hasAdminPermission.success);

return {
user: userResult.success ? userResult.data : undefined,
isAuthenticated: hasAppPermission.success,
isAdmin: hasAdminPermission.success,
errors: [
exists.error !== null
? exists.error
"An error occurred while checking if user exists",
hasAppPermission.error !== null
? hasAppPermission.error
"An error occurred while checking if user is allowed to use the a

pp -,
hasAdminPermission.error !== null

? hasAdminPermission.error
"An error occurred while checking if user is an admin",
1,
}};

export async function dummyAuthenticate({
email,
password,
b A
email: string;
password: string;
}): Promise<SessionData> {
const dummyUser: SessionData & { user: DBUser } = {
user: {

Luigi Matteo Girke 327 Maio 2025



Sistema de envio de SMS com interface web

id: "1",

email: "dummy@user.com",
name: "Dummy User",
first name: "Dummy",
last_name: "User",

role: "ADMIN",

lang: "pt",
profile color id: 1,
display name: "Dummy User",

primary color _id: 1,
dark_mode: false,
appearance_layout: "MODERN",
¥
isAuthenticated: true,
isAdmin: true,
}s

const userResult = await dummySaveUser(dummyUser.user as DBUser);

return {
user: userResult.success ? userResult.data : undefined,
isAuthenticated: userResult.success,
isAdmin: userResult.success,

1

/lib/auth/activedirectory/group.ts

"use server";
import type ActiveDirectory from "activedirectory2";

// Check if user 1is apart of a specific group
export default async function userInGroup(
ad: ActiveDirectory,
username: string,
group: string
): Promise<{ success: boolean; error: string | null }> {
return new Promise((resolve) => {
ad.isUserMemberoOf(

username,
group,
(err: object | null, isMember: boolean) => {
if (err) {
resolve({ success: false, error: JSON.stringify(err) 1});
} else {

resolve({ success: isMember, error: null });

}
}

Luigi Matteo Girke 328 Maio 2025



Sistema de envio de SMS com interface web

/lib/auth/activedirectory/user.ts

"use server";
import type ActiveDirectory from "activedirectory2";

// Check if user even exists on the server
export default async function userExists(
ad: ActiveDirectory,
username: string,
password: string
): Promise<{ success: boolean; error: string | null }> {
return new Promise((resolve) => {
ad.authenticate(

username,
password,
(err: string | null, authenticated: boolean) => {
if (err || !authenticated) {
resolve({ success: false, error: err });
} else {
resolve({ success: authenticated, error: null });
}
}
)
3
}
/1lib/auth/index.ts

"use server";

import authenticate, {

dummyAuthenticate,
} from "./activedirectory/authenticate";
import { createSession, getSession } from "./sessions";
import { LoginSchema } from "@/lib/form.schemas";
import { Login, SessionData } from "./config";
import { ActionResponse } from "@/types/action";

export async function login(
formData: FormData
): Promise<ActionResponse<Login>> {
// 1. Type validation
const email = formData.get("email") as string;
const password = formData.get("password") as string;

Luigi Matteo Girke 329 Maio 2025



Sistema de envio de SMS com interface web

const validatedData = LoginSchema.safeParse({ email, password });
if (!validatedData.success) {
return {
success: false,
message: ["common:fix_ zod errors"],
inputs: { email, password },
errors: validatedData.error.flatten().fieldErrors,
}s
}

// 2. Authenticate user using AD and save to db
const user: SessionData = await dummyAuthenticate({
email,
password,

1)

if (luser.isAuthenticated) {
return {
success: false,
message: ["server-wrong credentials"],
inputs: { email, password },
}s
}

// 3. Create new session cookie
await createSession(user);
return {
success: true,
message: [
"server-auth_success_header",
"server-auth_success_header_caption”,
1,
}};

export async function logout() {

try {
const session = await getSession();

session.destroy();
return { success: true };
} catch (error) {
console.log("LOGOUT FAILED:", error);

return { success: false };

/1lib/auth/config.ts

Luigi Matteo Girke 330 Maio 2025



' e Sistema de envio de SMS com interface web

import { User } from "@/types/user";
import { SessionOptions } from "iron-session";

export type SessionData = {
user?: User;
isAuthenticated: boolean;
isAdmin: boolean;

s

export type Login = {
email: string;
password: string;

s

export const defaultSession: SessionData = {
isAuthenticated: false,
isAdmin: false,

}s

// Iron session config object
export const sessionOptions: SessionOptions = {

cookieName: "my-etpzp-app-session", // anything you want

password: process.env.SESSION SECRET!, // TypeScript non-null assertion o
perator

// Optional fields
ttl: 60 * 60 * 24, // cookie expiration from now in seconds (we want 24h)
cookieOptions: {
// prevent client side js from accessing the cookie
httpOnly: true,
// Secure only works in “https™ environments. So if the environment 1is
“https™, it'LL return true.
secure: process.env.NODE ENV === "production”,
¥
}s

export const activeDirectoryConfig = {
url: process.env.AD URL!,
baseDN: process.env.AD BASE DN!,
username: process.env.AD EMAIL!, // we store emails in the username field
password: process.env.AD PASSWORD!,

}s

/1lib/auth/sessions.ts

"use server";

import { getIronSession } from "iron-session";

import { cookies } from "next/headers";

import { SessionData, sessionOptions } from "@/lib/auth/config";
import { NextRequest, NextResponse } from "next/server";

Luigi Matteo Girke 331 Maio 2025



Sistema de envio de SMS com interface web

// helper function for getting the current session
export async function getSession(req?: NextRequest, res?: NextResponse) {
const session =
req && res
? await getIronSession<SessionData>(req, res, sessionOptions)
: await getIronSession<SessionData>(await cookies(), sessionOptions);

// For security, you can double-check the user's existence in the databas
e or AD server, but this slows down the app.
return session;

}

export async function createSession(user: SessionData) {
const session = await getSession();

// Store user data in the cookie by mapping over each of the object's pro
perty
Object.entries(user).forEach(([key, value]) => {
if (!(key in session)) {
(session as any)[key] = value;
}

1)

await session.save();

}

export async function getSessionOnClient(): Promise<SessionData> {
const { user, isAuthenticated, isAdmin } = await getIronSession<SessionDa
ta>(
await cookies(),
sessionOptions

);

return {
user,
isAuthenticated,
isAdmin,
}s
}

/1lib/utils.ts

import { DBContact } from "./../types/contact";
import parsePhoneNumber, {

CountryCode,

parsePhoneNumberFromString,
} from "libphonenumber-js";
import { clsx, type ClassValue } from "clsx";
import { twMerge } from "tailwind-merge";

Luigi Matteo Girke 332 Maio 2025



Sistema de envio de SMS com interface web

import {
DBRecipient,
FetchedRecipient,
NewRecipient,
RankedRecipient,
WithContact,
} from "@/types/recipient”;
import { DBMessage } from "@/types";
import { ActionResponse } from "@/types/action";
import { toast } from "sonner";
import { enUS, pt, de } from "date-fns/locale";

export function cn(...inputs: ClassValue[]) {
return twMerge(clsx(inputs));

}

export function sleep(ms: number) {
return new Promise((resolve) => setTimeout(resolve, ms));

}

export function generateUniqueId() {
return "XXXXXXXX-XXXX-4XXX-YXXX-XXXXXXXXXXXX" .replace(/[xy]/g, function (

c) {
const r = (Math.random() * 16) | 0;
const v = ¢ === "x" 2 r : (r & 0x3) | 0x8;
return v.toString(16);
3
}

export function validatePhoneNumber(phone: string): NewRecipient {
const countryCode: CountryCode = "PT";

const phoneNumber = parsePhoneNumber(phone, countryCode);
let properties: {

isValid: boolean;
formattedPhone?: string;

error?: {
type: "error" | "warning";
message: string;
}s
}=A

isValid: false,
formattedPhone: phoneNumber?.formatInternational(),

1

if (phoneNumber?.isValid()) {
if (phoneNumber.country === countryCode) {
properties = {
isvalid: true,
}s
} else {

Luigi Matteo Girke 333 Maio 2025



Sistema de envio de SMS com interface web

properties.isValid = true;
properties.error =
type: "warning",
message: "tooltip-not_portuguese number",
}s
}

} else {
properties.isValid
properties.error =

type: "error",
message: "tooltip-invalid _phone_number",

}s

{

false;

{

}

return { ...properties, phone, proneForDeletion: false };

}

export function searchMessages(
messages: DBMessage[],
searchTerm: string,
currentPage?: number
) 1
// Convert searchTerm to Lowercase for case-insensitive comparison
const lowerCaseSearchTerm = searchTerm.tolLowerCase();

// Filter messages based on userId and search term
const filteredMessages = messages.filter(

(message) =>
message.subject?.toLowerCase().includes(lowerCaseSearchTerm) ||
message.body.toLowerCase().includes(lowerCaseSearchTerm) ||
message.status.toLowerCase() === lowerCaseSearchTerm // Assuming stat

us 1s also part of the search

);

return filteredMessages;

}

export function searchContacts(
contacts: DBContact[],
searchTerm: string | null,
currentPage?: number
) {
if (!searchTerm) return contacts;
// Convert searchTerm to Lowercase for case-insensitive comparison
const lowerCaseSearchTerm = searchTerm.toLowerCase().trim();

// Filter contacts based on userId and search term
const filteredContacts = contacts.filter(
(contact) =>
(contact.name &&
contact.name.tolLowerCase().includes(lowerCaseSearchTerm)) ||
contact.phone.toLowerCase().includes(lowerCaseSearchTerm)

);

Luigi Matteo Girke 334 Maio 2025



Sistema de envio de SMS com interface web

return filteredContacts;

}

export function formatPhone(phone: string): string | undefined {
const parsedPhone = parsePhoneNumberFromString(phone);
if (parsedPhone && parsedPhone.isValid()) {

return parsedPhone.number;
} else {
return undefined;

}
}

export function getNameInitials(fullName: string | null | undefined) {

// Split the full name into parts
if (!fullName) return "";

const nameParts = fullName.trim().split(/\s+/);

// Get the first letter of the first name
const firstInitial = nameParts[©][@].toUpperCase();

// If there's only one name, return just that initial

if (nameParts.length === 1) {
return firstInitial;

}

// Get the first letter of the Last name

const lastInitial = nameParts[nameParts.length - 1][@].toUpperCase();

// Return the 1initials
return firstInitial + lastInitial;

}

// Convert contact -> recipient, because “addRecipient” function expects a

recipient type of NewRecipient not of contact type.

export function convertToRecipient(contact: DBContact): NewRecipient {

const { id, name, phone, description } = contact;
const validatedRecipient = validatePhoneNumber(phone);

return {
...validatedRecipient,
contact: {
id,
name,
phone,
description,
s
3
}
export function getUniques(
currentRecipients: NewRecipient[],
newRecipients: WithContact[]

Luigi Matteo Girke 335

Maio 2025



Sistema de envio de SMS com interface web

): WithContact[] {
return newRecipients.filter(
(recipient) => !currentRecipients.some((r) => r.phone === recipient.pho
ne)
)
}

export function toastActionResult(
result: ActionResponse<any>,
translate?: (translationKey: string) => string
) {
if (!Array.isArray(result.message) || !result.message)
throw new Error("Toast message must be an array of strings.");
if (!result.message.length)
return console.log("FAILED TOAST ACTION RESULT: message array is empty"

);

// thankfully, this doesn't throw an error
if (translate) {
if (result.success) {
toast.success(translate(result.message[0]), {
description: translate(result.message[1]),
3
} else {
toast.error(translate(result.message[0]), {
description: translate(result.message[1]),

1)
}

} else {
if (result.success) {
toast.success(result.message[@], { description: result.message[l] });
} else {
toast.error(result.message[0], { description: result.message[1l] });

}
}
}

export function capitalize(string: string) {
return string.charAt(0).toUpperCase() + string.slice(1);

}

export function getDateFnsLocale(il8nLocale: string) {
let dateFnslLocale;
switch (il8nLocale) {
case "pt":
dateFnsLocale
break;
case "en":
dateFnsLocale
break;
case "de":
dateFnsLocale = de;

pt;

enUs;

Luigi Matteo Girke 336 Maio 2025



‘ Sistema de envio de SMS com interface web

break;
default:
dateFnsLocale = pt;
}
if (!dateFnsLocale) throw new Error("Invalid locale passed in");
return dateFnsLocale;

}

export function matchContactsToRecipients(
rawRecipients: DBRecipient[],
contacts: DBContact[]

) {
// Return recipients 1if no data to filter
if (!rawRecipients.length || !contacts.length)

return rawRecipients as WithContact[];

return rawRecipients.map((recipient) => ({

...recipient,

contact: contacts.find((contact) => contact.phone === recipient.phone),
})) as WithContact[];

}

export function rankRecipients(data: FetchedRecipient[]): RankedRecipient[]
{
// Step 1: Create a unique array of recipients with their usage count
const onelWeekAgo = new Date();
onelleekAgo.setDate(onelWeekAgo.getDate() - 7);

const processedData: RankedRecipient[] = []; // Initialize an array for p
rocessed recipients

const recipientMap = new Map<string, RankedRecipient>(); // Use a map to
track unique recipients

data.forkEach((recipient) => {
// Filter out invalid data before processing to avoid unnecessary work.
const { isvalid } = validatePhoneNumber(recipient.phone);
if (!isvalid) {
// Exit the current iteration if the recipient is invalid
return;

}

// Check if the recipient already exists in the map
if (!recipientMap.has(recipient.phone)) {
recipientMap.set(recipient.phone, {
id: recipient.id,
phone: recipient.phone,
usageCount: @, // Initialize usage count
3
}

// Increment usage count if the last used date is within the Llast week
if (new Date(recipient.last used) >= oneWeekAgo) {

Luigi Matteo Girke 337 Maio 2025



Sistema de envio de SMS com interface web

recipientMap.get(recipient.phone)!.usageCount++; // Increment usage c

ount

}
1)

// Convert the map values to an array
processedData.push(...recipientMap.values());

// Step 2: Sort the recipients based on usage count

return processedData.sort((a,

b) => {

// Sort by usage count (descending)
return b.usageCount - a.usageCount;

1)
}

// Shuffle the array using Fisher-Yates algorithm

export function shuffleArray(arr: any[]) {
for (let i = arr.length - 1; i > 0; i--) {

const j = Math.floor(Math.random() * (i + 1));
[arr[i], arr[j]] = [arr[]j], arr[i]]; // Swap elements

}
}

export function getPercentageChange(newValue: number, oldValue: number) {

if (oldvalue === 0) {

// 0ld value is zero so we will have a 100% change 1if the newValue is n

ot zero
return newValue === 0 ? 0 :

}

return Math.floor(((newValue - oldvValue) / oldValue) * 100);

}

export function extractFirstWord(sentence: string) {

newValue > 0 ? 100 :

// Split the sentence into words
const words = sentence.split(" ");

// Return the first word if it exists, otherwise return null

return words.length > @ ? words[@] : null;

}

export function getScrollAreaHeightStyles(additionalHeightPx: number) {
return "h-[calc(1@0vh - var(--simple-header-height) - ${additionalHeightP
x}px)] md:h-[calc(1@0vh-var(--header-height)-${additionalHeightPx}px)] ;

}

/1lib/actions/message.create.ts

"use server";

import db from "@/lib/db";
import { MessageSchema } from

Luigi Matteo Girke

../form.schemas";

338

Maio 2025



‘ Sistema de envio de SMS com interface web

import { Message } from "@/types"”;

import { getSession } from "../auth/sessions"”;
import { formatPhone } from "../utils";

import { NewRecipient } from "@/types/recipient”;
import { ActionResponse } from "@/types/action"”;
import { revalidatePath } from "next/cache";

export async function sendMessage(
existingDraftId: string | null,
data: Message
): Promisex
ActionResponse<Message> & {
sendDate?: Date;
invalidRecipients?: NewRecipient[];
clearForm?: boolean;
¥
> A
// 1. Check authentication
const { isAuthenticated, user } = await getSession();
const userId = user?.id;
if (!isAuthenticated || !userId) {
return {
success: false,
message: ["common:error-authentication"],
}s
}

// 2. Validate field types
const validatedData = MessageSchema.safeParse(data);
if (!validatedData.success) {
return {
success: false,
message: ["common:fix_ zod errors"],
errors: validatedData.error.flatten().fieldErrors,
}s
}

// 3. Validate recipients - these are not part of the zod schema as I nee
d to the validation myself
if (!data.recipients.length) {
return {
success: false,
message: ["new-message-page:server-no_recipients_error"],
}s
}

const { validRecipients, invalidRecipients } = analyzeRawRecipients(
data.recipients
)5
// The recipient error handling is not handled in the zod validation, so
we do validate them ourselves
if (!validRecipients.length) {

Luigi Matteo Girke 339 Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

return {
success: false,
message: [ new-message-page:server-invalid phone_numbers_error’],
invalidRecipients,
}s
}

let scheduledUnixSeconds: number = 0;
if (
validatedData.data.secondsUntilSend &&
validatedData.data.secondsUntilSend > 2
) o
// JavaScript's Date object uses milliseconds, so we divide by 16000 to
the timestamp into seconds.
scheduledUnixSeconds =
Date.now() / 1000 + validatedData.data.secondsUntilSend;

}

const isScheduled =
I'lvalidatedData.data.secondsUntilSend &&
validatedData.data.secondsUntilSend > 2; // api requires a minimum of 2
seconds in the future
try {
const payload = {
// This shit can only be one full word with no special characters or
spaces
sender: /**validatedData.data.sender */ "ETPZP", // Hardcode this for

now

message: validatedData.data.body, // this can be any string

recipients: validRecipients.map(({ phone }) => ({

msisdn: phone,

1)

destaddr: "DISPLAY", // Flash SMS

// The API 1is case-sensitive - “sendtime’ has to be spelled exactly L
ike this

sendtime: isScheduled ? scheduledUnixSeconds : undefined, // Insert t
he UNIX timestamp 1f the message is scheduled

}s

const res = await fetch( ${process.env.GATEWAYAPI URL}/rest/mtsms”, {
method: "POST",
headers: {
Authorization: “Token ${process.env.GATEWAYAPI TOKEN},
"Content-Type": "application/json",
¥
body: JSON.stringify(payload),

1)

const resJson = await res.json();

Luigi Matteo Girke 340 Maio 2025



Prof Zona do Pinhal Sistema de envio de SMS com interface web

/) -------- BEGIN DATABASE LOGIC -------- //

if (typeof existingDraftld === "undefined" || !existingDraftId) {
// Insert new message and recipients
await db(

WITH insert_message AS (
INSERT INTO message (
subject,
body,
status,
send_time,
sms_reference_id,
api_error_code,
api_error_details_json,
cost,
cost_currency,
user_id
)
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9 $10)
RETURNING id
)
INSERT INTO recipient (message_id, phone, index)
SELECT
insert_message.id,
unnest($11::text[]) as phone,
unnest($12::int[]) as index
FROM insert_message;

)

[
// Message data

validatedData.data.subject, // subject
validatedData.data.body, // body
res.ok // status
? scheduledUnixSeconds
? "SCHEDULED"
"SENT"
"FAILED",
scheduledUnixSeconds // sendtime
? new Date(scheduledUnixSeconds * 1000)
: new Date(Date.now()),
resJson?.ids?.length ? resJson?.ids[@] : null, // sms reference i

// Ap1l errors
res.ok ? null : res.status, // api_error_code
res.ok ? null : JSON.stringify(res3Json), // api_error details jso

resJson.usage.total cost,
resJjson.usage.currency,

Luigi Matteo Girke 341 Maio 2025



' e Sistema de envio de SMS com interface web

userId, // user id

// Recipients
validRecipients.map((recipient) => recipient.phone), // phone num

ber array
validRecipients.map((_, index) => index),
]
)5
} else {

// 1. Update message data
const result = await db(

UPDATE message

SET subject = $1,
body = $2,
status = $3,
send_time = $4,
sms_reference_id = $5,
api_error_code = $6,

api_error_details _json = $7,
cost = $8,
cost_currency = $9

WHERE user_id = $10 AND id = $11

RETURNING id;

)

[
// Message data

validatedData.data.subject, // subject
validatedData.data.body, // body
res.ok // status
? scheduledUnixSeconds
? "SCHEDULED"
"SENT"
"FAILED",
scheduledUnixSeconds // sendtime
? new Date(scheduledUnixSeconds * 1000)
: new Date(Date.now()),
resJson?.ids?.length ? resJson?.ids[@] : null, // sms reference 1i

d

// Ap1l errors

res.ok ? null : res.status, // api_error_code

res.ok ? null : JSON.stringify(res3Json), // api_error details jso
n

resJson.usage.total cost,
resJson.usage.currency,

// Other
userId, // user id
existingDraftId, // id of the database draft to update

]

Luigi Matteo Girke 342 Maio 2025



- R Sistema de envio de SMS com interface web

)
// In case update did not match any rows - invalid message 1id
if (result.rowCount === 0) {
throw new Error("Invalid message id provided");
}

// 2. Delete old recipients

await db( DELETE FROM recipient WHERE message_id = $1°, [
existingDraftld,

1)

// 3. Then 1insert new recipients

await db(

INSERT INTO recipient (message_id, phone, index)
SELECT $1,
unnest($2::text[]),
unnest($3::int[])
*, // check if for this query I can use VALUES instead of SELECT
[
existingDraftId,
validRecipients.map((r) => r.phone),
validRecipients.map((_, index) => index),

// Update the amount indicators in the nav panel
revalidatePath("/new-message");

if (!res.ok) {
return {
success: false,
message: ["server-some api_error"],
clearForm: true,
}s
}

return {
success: true,
message: [
isScheduled
? "new-message-page:server-schedule success”
"new-message-page:server-send_success",
1,
sendDate: isScheduled ? new Date(scheduledUnixSeconds * 1000) : undef
ined,
clearForm: true,
}s
} catch (error) {
console.log("Error got caught in catch block:", error);

Luigi Matteo Girke 343 Maio 2025



Sistema de envio de SMS com interface web

return {

success: false,

message: ["new-message-page:server-unknown_error"],
}s

function analyzeRawRecipients(recipients: NewRecipient[]) {
const validRecipients: NewRecipient[] = [];
const invalidRecipients: NewRecipient[] = [];

recipients.forEach((recipient) => {
const parsedPhone = formatPhone(recipient.phone);
if (parsedPhone) {
validRecipients.push({
...recipient,
phone: parsedPhone as string,
3
} else {
invalidRecipients.push(recipient);
}
3

return { validRecipients, invalidRecipients };

}

/lib/actions/_testing/responses

// a console.log(res) successful response will give something like this
const successResponse = /**Response */ {
status: 200,
statusText: "OK",
headers: /**Headers */ {
"content-length": "88",
"content-type": "application/json",
date: "Sun, 22 Dec 2024 09:17:28 GMT",
"strict-transport-security”: "max-age=31536000",
"x-server": "GatewayAPI",
¥
body: /**ReadableStream */ {
locked: false,
state: "readable",
supportsBYOB: true,

¥
bodyUsed: false,
ok: true,

redirected: false,
type: "basic",
url: "process.env.GATEWAYAPI URL/rest/mtsms",

Luigi Matteo Girke 344 Maio 2025



Sistema de envio de SMS com interface web

}s

export const errorResponse = /**Response */ {
status: 422,
statusText: "Unprocessable Entity",
headers: /**Headers */ {
"content-length": "83",
"content-type": "application/json",
date: "Sun, 22 Dec 2024 09:10:28 GMT",
"strict-transport-security": "max-age=31536000",
"x-server": "GatewayAPI",
¥
body: /**ReadableStream */ {
locked: false,
state: "readable",
supportsBYOB: true,
¥
bodyUsed: false,
ok: false,
redirected: false,
type: "basic",
url: "process.env.GATEWAYAPI URL/rest/mtsms",
}s

const errorResponse2 = /**Response */ {

status: 403,

statusText: "Forbidden",

headers: /**Headers */ {
"content-length": "122",
"content-type": "application/json",
date: "Sun, 22 Dec 2024 09:26:43 GMT",
"strict-transport-security": "max-age=31536000",
"x-server": "GatewayAPI",

¥

body: /**ReadableStream */ {
locked: false,
state: "readable",
supportsBYOB: true,

¥

bodyUsed: false,

ok: false,

redirected: false,

type: "basic",

url: "process.env.GATEWAYAPI URL/rest/mtsms",

}s

/lib/actions/_testing/default-response.js

export const SuccessResponse = {
status: 200,

Luigi Matteo Girke 345 Maio 2025



Sistema de envio de SMS com interface web

statusText: "OK",

headers: {
"content-length": "89",
"content-type": "application/json",
date: "Sun, 02 Feb 2025 13:03:24 GMT",
"strict-transport-security": "max-age=31536000",
"x-server": "GatewayAPI",

¥

body: { locked: false, state: "readable", supportsBYOB: true },

bodyUsed: false,

ok: true,

redirected: false,

type: "basic",

url: "process.env.GATEWAYAPI URL/rest/mtsms",

}s

export const SuccessResponselson = {
ids: [4382703917],
usage: { countries: { DE: 1 }, currency: "EUR", total cost: ©.0642 },

}s
/**

* Cancel scheduled responses
Response {
status: 410,
statusText: 'Gone',
headers: Headers {
‘content-Llength': '3’,
‘content-type': 'application/json',
date: 'Wed, 05 Feb 2025 12:10:48 GMT',
'strict-transport-security': 'max-age=31536000',
‘x-server': 'GatewayAPI'
}s
body: ReadableStream { locked: false, state: 'readable', supportsBYOB: tr
ue },
bodyUsed: false,
ok: false,
redirected: false,
type: 'basic’,
url: 'process.env.GATEWAYAPI URL/rest/mtsms/43829860628'
/
*/

/1lib/actions/message.actions.ts

"use server";
import {

DraftActionResponse,
ActionResponse,

Luigi Matteo Girke 346 Maio 2025



' o Sistema de envio de SMS com interface web

DataActionResponse,
} from "@/types/action”;
import { getSession } from
import db from "../db";
import { revalidatePath } from "next/cache";
import { DBMessage, Message } from "@/types";
import { sleep } from "../utils";

../auth/sessions";

export async function toggleTrash(
id: string,
inTrash: boolean

): Promise<ActionResponse<null>> {
const session = await getSession();
const userld = session?.user?.id;

try {
if (l!userId) throw new Error("Invalid user id.");
await db(

UPDATE message
SET in_trash = $1
WHERE user_id = $2 AND id = $3;

J

[inTrash, userId, id]

)
revalidatePath("/failed"); // we need this

// Don't know why it works without the following Llines. We need to test
this in production and if necessary, uncomment these Lines

// revalidatePath("/sent");

// revalidatePath("/trash”);

return {
success: true,
message: [
inTrash
? "messages-page:server-move_trash _success”
"messages-page:server-restore_success",

g

}s
} catch (error) {
return {

success: false,
message: [
inTrash
? "messages-page:server-move_trash_unknown_error"
"messages-page:server-restore_unknown_error",
1,
}s

Luigi Matteo Girke 347 Maio 2025



Sistema de envio de SMS com interface web

export async function deleteMessage(
id: string,
pathname?: string

): Promise<ActionResponse<null>> {
const session = await getSession();
const userld = session?.user?.id;

try {
if (l!userld) throw new Error("Invalid user id.");

await db( DELETE FROM message WHERE user_id = $1 AND id = $2°, [
userld,
id,

1)

if (pathname) revalidatePath(pathname);

return {
success: true,
message: ["common:server-delete message success"],

}s
} catch (error) {
return {
success: false,
message: ["common:server-delete message unknown_error"],
}s
}

}

export async function cancelCurrentlyScheduled(
sms_reference_id: number

): Promise<DataActionResponse<DBMessage | undefined>> {
const session = await getSession();
const userld = session?.user?.id;

try {
if (l!userId) throw new Error("Invalid user id.");

const res = await fetch(
“${process.env.GATEWAYAPI URL}/rest/mtsms/${sms_reference_id} ,
{
method: "DELETE",
headers: {
Authorization: “Token ${process.env.GATEWAYAPI TOKEN}",
"Content-Type": "application/json",
s
}
)

if (!res.ok) {

return {
success: false,

Luigi Matteo Girke 348 Maio 2025



' e Sistema de envio de SMS com interface web

message: [ api_error_${res.status} ],
}s
}

// TEST PRODUCTION: This did not work with the 2 WHERE conditions on th
e dev server on Windows
const result = await db(

UPDATE message
SET status = 'FAILED', api_error_code = 409
WHERE user_id = $1 AND sms_reference_id = $2;

J
[userld, sms_reference_id]

)5

revalidatePath("/scheduled");

return {
success: true,
message: ["messages-page:server-cancel scheduled success"],
data: result.rows[@],

}s

} catch (error) {
console.log(error);

return {
success: false,
message: ["messages-page:server-cancel scheduled_unknown_error"],
data: undefined,
}s
}
}

export async function saveDraft(
draftId: string | undefined,
data: Message,
pathname?: string

): Promise<DraftActionResponse<string>> {
const session = await getSession();
const userld = session?.user?.id;
let draft;

try {
if (l!userId) throw new Error("Invalid user id.");

if (draftld) {
// 1. Delete old recipients first
await db( DELETE FROM recipient WHERE message_id = $1°, [draftId]);

// 2. Insert the new recipients after that

// We are await these separately so that we can be sure that there ar
e no duplicate recipients

draft = await db(

Luigi Matteo Girke 349 Maio 2025



gfesionel da zona doPinhal Sistema de envio de SMS com interface web

WITH insert_message AS (
UPDATE message SET subject = $3, body = $4, sender = $5 WHERE
id = $2 AND user_id = $1
RETURNING id
)>
insert _recipients AS (
INSERT INTO recipient (message id, phone, index)
SELECT
insert_message.id,
unnest($6::text[]) as phone,
unnest($7::int[]) as index
FROM insert_message

)
SELECT * FROM insert_message

)

userld,
draftld,
data.subject,
data.body,
data.sender,

// Recipients

data.recipients.map((recipient) => recipient.phone), // phone num
ber array

data.recipients.map((_, index) => index), // for the ordering of
the recipient

]
)
} else {
// Create new draft
draft = await db(

WITH insert_message AS (
INSERT INTO message (user_id, subject, body, sender, status)
VALUES ($1, $2, $3, $4, $5)
RETURNING id
)>
insert_recipients AS (
INSERT INTO recipient (message id, phone, index)
SELECT
insert_message.id,
unnest($6::text[]) as phone,
unnest($7::int[]) as index
FROM insert_message

)
SELECT id FROM insert_message

)

[

userld,
data.subject,
data.body,

Luigi Matteo Girke 350 Maio 2025



o Sistema de envio de SMS com interface web

data.sender,
"DRAFTED",

// Recipients
data.recipients.map((recipient) => recipient.phone), // phone num

ber array

data.recipients.map((_, index) => index), // for persisting the u

ser specified recipient order

]
)5
}

if (pathname) revalidatePath(pathname);

return {
success: true,
message: ["common:server-save_draft_success"],
draftId: draftld || draft.rows[0].id,

}s

} catch (error) {
return {

}s

success: false,
message: ["common:server-save_draft_unknown_error"],

/1lib/actions/contact.actions.ts

"use server";
// IlIf you are using the contacts context, refetch contacts on client afte

r each
import
import
import
import
import
import
import
import
import

server action instead of revalidating!!

db from "../db";

ContactSchema } from "../form.schemas"”;

DBContact } from "@/types/contact"”;

getSession } from "../auth/sessions";

formatPhone } from "../utils";

revalidatePath } from "next/cache";

DatabaseError } from "pg";

ActionResponse, CreateContactResponse } from "@/types/action”;
{ z } from "zod";

e L el ey

// Binding pathname is unnecessary since we re-fetch the context, and conta
cts won't be re-fetched on revalidation.

export

async function createContact(

_: CreateContactResponse | null,
formData: FormData

): Promise<CreateContactResponse> {
const session = await getSession();
const userld = session?.user?.id;

Luigi Matteo Girke 351 Maio 2025



Sistema de envio de SMS com interface web

const rawData = {
name: formData.get("name") as string,
phone: formData.get("phone") as string,
description: formData.get("description") as string,
}s
const validatedData = ContactSchema.safeParse(rawData);
if (!validatedData.success) {
return {
success: false,
message: ["common:fix_ zod errors"],
errors: validatedData.error.flatten().fieldErrors,
inputs: rawData,
}s
}

try {
if (l!userId) throw new Error("Invalid user id.");

const { name, phone, description } = validatedData.data;
const validatedPhone = formatPhone(phone);
if (!validatedPhone)

throw new Error("Phone number is unexpectedly invalid!");

const result = await db(
“INSERT INTO contact (user_id, name, phone, description) VALUES ($1,
$2, $3, $4) RETURNING *°,
[userId, name, validatedPhone, description || null]
)

console.log(result.rows[0]);

return {
success: true,
message: ["modals:create contact-success"],
data: result.rows[@],
}s
} catch (error) {
let message = "";
if (error instanceof DatabaseError && error.code === "23505") {
// check if it 1is a duplicate key error by comparing it with the erro
r code

message = "modals:zod_error-duplicate_phone";
} else {

message = "modals:create_contact-unknown_error";
}
return {

success: false,
message: [message],
inputs: rawData,
}s
}

Luigi Matteo Girke 352 Maio 2025



Sistema de envio de SMS com interface web

}

export async function updateContact(

i

d: string,
: ActionResponse<DBContact> | null,

?ormData: FormData

):

Promise<ActionResponse<z.infer<typeof ContactSchema>>> {

const session = await getSession();
const userld = session?.user?.id;

const rawData = {

}

name: formData.get("name") as string,
phone: formData.get("phone") as string,
description: formData.get("description") as string,

J

const validatedData = ContactSchema.safeParse(rawData);
if (!validatedData.success) {

}
t

r i

}

return {
success: false,
message: ["common:fix_ zod errors"],
errors: validatedData.error.flatten().fieldErrors,
inputs: rawData,

}s

ry {
if (l!userId) throw new Error("Invalid user id.");

const { name, phone, description } = validatedData.data;
const validatedPhone = formatPhone(phone);

await db(
"UPDATE contact SET name = $1, phone = $2, description = $3 WHERE use

d = $4 AND id = $5",

[name, validatedPhone, description || null, userld, id]

)5

return { success: true, message: ["modals:edit contact-success"] };
catch (error) {
let message;
if (error instanceof DatabaseError && error.code === "23505") {
// check if it 1is a duplicate key error by comparing it with the erro

r code
message = "modals:zod_error-duplicate_phone";
} else {
message = "modals:create_contact-unknown_error";
}
return {

success: false,
message: [message],
inputs: rawData,

}s

Luigi Matteo Girke 353 Maio 2025



Sistema de envio de SMS com interface web

}
}

export async function deleteContact(
id: string

): Promise<ActionResponse<undefined>> {
const session = await getSession();
const userld = session?.user?.id;

try {
if (l!userId) throw new Error("Invalid user id.");

await db("DELETE FROM contact WHERE user_id = $1 AND id = $2", [
userlId,
id,

1)

return {

success: true,
message: ["contacts-page:server-delete success"],

}s
} catch (error) {
return {
success: false,
message: ["contacts-page:server-delete unknown_error"],
}s

}
}

/lib/actions/user.actions.ts

"use server";

import type { DBUser, SettingName, User } from "@/types/user";
import db from "../db";
import ActiveDirectory from "activedirectory2";
import { z } from "zod";
import { UpdateSettingSchema } from "../form.schemas";
import {
ActionResponse,
DataActionResponse,
UpdateSettingResponse,
} from "@/types/action”;
import { getSession } from "../auth/sessions"”;
import { validSettingNames } from "@/types/user";

// These are guaranteed properties when you find the user using A.D.
type userResult = {
displayName: string; // display name

givenName: string; // first name

Luigi Matteo Girke 354 Maio 2025



‘ Sistema de envio de SMS com interface web

sn: string; // surname

cn: string; // full name

}s

export default async function saveUser(
ad: ActiveDirectory,
email: string,
isAdmin: boolean
): Promise<DataActionResponse<User>> {
try {
const selectResult = await db(
"SELECT * FROM public.user WHERE email = $1;",
[email]
)
if (selectResult.rows.length) {
return {
success: true,
message: ["Authentication successful!", "User already exists"],

data: selectResult.rows[9],
}s
} else {
// User has never signed up before

return new Promise((resolve) => {
ad.findUser(email, async (err, user: any) => {

if (err || luser) {
resolve({ success: false, message: ["User not found."] });
return;

}

const { cn, displayName, givenName, sn } = user;

try {
const insertResult = await db(

"INSERT INTO public.user (email, name, role, first name, last
_name, display name) VALUES ($1, $2, $3, $4, $5, $6) RETURNING *;",
[
email, // email
cn, // complete name
isAdmin ? "ADMIN" : "USER",
givenName, // first name
sn, // surname
displayName,
]
)

resolve({

success: true,
message: ["Authentication successful!", "New user created"],

data: insertResult.rows[@],

1)

} catch (error) {

Luigi Matteo Girke 355 Maio 2025



' o Sistema de envio de SMS com interface web

resolve({
success: false,
message: ["Error occurred", "Failed to create user in databas
e."],
3
}
})s
3
}

} catch (error) {
return {
success: false,
message: ["Error occurred", "Failed to create or fetch user."],
}s
}
}

export async function dummySaveUser(
user: DBUser
): Promise<DataActionResponse<User>> {
try {
const selectResult = await db(
"SELECT * FROM public.user WHERE email = $1;",
[user.email]

)
if (selectResult.rows.length) {
return {
success: true,
message: ["Authentication successful!", "User already exists"],
data: selectResult.rows[@],
}s
} else {
// User has never signed up before
try {

const insertResult = await db(
"INSERT INTO public.user (email, name, role, first _name, last nam
e, display name) VALUES ($1, $2, $3, $4, $5, $6) RETURNING id, name, email,
role, first name, last name;",
[
user.email,
user.name,
user.role,
user.first_name,
user.last name,
“${user.first_name} ${user.last_name} ,

]
)5

return {
success: true,
message: ["Authentication successful!", "New user created"],
data: insertResult.rows[0@],

}s

Luigi Matteo Girke 356 Maio 2025



} catch (error)
return {

Sistema de envio de SMS com interface web

{

success: false,

message: ["
}s
}
}
} catch (error) {

Error occurred", "Failed to create user in database."]

console.log("Dummy save user error:", error);

return {
success: false,

message: ["Error occurred", "Failed to create or fetch user."],

}s
}
}

// Settings page calls this function to update one setting at a time
export async function updateSetting(

formData: FormData

): Promise<UpdateSettingResponse> {
const session = await getSession();
const userld = session?.user?.id;

// Extract raw data from the form

const rawData = {

name: formData.get("name") as SettingName,
value: formData.get("value") as string,

}s

if (!validSettingNames.includes(rawData.name)) {

return {
success: false,

error: "Invalid setting",

input: rawData.
}s
}
try {

value,

if (l!userId) throw new Error("Invalid user id.");
// Try to validate and parse the raw data.

const parsedData

// If validation
ngly.

const { rows } =

“UPDATE public.

= UpdateSettingSchema.parse(rawData);
passed, you can proceed to update the database accordi

await db(
user SET ${parsedData.name} = $2, updated at = NOW() W

HERE id = $1 RETURNING *;°,
[userld, parsedData.value]

)5

return {

Luigi Matteo Girke

357 Maio 2025



‘ Sistema de envio de SMS com interface web

success: true,
input: rawData.value,
data: rows[@][parsedData.name],

}s

} catch (error) {
// If the error 1is produced by zod, extract and send back the error det
ails.

if (error instanceof z.ZodError) {

const { fieldErrors } = error.flatten();

// One option: join all errors from all fields
const errorString = Object.values(fieldErrors)

.flat()

.filter(Boolean)

-Join(", ");
return {

success: false,

error: errorString,

input: rawData.value,
}s

// For any other kind of error, return a generic error message.
return {

success: false,

input: rawData.value,

error: "Something went wrong while saving this input”,

}s

/1ib/db/general.ts

"use server";

import { AmountIndicators } from "@/types";
import { getSession } from "../auth/sessions"”;

import db from ".";
import { UserSettings } from "@/types/user";

export async function fetchUserSettings() {
const session = await getSession();
const userld = session?.user?.id;

try {
if (l!userId) throw new Error("Invalid user id.");

const { rows } = await db(

SELECT lang, profile color_id, display name, dark_mode, primary_color
_id, appearance_layout

Luigi Matteo Girke 358 Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

FROM public.user WHERE id = $1;

J
[userId]
)
return rows[0] as UserSettings;
} catch (error) {}

}

export async function fetchAmountIndicators() {
const session = await getSession();
const userld = session?.user?.id;

try {
if (l!userId) throw new Error("Invalid user id.");

// We need to do two separate queries, because I got issues when trying
to merge it into one. Maybe come back to this Later and create one query to
all of them.

const messageCount = await db(

SELECT
COALESCE (SUM(CASE
WHEN
user_id = $1 AND
in_trash = false AND
status NOT IN ('FAILED', 'DRAFTED') AND
send_time <= NOW()
THEN 1 END), ©)::INTEGER AS sent,
COALESCE (SUM(CASE
WHEN
user_id = $1 AND
in_trash = false AND
status NOT IN ('FAILED', 'DRAFTED') AND
send _time > NOW()
THEN 1 END), ©)::INTEGER AS scheduled,
COALESCE(SUM(CASE WHEN status = 'FAILED' AND in_trash = false T
HEN 1 END), ©)::INTEGER AS failed,
COALESCE (SUM(CASE WHEN status
THEN 1 END), ©)::INTEGER AS drafts,
COALESCE(SUM(CASE WHEN in_trash = true THEN 1 END), ©)::INTEGER

'DRAFTED' AND in_trash = false

AS trash
FROM
message
WHERE
user_id = $1;
‘)
[userId]
)

const contactsCount = await db(

SELECT

CAST(COUNT(c.id) AS INTEGER)
FROM

contact c

Luigi Matteo Girke 359 Maio 2025



Sistema de envio de SMS com interface web

WHERE
c.user_id = $1;

’[userId]
)

return {
...messageCount.rows[0],
contacts: contactsCount.rows[@0].count,
} as AmountIndicators;
} catch (error) {}

}

/1lib/db/contact.ts

"use server";

import { DBContact } from "@/types/contact";

import db from ".";
import { getSession } from

../auth/sessions";

export async function fetchContacts() {
const session = await getSession();
const userId = session?.user?.id;

try {
if (!userId) throw new Error("Invalid user id.");

const result = await db(

SELECT * FROM contact
WHERE user_id = $1

[aserId]
)

return result.rows as DBContact[];
} catch (error) {}

}

/1lib/db/seed.sql

-- Create user table
CREATE TABLE "user" (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
email VARCHAR(255) UNIQUE NOT NULL,
role VARCHAR(20) CHECK (role IN ('USER', 'ADMIN')) NOT NULL,

Luigi Matteo Girke 360 Maio 2025



' o Sistema de envio de SMS com interface web

created _at TIMESTAMP NOT NULL DEFAULT NOW(),

updated at TIMESTAMP NOT NULL DEFAULT NOW(),

first_name VARCHAR(50) NOT NULL,

last_name VARCHAR(50) NOT NULL,

-- User settings:

-- ALL have defaults except display name, which defaults to the user's
AD name when they first sign up.

lang VARCHAR(2) NOT NULL DEFAULT 'pt', -- ISO 639-1 lLanguage code

profile_color_id SMALLINT NOT NULL DEFAULT 2,

display_name VARCHAR(50) NOT NULL,

primary_color_id SMALLINT NOT NULL DEFAULT 1,

appearance_layout VARCHAR(20) CHECK (appearance_layout IN ( 'MODERN', 'S
IMPLE")) NOT NULL DEFAULT 'MODERN',

dark_mode BOOLEAN NOT NULL DEFAULT false

)5

-- Create message table
CREATE TABLE "message" (

id SERIAL PRIMARY KEY,

user_id INTEGER NOT NULL REFERENCES "user"(id) ON DELETE CASCADE,

sender VARCHAR(255),

subject VARCHAR(255),

body TEXT NOT NULL,

created _at TIMESTAMP NOT NULL DEFAULT NOW(),

send_time TIMESTAMP DEFAULT NOW() NOT NULL, -- can be null 1if the messa
ge i1s a draft

sms_reference_id BIGINT, -- can be null if the message is not scheduled
, failed, or a draft

status VARCHAR(20) NOT NULL CHECK (status IN ('SENT', 'SCHEDULED', 'FAI
LED', 'DRAFTED')), -- scheduled messages will remain with status "SCHEDULED
", even when their delivery date is reached

in_trash BOOLEAN NOT NULL DEFAULT false,

api_error_code SMALLINT, -- This 1is the http status code which is saved
when an error occurs

api_error_details_json TEXT,

cost NUMERIC(6, 4), -- 6 total digits, 4 digits after the decimal

cost_currency VARCHAR(10) -- assumed to be in EUR

)5

-- Create contacts table
CREATE TABLE "contact" (

id SERIAL PRIMARY KEY,

user_id INTEGER NOT NULL REFERENCES "user"(id) ON DELETE CASCADE,

name VARCHAR(255) NOT NULL,

phone VARCHAR(50) NOT NULL,

description VARCHAR(255),

created _at TIMESTAMP NOT NULL DEFAULT NOW(),

updated at TIMESTAMP NOT NULL DEFAULT NOW(),

UNIQUE (user_id, phone) -- The same phone number may exist between diff
erent user, but there cannot be contacts with the same phone number for one
user.

)5

Luigi Matteo Girke 361 Maio 2025



gfesionel da zona doPinhal Sistema de envio de SMS com interface web

-- Create recipient table
CREATE TABLE recipient (

id SERIAL PRIMARY KEY,

message_id INTEGER REFERENCES message(id) ON DELETE CASCADE,

phone VARCHAR(50) NOT NULL, -- Store phone numbers as VARCHAR to accomm
odate various formats

index SMALLINT NOT NULL, -- This 1is the used for persisting the order o
f the recipients of a message

UNIQUE (message_id, phone) -- Ensure a phone number can only be added o
nce per message. This is not an actual field in the table, but it will make
sure that there are no recipients with duplicate Links

)5

-- Insert a scheduled message for testing:
-- INSERT INTO "message" (

-- user_1id,

-- sender,

-- subject,

-- body,

-- send_time,

-- status,

-- in_trash,

-- api_error_code,

-- api_error_details _json

-- ) VALUES (

- 1,

-- 'john.doe@example.com"’,

-- 'Meeting Reminder at 2pm’,
-- 'Don"t forget about the meeting tomorrow at 14 AM.',
o NOW())

- "SENT ',

-- false,

- NULL,

-- NULL

=)

/1lib/db/Dockerfile

FROM postgres:17.4-alpine3.21

COPY seed.sql /docker-entrypoint-initdb.d/

/1ib/db/dashboard.ts

import { getSession } from
import db from ".";
import { DBUser } from "@/types/user";

import { format } from "date-fns";

../auth/sessions";

Luigi Matteo Girke 362 Maio 2025



Sistema de envio de SMS com interface web

import { CountryStat } from "@/app/[locale]/dashboard/page";

import { IS08601 DATE_FORMAT as API_DATE_FORMAT } from "@/global.config";
import { LightDBMessage } from "@/types/dashboard";

import { DateRangeSchema } from "../form.schemas"”;

export async function fetchMessagesInDateRange(input: {
startDate: string;
endDate: string;

N A

const session = await getSession();

try {
if (!session?.isAdmin || !session?.isAuthenticated)
throw new Error("User is not an admin or not authenticated.");

// Validate input using Zod
const validatedDates = DateRangeSchema.parse(input);
const { startDate, endDate } = validatedDates;

const result = await db(

SELECT id, user_id, send time, cost FROM message m
WHERE
m.in_trash = false AND
m.status NOT IN ('FAILED', 'DRAFTED') AND
m.send_time BETWEEN $1 AND $2
ORDER BY send_time ASC;

J
[startDate, endDate]
)

return result.rows as LightDBMessage[];
} catch (error) {}

}

export async function fetchUsers() {
const session = await getSession();

try {
if (!session?.isAdmin || !session?.isAuthenticated)
throw new Error("User is not an admin or not authenticated.");
const result = await db( SELECT * FROM public.user;’);

return result.rows as DBUser[];
} catch (error) {}
}

export async function fetchCountryStats(input: {
startDate: string;
endDate: string;

}): Promise<CountryStat[] | undefined> {
if (!input.startDate) return undefined;

Luigi Matteo Girke 363 Maio 2025



Sistema de envio de SMS com interface web

const session = await getSession();

try {
if (!session?.isAdmin || !session?.isAuthenticated)
throw new Error("User is not an admin or not authenticated.");

// Validate input using Zod
const validatedDates = DateRangeSchema.safeParse(input);
if (!validatedDates.success || validatedDates.data.startDate == undefin
ed)
throw new Error("Invalid input.");
const { startDate, endDate } = validatedDates.data;

const res = await fetch( ${process.env.GATEWAYAPI URL}/api/usage/labels
A
method: "POST",
headers: {
Authorization: “Token ${process.env.GATEWAYAPI TOKEN},
Accept: "application/json, text/javascript",
"Content-Type": "application/json",
¥
body: JSON.stringify({
from: format(startDate, API_DATE_FORMAT),
to: format(endDate || new Date(), API_DATE_FORMAT),
3
})s
if (!res.ok) {
throw new Error("Network response was not ok");
}

const resJson = await res.json();

return resJson

.filter((country: { label: string | null }) => country.label === null
)
.map(
(item: {

amount: number;
cost: number;
country: string;
currency: string;
label: null;
P o=>
country: item.country,
cost: item.cost,
amount: item.amount,
})
)
} catch (error) {
console.log(error);
¥
}

Luigi Matteo Girke 364 Maio 2025



‘ Sistema de envio de SMS com interface web
/1lib/db/_seed-data.sql

INSERT INTO "user" (name, email, role, created at, updated at, first name,
last_name, lang, profile_color_id, display_name, dark_mode, primary_color_i
d)
VALUES

('Alice Johnson', 'alice@example.com', 'USER', NOW(), NOW(), 'Alice’, '
Johnson', 'en', 1, 'Alice J.', false, 1),

('Bob Smith', 'bob@example.com', 'USER', NOW(), NOW(), 'Bob", 'Smith',
'en', 1, 'Bob S.', false, 1),

('Charlie Brown', 'charlie@example.com', "ADMIN', NOW(), NOW(), 'Charli
e', 'Brown', 'en', 1, 'Charlie B.', false, 1),

('David Wilson', 'david@example.com', 'USER', NOW(), NOW(), 'David', 'W
ilson', 'pt', 1, 'David W.', false, 1),

('Eve Davis', 'eve@example.com', "'ADMIN', NOW(), NOW(), 'Eve', 'Davis’,
'pt', 1, 'Eve D.', true, 1),

('Frank Miller', 'frank@example.com', 'USER', NOW(), NOW(), 'Frank', 'M
iller', 'en', 1, 'Frank M.', false, 1),

('Grace Lee', 'grace@example.com', 'USER', NOW(), NOW(), 'Grace', 'Lee'
, 'en', 1, 'Grace L.', false, 1),

('Hank Green', 'hank@example.com', 'USER', NOW(), NOW(), 'Hank', 'Green
', 'pt', 1, 'Hank G.', true, 1),

('Irene Taylor', '"irene@example.com', 'ADMIN', NOW(), NOW(), 'Irene’', '
Taylor', 'en', 1, 'Irene T.', false, 1),

('Jack White', 'jack@example.com', 'USER', NOW(), NOW(), 'Jack', 'White
', 'pt', 1, 'Jack W.', false, 1);

/1ib/db/message.ts

"use server";

import db from ".";

import { DBMessage, StatusEnums } from "@/types"”;
import { getSession } from "../auth/sessions";
import { NewRecipient } from "@/types/recipient”;

export async function fetchMessagesByStatus(status: StatusEnums) {
const session = await getSession();
const userld = session?.user?.id;

try {
if (l!userId) throw new Error("Invalid user id.");

const result = await db(

SELECT m.*,
COALESCE(
json_agg(
json_build object(
'id', r.id,

Luigi Matteo Girke 365 Maio 2025



' e Sistema de envio de SMS com interface web

‘phone’, r.phone
) ORDER BY r.phone -- Order by phone number numerically
) FILTER (WHERE r.id IS NOT NULL), '[]'::json
) AS recipients
FROM message m
LEFT JOIN recipient r ON m.id = r.message id
WHERE m.user_id = $1 AND m.status = $2 AND m.in_trash = false
GROUP BY m.id
ORDER BY m.created_at DESC;

J
[userld, status]

)5

return result.rows as DBMessage[];
} catch (error) {}
}

export async function fetchTrashedMessages() {
const session = await getSession();
const userld = session?.user?.id;

try {
if (l!userld) throw new Error("Invalid user id.");

const result = await db(

SELECT m.*,
COALESCE(
json_agg(
json_build object(
'id', r.id,
‘phone’, r.phone
) ORDER BY r.phone -- Order by phone number numerically
) FILTER (WHERE r.id IS NOT NULL), '[]'::json
) AS recipients
FROM message m
LEFT JOIN recipient r ON m.id = r.message id
WHERE m.user_id = $1 AND m.in_trash = true
GROUP BY m.id
ORDER BY m.created_at DESC;
‘)
[userId]
)

return result.rows as DBMessage[];
} catch (error) {}
}

export async function fetchSentIn(time: "FUTURE" | "PAST") {
const session = await getSession();
const userld = session?.user?.id;

try {

Luigi Matteo Girke 366 Maio 2025



@i@?fﬁ

Sistema de envio de SMS com interface web

if (l!userId) throw new Error("Invalid user id.");
const result = await db(

SELECT m.*,
COALESCE(
json_agg(
json_build object(
'id', r.id,
‘phone’, r.phone
) ORDER BY r.phone -- Order by phone number numerically
) FILTER (WHERE r.id IS NOT NULL), '[]'::json
) AS recipients
FROM message m
LEFT JOIN recipient r ON m.id = r.message id
WHERE
m.user_id = $1 AND
m.in_trash = false AND
m.status NOT IN ('FAILED', 'DRAFTED') AND

m.send_time ${time === "PAST" ? "<=" : ">"} NOW()
GROUP BY m.id
ORDER BY m.send_time ${time === "FUTURE" ? "ASC" : "DESC"};
J
[userId]

)5

return result.rows as DBMessage[];
} catch (error) {}

}

export async function fetchDraft(id?: string) {
const session = await getSession();
const userld = session?.user?.id;

try {
if (!id) throw new Error("Invalid draft ID");
if (l!userId) throw new Error("Invalid user id");

const result = await db(

SELECT m.*,
COALESCE(
json_agg(
json_build object(
'id', r.id,
‘phone’, r.phone
) ORDER BY r.index -- This determines in which order the
recipient chips are on new-message
) FILTER (WHERE r.id IS NOT NULL), '[]'::json
) AS recipients
FROM message m
LEFT JOIN recipient r ON m.id
WHERE m.user_id = $1 AND m.id

r.message_id
$2 AND (m.status = 'DRAFTED' OR m.s

Luigi Matteo Girke 367 Maio 2025



Sistema de envio de SMS com interface web

tatus = 'FAILED') -- Add the ability to edit FAILED messages from the new-m
essage-page later on

}

GROUP BY m.id;

[userId, id]
)

return result.rows[0] as DBMessage & { recipients: NewRecipient[] };

} catch (error) {}

/lib/db/recipients.ts

"use server";

import db from ".";

import { getSession } from

../auth/sessions";

import { DBRecipient } from "@/types/recipient”;

export async function fetchRecipients() {

}

const session = await getSession();
const userld = session?.user?.id;

try {

if (l!userId) throw new Error("Invalid user id.");
const { rows } = await db(

SELECT
r.id,
r.phone,
m.created_at AS last_used
FROM recipient r
JOIN message m ON r.message id = m.id
WHERE m.user_id = $1;
‘J
[userId]
)

return rows as (DBRecipient & { last_used: Date })[];

} catch (error) {}

/1lib/db/index.ts

import { Pool, QueryResult } from "pg";

const pool = new Pool({

Luigi Matteo Girke 368

Maio 2025



wgtesonel daona doPinha Sistema de envio de SMS com interface web

host: process.env.POSTGRES HOST,

port: Number(process.env.POSTGRES PORT),
user: process.env.POSTGRES USER,
password: process.env.POSTGRES PASSWORD,
database: process.env.POSTGRES DB,

1)

async function db(query: string, params?: any[]): Promise<QueryResult> {

const client = await pool.connect();

try {
const res = await client.query(query, params);
return res;

} catch (err) {
console.error("Database query error", err);

throw err; // Rethrow the error for handling in the calling function

} finally {
client.release(); // Always release the client back to the pool
}
}

export default db;

// For testing database connections
// db("SELECT $1::text as message", ["Hello world!"])
//  .then(() => console.log("Connected to Postgres!"))

//  .catch((err) => console.error("Error connecting to Postgres!", err));
/components.json
{

"$schema": "https://ui.shadcn.com/schema.json",

"style": "new-york",

"rsc": true,

"tsx": true,

"tailwind": {
"config": "tailwind.config.ts",
"css": "app/globals.css”,
"baseColor": "slate",
"cssVariables": false,
"prefix": ""

¥

"aliases": {
"components": "@/components",
"utils": "@/1lib/utils",
"ui": "@/components/ui",
"lib": "@/1ib",
"hooks": "@/hooks"

¥

"iconLibrary": "lucide"

Luigi Matteo Girke 369

Maio 2025



‘ Sistema de envio de SMS com interface web

/tsconfig.json

{

"compilerOptions": {
"target": "ES2017",
"1ib": ["dom", "dom.iterable", "esnext"],
"allowJs": true,
"skipLibCheck": true,
"strict": true,
"noEmit": true,
"esModuleInterop": true,
"module”: "esnext",
"moduleResolution”: "bundler",
"resolvelsonModule": true,
"isolatedModules": true,
"jsx": "preserve",
"incremental": true,

// added manually:
"allowImportingTsExtensions": true,

"plugins": [
{ "name": "next"
}

1B

"paths": {
e/ [M./*"]

}

¥
"include": [
"next-env.d.ts",
”**/*.tS",
MERE/* tsx",
".next/types/**/*.ts",
"app/[locale]/login/page.tsx",
"app/[locale]/(app)/(other)/new-message/not-found.js",
"app/[locale]/(root)/(message-layout)/error.tsx"
1,

"exclude": ["node modules"]

/nginx.conf

# NOTE: Nginx doesn't read from this file, I am just committing to have the
config available when I need it
# Main context (this is the global configuration)

Luigi Matteo Girke 370 Maio 2025



Sistema de envio de SMS com interface web

worker_processes 1;

events {
worker connections 1024;

}

http {
include mime.types;

# Optional server block for HTTP to HTTPS redirection
server {

listen 80;

server_name localhost;

# Redirect all HTTP requests to HTTPS
return 301 https://\$host\$request uri;

}

# Main server block

server {
listen 443 ssl; # Listen on port 443 for HTTPS
server_name localhost;

# Here are my self signed certs. In actual production you would let
these be signed by a organization

ssl certificate /Users/<your _user>/nginx-certs/nginx-selfsigned.crt
5

ssl certificate key /Users/<your _user>/nginx-certs/nginx-selfsigned
.key;

# Proxying requests to the Docker container (assuming it is running
on port 3000)
location / {
# Tell nginx to act as a reverse proxy to forward requests to t
he node servers
proxy_pass http://localhost:3000;
proxy_set header Host $host;
proxy_set header X-Real-IP $remote_addr;
proxy_set header X-Forwarded-For $proxy add x_ forwarded for;
proxy set header X-Forwarded-Proto $scheme;
proxy_set header X-Forwarded-Host $host;
proxy_set header X-Forwarded-Port $server port;
proxy_set header Cookie $http cookie; # Forward cookies

/ .env.example

APP_NAME="ETPZP SMS"

Luigi Matteo Girke 371 Maio 2025



# Translations
I18NEXUS_API KEY="<nexus_ key>"

# Active Directory (AD)
AD URL="1ldap://<ip>"

AD BASE DN="dc=<dc_name>,dc=<dc_type>"

AD EMAIL="<ad email>"
AD_ PASSWORD="<secret password>"

# GATEWAYAPI Api

GATEWAYAPI URL="https://gatewayapi.com"

GATEWAYAPI TOKEN="<smsapi_ token>"

# postgres database

POSTGRES _USER="<dbuser>"

POSTGRES PASSWORD="<secret_password>"
POSTGRES HOST="<database.server.com>"
POSTGRES_PORT="<3211>"
POSTGRES_DB="<mydb>"

# Auth encryption key
SESSION SECRET="<secret_ password>"

/eslint.config.mjs

export default tseslint.config({
rules: {

¥
3
/.eslintrc.json
{
"extends": ["next/core-web-vitals",
}

/next.config.ts

Luigi Matteo Girke

Sistema de envio de SMS com interface web

"next/typescript"]

372 Maio 2025



scola Tecnoldgica e
% Er:\,ﬁ:sv nal da Zona do Pinhal . . .
' prelcaanaco Sistema de envio de SMS com interface web

import type { NextConfig } from "next";
// import path from ‘'path’;

const nextConfig: NextConfig = {
// Recommended: this will reduce output
// Docker image size by 80%+
output: "standalone",
// Optional: bring your own cache handler
// cacheHandler: path.resolve('./cache-handler.mjs'),
// cacheMaxMemorySize: 0, // Disable default in-memory caching
// images: {
// // Optional: use a different optimization service
// // loader: 'custom’,
// // loaderFile: './image-loader.ts’,
/S
// // We're defaulting to optimizing images with
// // Sharp, which 1is built-into “next start’
//  remotePatterns: [

// {

// protocol: "https"”,

// hostname: "images.unsplash.com”,
// port: "",

// pathname: "/**",

// search: "",

// b

/71

/71

// Nginx will do gzip compression. We disable

// compression here so we can prevent buffering

// streaming responses

compress: false,

// Optional: override the default (1 year) “stale-while-revalidate’
// header time for static pages

// swrDelta: 3600 // seconds

// Add the ability to dynamically alter the props of lLocal SVGs
webpack(config) {
config.module.rules.push({

test: /\.svg$/,
use: ['@svgr/webpack'],

3
return config;
¥
}s

export default nextConfig;

Luigi Matteo Girke 373 Maio 2025



