
ESCOLA TECNOLÓGICA E PROFISSIONAL DA ZONA DO PINHAL

Sistema de envio de SMS com interface web

LUIGI MATTEO GIRKE

Relatório Final da Prova de Aptidão Profissional do
Curso Profissional de

Técnico de Gestão de Equipamento Informático

Pedrógão Grande | Maio 2025

ESCOLA TECNOLÓGICA E PROFISSIONAL DA ZONA DO PINHAL

CURSO PROFISSIONAL DE
TÉCNICO DE GESTÃO DE EQUIPAMENTO INFORMÁTICO

Sistema de envio de SMS com interface web

LUIGI MATTEO GIRKE

ALUNO Nº 2812
TURMA E-22/25

Relatório Final da Prova de Aptidão Profissional

Professor Orientador Engº Rui Veríssimo

Diretor de Curso Engº Vítor Monteiro

Pedrógão Grande | Maio 2025

AGRADECIMENTOS
Em primeiro lugar, gostaria de agradecer ao Rui Veríssimo, orientador do projeto PAP, e ao
Vítor Monteiro, diretor do curso de Engenharia. A sua orientação, paciência, apoio e
disponibilidade constante foram fundamentais ao longo dos três anos de formação e
durante o desenvolvimento deste projeto.

Um agradecimento especial aos meus amigos e família pelo apoio e incentivo
incondicionais ao longo do meu percurso académico, especialmente durante este projeto.
Por fim, gostaria de agradecer à ETPZP por ter disponibilizado todas as ferramentas
essenciais para a realização deste projeto.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 4 Maio 2025

ÍNDICE
AGRADECIMENTOS ... 3

ÍNDICE ... 4

INTRODUÇÃO ... 6

FERRAMENTAS UTILIZADAS .. 7
Aplicações e serviços externos ... 7

Dependências ... 8

Tipografia ... 10

ESTRUTURA DO FICHEIRO .. 11
Encaminhamento baseado em ficheiros Next.js ... 11

Diretório /app .. 13

Diretório /componentes ... 16

FRONT-END .. 19
Estilo .. 19

ShadCN com temas dinâmicos .. 19

Painéis redimensionáveis em React .. 20

PÁGINAS ... 21
Iniciar sessão (/login) .. 21

Nova mensagem (/new-message) ... 21

Definições (/settings) .. 25

Painel de controlo do administrador (/dashboard) .. 26

Outras páginas .. 30

REGRAS DE COERÊNCIA ... 35
Utilização de acções do servidor ... 35
Utilização de contextos React ... 35
Configurações de formulários ... 36
Obtenção de componentes do servidor ... 36
Obtenção conservadora de dados .. 36
Ficheiros de capa de página .. 37
Metadados .. 38

BASE DE DADOS .. 39
Ligação à base de dados .. 39
Esquema da base de dados ... 41

AUTENTICAÇÃO E AUTORIZAÇÃO ... 43
Diretório Ativo .. 43
Implementação do Active Diretory ... 43

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 5 Maio 2025

Gestão de sessões .. 44
Implementação da gestão de sessões .. 44
Fluxo de autenticação .. 45
Autenticação baseada em sessão vs. autenticação baseada em token 48

INTERNACIONALIZAÇÃO (i18n) .. 51
Implementação ... 51
i18nexus .. 53
Integração do i18nexus .. 54

AUTO-HOSPEDAGEM E IMPLANTAÇÃO .. 55
Docker ... 55
Explicação do docker-compose.yaml ... 57
Sem IP e reencaminhamento de portas .. 58
Nginx ... 59

CONCLUSÃO ... 62
Arrependimentos ... 62
Caraterísticas omitidas ... 62

ANEXO I - MANUAL DO UTILIZADOR ... 64
Como começar .. 64
GitHub ... 64
Trabalhar num ambiente de desenvolvimento ... 64
Trabalhar num ambiente de produção (implantação) ... 65
Depuração do Docker .. 66
Trabalhar com a i18nexus ... 66

ANEXO II - FICHEIROS DE CÓDIGO ... 67

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 6 Maio 2025

INTRODUÇÃO
Esta aplicação foi criada para substituir o elevado custo das mensagens de texto para a
escola, fornecendo uma solução de comunicação rápida, fácil e económica através de SMS.
O facto de estar na Web tornou-a acessível a todos, independentemente do seu sistema
operativo.

A aplicação permitia aos utilizadores enviar mensagens para vários destinatários,
programar envios para entrega futura, cancelar mensagens programadas e gerir
mensagens enviadas através de uma interface de fácil utilização inspirada nos clientes de
correio eletrónico. A autenticação foi efetuada localmente utilizando o servidor Active
Diretory (AD) local da escola.

Foi construído com Next.js, tirando partido do seu App Router, juntamente com uma base
de dados Postgres, componentes ShadCN e outros pacotes. O envio de SMS foi possível
através da Interface de Programação de Aplicativos (API) REST (Representational State
Transfer) da GatewayAPI. Durante a implementação, a aplicação foi executada num
contentor Docker, com o Nginx configurado para encaminhar o tráfego do router para a
porta exposta do contentor adequado.

Sugestão: Utilize a funcionalidade Localizar para facilitar a navegação neste PDF.
Pode aceder-lhe premindo Ctrl + F (no Windows), Command + F (no macOS),
ou / atalho na maioria das aplicações.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 7 Maio 2025

FERRAMENTAS UTILIZADAS
Aplicações e serviços externos

• Visual Studio Code (VSCode): Ambiente de desenvolvimento integrado (IDE)
utilizado para escrever todo o código do projeto. Para além disso, foram utilizados
os seguintes plugins:

Suporte a JavaScript EJS: Fornece suporte para modelos EJS (JavaScript incorporado) no
Visual Studio Code.
Prettier - Formatador de código: Um formatador de código opinativo para muitas
linguagens e integra-se com o VSCode.
ESLint: Uma ferramenta para identificar e relatar padrões encontrados no código
ECMAScript/JavaScript, ajudando a manter a qualidade do código.
Snippets ES7 React/Redux/React-Native: Fornece snippets JavaScript e React para um
desenvolvimento mais rápido.
Importação automática: Localiza e importa automaticamente componentes, funções e
outros módulos React no seu código.
Preservação de maiúsculas e minúsculas com vários cursores: Preserva as maiúsculas e
minúsculas do texto quando se utiliza a edição com vários cursores no VSCode.
Erros bonitos do TypeScript: Melhora as mensagens de erro do TypeScript para que sejam
mais legíveis e informativas.
Ícones do VSCode: Adiciona ícones a ficheiros e pastas no explorador do VSCode para uma
melhor organização visual.
Docker: Fornece suporte para desenvolver e gerenciar contêineres Docker diretamente no
VSCode.
Corretor ortográfico de código: Um verificador ortográfico básico para código e
comentários, ajudando a detetar erros de digitação.
Tailwind CSS IntelliSense: Fornece sugestões inteligentes e preenchimento automático
para as classes CSS do Tailwind no seu código.

• API REST da Gateway API: Utilizada para enviar, programar e cancelar mensagens
SMS programadas e obter estatísticas sobre SMSs enviados.

PostgreSQL: Sistema de gestão de bases de dados relacionais utilizado para armazenar e
gerir dados de aplicações.
No macOS, foi utilizado o Postgres.app
No Windows, o PostgreSQL foi descarregado do sítio Web oficial

https://code.visualstudio.com/
https://gatewayapi.com/docs/apis/rest/
https://postgresapp.com/
https://www.postgresql.org/download/

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 8 Maio 2025

• Figma: Programa de design utilizado para criar protótipos de design de aplicações,
wireframes e interfaces de utilizador de brainstorming.

• Obsidiana: Aplicação de anotações baseada em Markdown utilizada para escrever
os relatórios e tomar notas ao longo do projeto.

• Microsoft Word: Software de processamento de texto utilizado para a formatação
e finalização dos relatórios.

• Git: Sistema de controlo de versões utilizado para acompanhar as alterações de
código ao longo do tempo. Nos sistemas operativos baseados em UNIX, vinha pré-
instalado. No Windows, no entanto, precisava de ser instalado separadamente.

• GitHub: Plataforma baseada na Web para alojar e colaborar em repositórios Git,
utilizada para sincronizar código entre diferentes dispositivos.

• Bun: Gerenciador de pacotes usado para instalar as dependências do projeto e os
componentes do ShadCN

• Docker: Plataforma de contentorização utilizada para criar, implementar e gerir
aplicações em ambientes isolados.

• Nginx: Servidor Web de elevado desempenho e servidor proxy inverso utilizado
para servir aplicações Web e gerir o equilíbrio de carga.

• dbdiagram.io: Gerador de diagramas de bases de dados baseado na Web utilizado
para visualizar esquemas de bases de dados.

• ChatGPT: Modelo de linguagem de IA utilizado numa interface baseada na Web
para ajudar a encontrar e corrigir erros de código.

DeepL: Ferramenta de tradução com recurso a IA utilizada na interface baseada na Web
para traduzir relatórios para português.
No macOS, as aplicações foram instaladas utilizando o homebrew se o respetivo cask
estivesse disponível.

Dependências

Dependências

https://www.figma.com/downloads/
https://obsidian.md/download
https://www.microsoft.com/en-us/microsoft-365/download-office#download
https://git-scm.com/downloads
https://github.com/
https://bun.sh/
https://www.docker.com/get-started/
https://nginx.org/en/download.html
https://dbdiagram.io/home
https://duck.ai/
https://brew.sh/

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 9 Maio 2025

• @hookform/resolvers: Integração do resolvedor para react-hook-form.
• @radix-ui/react-*@^1: Componentes de IU acessíveis, personalizáveis e sem

estilo.
• @svgr/webpack: Transforma SVGs em componentes React.
• activedirectory2: biblioteca cliente do Active Diretory.
• class-variance-authority: Utilitário para gerir nomes de classes CSS.
• clsx@^2: Utilitário para aplicar condicionalmente nomes de classes CSS.
• cmdk: Componente de menu de comandos acessível.
• date-fns@^4: Biblioteca abrangente de utilitários de data.
• i18next@^24: Estrutura de internacionalização para browser e Node.js.
• i18next-resources-to-backend: Adaptador de backend para i18next.
• iron-session@^8: Gerenciamento seguro de sessões para aplicações Next.js.
• libphonenumber-js: Biblioteca JavaScript para análise, formatação e validação de

números de telefone.
• lucide-react: Biblioteca de ícones React.
• next-i18n-router: Roteamento internacionalizado para Next.js.
• next-themes: Suporte de temas para Next.js.
• next@15: Estrutura React para criar aplicações renderizadas no servidor.
• nó: Tempo de execução do JavaScript.
• pg: Cliente PostgreSQL para Node.js.
• react-day-picker: Componente de seleção de datas acessível.
• react-hook-form@^7: Formulários extensíveis e de alto desempenho com

validação fácil.
• react-i18next: Internacionalização para React.
• react-loading-skeleton: Carregadores de esqueleto para React.
• react-resizable-panels: Layout de painel redimensionável para React.
• react@19: biblioteca JavaScript para a construção de interfaces de utilizador.
• recharts@^2: Biblioteca de gráficos compostável construída sobre componentes

React.
• sonner: Sistema de notificação para React.
• tailwind-merge: Utilitário para mesclar classes CSS do Tailwind.
• tailwindcss-animate: Utilitário para adicionar animações às classes CSS do

Tailwind.
• zod@^3: Validação de esquemas com inferência estática de tipos.

Dependências de desenvolvimento

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 10 Maio 2025

• typescript@^5: Superconjunto de JavaScript para tipagem estática opcional.
• tailwindcss@^3: Estrutura CSS de primeira utilidade para criar rapidamente

designs personalizados.
• eslint@^8: Linter JavaScript plugável.
• postcss@^8: Ferramenta para transformar CSS com JavaScript.
• @types/react@19: Definições TypeScript para React.
• @types/node@^20: Definições TypeScript para Node.js.
• eslint-config-next@15: Configuração do ESLint para projectos Next.js.
• @types/react-dom@19: Definições TypeScript para React DOM.
• @types/validator@^13: Definições TypeScript para a biblioteca validator.js.
• i18nexus-cli@^3: Ferramenta CLI para gerir recursos i18n.

Uma lista de todas as dependências e suas versões exatas pode ser encontrada no
package.json.

Tipografia

O TypeScript era um superconjunto de JavaScript com tipagem estática, que ajudava os
programadores a detetar erros precocemente e a melhorar a qualidade do código.
Melhorou a experiência de desenvolvimento com funcionalidades como o preenchimento
automático e a inferência de tipos, tornando-o ideal para o projeto.

O TypeScript quase não foi alterado, mas algumas regras foram modificadas. As
configurações podem ser vistas e modificadas no tsconfig.json localizado em /.

Durante o tempo de compilação, o comando a seguir foi útil. Ele usou o compilador
TypeScript para verificar todo o projeto em busca de erros de tipo, que precisavam ser
corrigidos para executar uma compilação.

tsc --noEmit

Para obter mais informações sobre o TypeScript, foi consultada a documentação oficial.
Para a sua utilização no contexto do Next.js, foi consultada esta documentação.

https://www.scaler.com/topics/typescript/static-typing-vs-dynamic-typing/
https://www.typescriptlang.org/docs/
https://nextjs.org/docs/pages/api-reference/config/typescript

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 11 Maio 2025

ESTRUTURA DO FICHEIRO
Muita da estrutura de ficheiros existente foi escolhida por ser obrigatória no Next.js ou por
ser uma convenção comum. Algumas pessoas colocam /lib, /components, /contexts e
/hooks dentro do diretório /app. No entanto, para manter o diretório app o mais limpo
possível, esses diretórios foram colocados fora.

• /app/ continha todas as páginas e estilos da aplicação, bem como tipos de letra e
uma função de internacionalização para carregar traduções do lado do servidor.

• /components/ contém todos os componentes React.
• /contexts/ contém todos os contextos React.
• /hooks/ contém todos os hooks personalizados do React.
• /lib/ continha todas as funções utilitárias, esquemas zod e a maior parte do

código do lado do servidor.
• /locales/ continha todas as traduções i18next.
• /node_modules/ continha todos os módulos do nó (esta pasta nunca foi tocada).
• /public/ era uma convenção de ficheiros Next.js para activos estáticos como

imagens e ícones.
• /types/ contém todos os tipos de TypeScript.
• / contém todos os ficheiros de configuração.
• /.next era uma pasta oculta gerada pelo Next.js sempre que um servidor de

compilação ou desenvolvimento era iniciado.
• /.vscode: era específico do Visual Studio Code e continha algumas definições de

espaço de trabalho para um plug-in de correção ortográfica.

Encaminhamento baseado em ficheiros Next.js

Na secção "/app diretory", muitas convenções de ficheiros Next.js foram mencionadas
com ligações para a documentação Next.js, mas os princípios básicos e as razões para a
estrutura de ficheiros escolhida foram explicados aqui.

Convenções da pasta Next.js:
Os diretórios envoltos em parênteses rectos como /app/[locale] representavam
segmentos de rota dinâmicos, permitindo que as páginas e os componentes no seu
interior recuperassem os seus valores (neste caso, o locale atual). Todas as páginas
estavam localizadas em /app/[locale], uma vez que toda a aplicação necessitava de
acesso ao idioma atual para que a internacionalização funcionasse.
Os diretórios entre parênteses rectos como /app/(root) serviam como grupos de rotas e
eram invisíveis para o utilizador final. Funcionavam como diretórios normais para agrupar
páginas diferentes. Neste projeto, foram utilizados para agrupar páginas com o mesmo
layout, garantindo que o layout.tsx nesse diretório se aplicava a todas as outras páginas
sem criar um segmento de rota real como etpzp-sms.com/(root).
Os diretórios com nomes padrão contendo um page.tsx representavam os nomes dos
segmentos de rota. Por exemplo, /app/contacts/page.tsx estava acessível em etpzp-
sms.com/contacts.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 12 Maio 2025

Os diretórios que começavam por um sublinhado indicavam rotas desactivadas (não
acessíveis ao utilizador final). Funcionam como comentários de código. Neste projeto,
/_seed/page.tsx foi utilizado apenas durante o desenvolvimento.
Convenções do ficheiro Next.js:
Os ficheiros page.tsx representam páginas acessíveis pelo nome do diretório acima.
Os ficheiros layout.tsx servem como esquemas aplicados a todas as páginas no mesmo
diretório e diretórios aninhados.

o loading.tsx utilizou o React Suspense nos bastidores para exibir uma IU
de fallback enquanto a página estava sendo carregada.

Os ficheiros error.tsx implementaram limites de erro que capturaram erros inesperados
no mesmo diretório, tratando erros inesperados ao fornecer uma IU de recurso.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 13 Maio 2025

o not-found.tsx era apresentado sempre que ocorria um erro 404.
A maioria destas caraterísticas foi escolhida por melhorar drasticamente a
experiência do utilizador.

Diretório /app

• /app/favicon.ico (convenção do ficheiro Next.js): Ficheiro de imagem para
definir o ícone da aplicação no separador do browser

• /app/globals.css: Ficheiro CSS para variáveis css utilizadas globalmente

https://nextjs.org/docs/app/api-reference/file-conventions/metadata/app-icons#image-files-ico-jpg-png

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 14 Maio 2025

• /app/i18n.js (convenção de ficheiro i18next): ficheiro de configuração i18next
para carregar traduções do lado do servidor. Contém o código deste tutorial

• /app/layout.tsx (convenção do ficheiro Next.js): Layout raiz da aplicação
• /app/not-found.tsx (convenção do ficheiro Next.js): Página global 404 não

encontrada
• /app/scattered-profiles.module.css: Módulos CSS utilizados no componente

message-display.tsx
• /app/[locale] (convenção do ficheiro Next.js): Segmento de rota dinâmico para o

idioma atual
o /app/[locale]/(root) (convenção do ficheiro Next.js): Grupo de rotas

para páginas que utilizam o painel de navegação redimensionável (ver
/app/[locale]/(root)/layout.tsx).

§ /app/[locale]/(root)/(message-layout) (convenção do ficheiro
Next.js): Grupo de rotas para páginas semelhantes que usavam as
mesmas traduções e precisavam de acesso aos contactos (ver
/app/[locale]/(root)/(message-layout)/layout.tsx),
partilhando a mesma página de erro. Até à data, todas estas páginas
utilizavam o layout de três colunas com painéis redimensionáveis.

§ /app/[locale]/(root)/(other) (convenção do ficheiro Next.js):
Grupo de rotas para páginas especiais que não partilhavam as
mesmas caraterísticas. Uma vez que este diretório não tinha um
layout, os ficheiros aderiram ao layout acima (ver
/app/[locale]/(root)/layout.tsx).

• /app/fonts: Diretório para fontes locais, importadas no layout raiz
(/app/layout.tsx). Para obter informações sobre tipos de letra locais, foi
consultada a documentação Next.js.
As diretorias normais não mencionadas aqui são as páginas, que foram explicadas
no capítulo "PAGES".

/ lib diretório

https://i18nexus.com/tutorials/nextjs/react-i18next
https://nextjs.org/docs/app/getting-started/layouts-and-pages#creating-a-layout
https://nextjs.org/docs/app/api-reference/file-conventions/not-found
https://nextjs.org/docs/app/building-your-application/routing/dynamic-routes
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/getting-started/images-and-fonts#local-fonts

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 15 Maio 2025

A pasta lib armazenava funções utilitárias reutilizáveis e a maior parte do código do lado
do servidor. Isso inclui o arquivo semente do banco de dados e as funções de busca,
configuração de autenticação, ações do servidor de autenticação e ações do servidor para
alterar dados e fazer chamadas de API, compartilhadas entre diferentes componentes e
páginas. Embora o código de autenticação contenha acções do servidor, foi colocado no
seu próprio diretório (/lib/auth) para separar o tópico e manter o diretório de acções
(/lib/actions) menos confuso.

• /lib/:
o form.schemas para esquemas zod
o theme.colors para a configuração do tema Tailwind e Next.js

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 16 Maio 2025

o utils.ts para funções utilitárias utilizáveis em qualquer lugar
O diretório /lib/actions continha acções do servidor e um diretório de teste para efeitos
de teste de desenvolvimento para simular chamadas API.

� /lib/auth tinha código de autenticação e um diretório chamado
activedirectory, que incluía funções que envolviam o pacote activedirectory2.

� O /lib/db tinha um ficheiro para semear a base de dados (/lib/db/seed.sql)
com o esquema inicial da base de dados, funções de obtenção da base de dados e
um Dockerfile para semear a base de dados Postgres executada dentro do
contentor Docker durante a produção.

Diretório /componentes

Este diretório continha todos os componentes React organizados em subdirectórios e os
componentes ShadCN.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 17 Maio 2025

• /components/admin-dashboard: Contém os componentes utilizados no painel de
controlo administrativo e foram colocados numa diretoria separada para separar o
tópico

• /componentes/modais: Contém os componentes modais/popup e foram colocados
numa diretoria separada para separar o tópico

• /components/shared: Contém componentes partilhados que foram muito
utilizados

• /components/ui: Componentes ShadCN mantidos: Os ficheiros no seu interior
permaneceram praticamente inalterados, exceto no que diz respeito a pequenos
ajustes de cor, que envolveram a substituição de cores codificadas por variáveis
CSS.

/ diretório (ficheiros de configuração)
• components.json foi usado para a configuração do ShadCN para adicionar

componentes no mesmo estilo sempre que um novo fosse adicionado a partir da
CLI.

• tsconfig.json era o ficheiro de configuração TypeScript.
• tailwind.config.ts era para as CSS do Tailwind.
• .dockerignore foi utilizado para especificar ficheiros a ignorar durante as

implementações do Docker.
• .env era o ficheiro da variável de ambiente.
• .env.docker era o ficheiro de variáveis de ambiente específico do Docker.
• .env.example serviu como um exemplo de variáveis de ambiente.
• eslintrc.json era o ficheiro de configuração do ESLint.
• .gitignore foi usado para especificar ficheiros a ignorar no Git.
• .prettierignore foi utilizado para especificar ficheiros a ignorar no Prettier.
• .bun.lock era o ficheiro de bloqueio para o gestor de pacotes Bun.
• docker-compose.yaml foi usado para a configuração do Docker Compose.
• Dockerfile era o ficheiro para construir imagens Docker.
• eslint.config.mjs era o ficheiro de configuração do ESLint em formato de

módulo.
• global.config.ts foi utilizado para definições de configuração global; foi

adicionado para constantes JavaScript utilizadas em vários componentes.
• 118n.config.ts era o ficheiro de configuração para a internacionalização.
• middleware.ts foi utilizado para as funções de middleware.
• next.config.ts era o ficheiro de configuração para Next.js com três

modificações:
o output: standalone foi utilizado para otimizar o tamanho da compilação,

filtrando ficheiros desnecessários.
o compress: false foi definido para as definições de compressão.

Foi adicionada uma configuração do webpack para carregar SVGs locais para estilização
dinâmica.

https://ui.shadcn.com/docs/components-json

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 18 Maio 2025

• nginx.conf era o ficheiro de configuração para o Nginx.
• package.json era o ficheiro para gerir as dependências do projeto.
• README.md era o ficheiro de documentação.
• postcss.config.mjs foi incluído para a configuração do PostCSS e não foi

modificado.
• next-env.d.ts era o ficheiro de definição TypeScript para Next.js e não foi

modificado.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 19 Maio 2025

FRONT-END
Estilo

Para além dos componentes ShadCN pré-estilizados, foi utilizado o Tailwind CSS - uma
estrutura CSS de utilidade primária que permitiu um desenvolvimento rápido da IU -
juntamente com o CSS padrão. Os estilos em linha também foram usados em alguns casos,
particularmente porque as classes Tailwind geradas dinamicamente, como bg-
${chosenColor}, não funcionariam devido ao facto de o Tailwind purgar classes não
utilizadas na produção e não reconhecer nomes de classes criados dinamicamente.

CSS padrão
o globals.css continha classes CSS e variáveis CSS utilizadas globalmente.
o scattered-profiles.module.css eram módulos CSS utilizados no painel

de visualização de mensagens nas páginas de visualização de mensagens.
Foram fornecidas mais informações no capítulo "PAGES".

O TailwindCSS foi utilizado durante todo o projeto. Serviu como a principal fonte de
verdade e foi recomendada a utilização do Tailwind sempre que possível.
O Inline-CSS foi utilizado minimamente nos casos em que não existia outra opção ou em
que o estilo era muito específico e seria anulado se fosse utilizado o CSS padrão.

ShadCN com temas dinâmicos

A ShadCN era uma biblioteca de componentes de IU concebida para a criação de
aplicações Web modernas com temas personalizáveis e centrada na experiência do
utilizador.

Inicializar o projeto:
Foi criado um novo projeto Next.js com o Shad CN UI.
Instalar dependências:

o next-themes foi instalado para alternar entre os modos claro e escuro.
o O Lucide React foi instalado para os ícones.

Foram adicionados os plugins Tailwind e Prettier VSCode para formatação.
Configurar CSS global (/app/globals.css):
As variáveis CSS da página de temas do Shad CN UI foram copiadas para o ficheiro CSS
global.
Definir as cores do tema (theme.colors.ts):
Foi criada uma interface para cores temáticas e as cores disponíveis foram definidas com
base nos temas do Shad CN UI.
Converter variáveis CSS (/lib/theme.colors.ts):
As variáveis CSS da cor do tema do Shad CN UI foram convertidas num objeto JavaScript.
Criar função de tema (/lib/theme.colors.ts):
Foi desenvolvida uma função para substituir variáveis CSS globais para alterações de cor
do tema em tempo real.
Contexto e fornecedor de dados temáticos (theme-data-provider.tsx):
Foi implementado um estado para evitar a oscilação entre as cores predefinidas e as cores
guardadas no carregamento inicial.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 20 Maio 2025

Foi exportada uma função auxiliar para aceder ao contexto do tema em toda a árvore de
componentes.
Foi criado um componente Theme Data Provider para gerir o estado do tema e o
armazenamento local.
Envolvimento com o fornecedor do tema seguinte (theme-data-provider.tsx):
O fornecedor de dados do tema foi encapsulado dentro de um fornecedor do tema
seguinte no esquema de nível superior.

Com a configuração básica implementada, foi criado um botão para alternar entre os
modos claro e escuro, ligando-o à função setTheme. Foi desenvolvido um menu pendente
para selecionar as cores do tema, utilizando as cores definidas nos temas.

Para mais informações sobre estes comutadores de ajuste frontal, consultar a página de
ajuste no capítulo "PÁGINAS".

Painéis redimensionáveis em React

Esta biblioteca foi criada para componentes React para grupos de painéis
redimensionáveis/layouts. Foi utilizada para obter um layout com 2 ou 3 painéis
horizontais, e foi escolhida pela sua facilidade de utilização e boa integração com o
ShadCN.

Os cálculos para manter os tamanhos das diferentes colunas foram difíceis mas
necessários. Foi feito armazenando a contribuição percentual de cada coluna como uma
matriz nos cookies e recuperando-a no esquema de raiz para a transmitir aos
componentes. O painel mais à esquerda dos 3 foi o mais difícil de configurar, uma vez que
também tinha a funcionalidade de colapsar quando era atingida uma determinada largura.

Componentes personalizados relevantes incluídos:

• resizable-panel-wrapper, que envolveu todos os componentes ResizablePanel
ShadCN, só foi utilizado uma vez no componente app-layout.tsx.

• O painel infantil tratava ele próprio da sua lógica de dimensionamento e era
utilizado em quase todas as páginas que utilizavam a disposição baseada em vários
painéis.

Havia também a opção de fazer um esquema de 2 colunas sem painéis redimensionáveis,
mas a empresa quis aceitar o desafio deste esquema único, que raramente era visto na
Web.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 21 Maio 2025

PÁGINAS
Iniciar sessão (/login)

A página de início de sessão foi fácil e rápida de implementar. Foi colocada fora dos grupos
de layout principais, mas dentro de /app/[locale]/, o que era necessário para que tivesse
o locale atual.

A página continha um formulário simples gerido principalmente por um componente
(/components/login-form.tsx). Utilizava o componente de cartão ShadCN e incluía 2
campos: um para o e-mail e outro para a palavra-passe. A entrada da palavra-passe
continha um botão para alternar o seu tipo entre "texto" e "palavra-passe", fornecendo o
comportamento clássico dos botões de mostrar palavra-passe em formulários Web.

Envio de formulário no cliente
Uma vez que o redireccionamento em caso de sucesso do lado do servidor causava
problemas, foi decidido utilizar o redireccionamento do router do lado do cliente, levando
à implementação do "Cenário 2" encontrado na secção "Configurações de formulários" do
capítulo "REGRAS PARA A CONSISTÊNCIA". Primeiro, mostrava os erros através de
brindes. Depois, se a resposta do servidor fosse bem sucedida, sincronizava o
armazenamento local com as definições da base de dados do utilizador e redireccionava
programaticamente para /. Também mantinha um estado pendente para desativar
elementos durante a submissão.

Submissão do formulário no servidor
O formulário chamou a ação do servidor de início de sessão (/lib/auth/index.ts),
cuja lógica foi explicada na secção "Fluxo de autenticação" do capítulo "AUTENTICAÇÃO E
AUTORIZAÇÃO".

Nova mensagem (/new-message)

A nova página de mensagens foi, de longe, a página mais complicada de construir. Para
navegar até ela, basta clicar no grande botão de cor primária na barra lateral esquerda. O
formulário em si na página foi tratado em /components/new-message-form.tsx e
/components/recipients-input.tsx. No entanto, a lógica principal e os estados foram
armazenados num contexto dedicado em /contexts/use-new-message.tsx para
separações.

O formulário de nova mensagem era composto por quatro campos principais visíveis:

Campo do remetente: Campo estático desativado que foi codificado para ser "ETPZP".
Campo Destinatários: componente de entrada personalizada complexa.
Campo Assunto: este campo também altera o título quando este é alterado.
Campo de mensagem: Área de texto utilizada para guardar o conteúdo da mensagem.
A página também continha alguns outros botões:
O botão Guardar rascunho foi utilizado para mostrar o estado atual do rascunho
(guardado ou não, com os respectivos erros na dica de ferramenta) e também permitiu ao
utilizador guardar o rascunho manualmente.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 22 Maio 2025

O ecrã completo disponível no ambiente de trabalho permitia ao utilizador ocultar outros
elementos da página.
Fechar era uma ligação para /sent.
Descartar (no canto inferior esquerdo) era uma ligação para /enviar que também
apagava o rascunho quando era clicado.
Enviar (no canto inferior direito) mostrava se a mensagem estava agendada ou se devia
ser enviada agora e submetia o formulário. Também tinha um pequeno menu lateral que
permitia ao utilizador agendar o envio da mensagem.

Apresentação do formulário no cliente
Seguiu o "Cenário 2" encontrado na secção "Configurações de formulários" no capítulo
"REGRAS DE CONSISTÊNCIA". Toda a validação do lado do cliente e a exibição de erros do
servidor foram tratadas na função handleSubmit com brindes para mensagens de erro. O
servidor retornou vários sinalizadores, strings de tradução e dados que decidiram como os
erros foram exibidos e traduzidos no front-end. No caso de erros zod, os erros eram
repetidos e exibidos como mensagens de brinde separadas. Cada entrada também tinha
certas animações como vermelho a piscar ou apenas um sublinhado vermelho ou um
espaço reservado vermelho para mostrar aos utilizadores o que causou o erro. Também
mantém um estado pendente para desativar elementos durante a submissão do
formulário.

Envio de formulário no servidor
Existia uma ação do servidor para enviar mensagens chamada sendMessage localizada em
lib/actions/message.create.ts. A função começou por efetuar um par de verificações
de segurança que, quando falhavam, faziam com que a função saísse mais cedo:

A autenticação do utilizador foi verificada (linha 22 - 30)
A validação do campo foi efectuada com zod (linhas 32 - 48)
Foi efectuada uma validação personalizada mais aprofundada para os destinatários (linhas
50 - 60 e linhas 259 - 276)
Em seguida, os dados foram preparados para a chamada da API e a API foi chamada
utilizando fetch (linha 62 - 100).
Depois disso, começou a lógica da base de dados.
Foi feita uma verificação principal para ver se a mensagem já tinha sido guardada na base
de dados como rascunho, caso em que o rascunho foi atualizado (linha 103 - 157). Caso
contrário, era inserida uma nova mensagem (158 - 200). Foi guardado o máximo de
informações sobre a mensagem, incluindo os erros da API, caso existissem.
Após a inserção da mensagem, os destinatários foram tratados separadamente (202 - 225).
Os destinatários antigos existentes eram primeiro eliminados e, em seguida, eram
inseridos novos destinatários.
As respostas eram enviadas de volta ao cliente com cadeias de tradução específicas para
cada caso, que eram traduzidas no lado do cliente (linhas 228 - 257).

Entrada de destinatários personalizada
O componente em /components/recipients-input.tsx era mais do que um simples
input, era um componente personalizado. Como primeira funcionalidade, permitia ao
utilizador escrever qualquer cadeia de caracteres e premir enter ou tab para a adicionar

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 23 Maio 2025

como novo destinatário. O sistema fazia uma validação do lado do cliente para detetar o
que poderia estar errado com o número.

Como segunda grande caraterística, aparecia uma janela quando o utilizador começava a
escrever, mostrando os destinatários que podia inserir. Este elemento personalizado
absolutamente posicionado comportava-se da seguinte forma:

Nem sequer era apresentado se não existissem destinatários ou contactos.
Se a entrada estivesse vazia mas focada, a janela continha "destinatários recomendados"
que eram calculados com base na utilização na última semana, bem como se tinham sido
guardados como contactos ou não. Se não existirem destinatários suficientes que tenham
sido utilizados nas mensagens, o resto foi preenchido com contactos não utilizados, caso
existissem.
Se a entrada não estivesse vazia e focada, a janela continha os "resultados da pesquisa",
que eram os destinatários filtrados e os contactos baseados no valor que o utilizador
colocou na entrada.
O utilizador pode adicionar estes destinatários/contactos a partir do seu teclado,
navegando com as setas para cima e para baixo e inserindo-os utilizando enter ou tab. Ou
pode simplesmente clicar no destinatário da sua escolha.
Ao adicionar um, este era removido dos resultados de pesquisa ou recomendações
simultâneas, uma vez que o utilizador não deveria poder adicionar o mesmo destinatário
duas vezes. No entanto, se o utilizador tentasse introduzir um número de telefone que já
existisse nos destinatários, este caso também era tratado e era apresentada uma
mensagem de erro como brinde.

Sistema de rascunho automático
Optou-se por que, após um período de arrefecimento, o rascunho fosse automaticamente
guardado, desde que pelo menos um campo tivesse um valor. Se os campos estivessem
todos vazios, o rascunho existente era novamente eliminado da base de dados.
A lógica de gravação do rascunho foi tratada na função handleSaveDraft em

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 24 Maio 2025

/components/new-message-form.tsx

Se o componente estivesse montado, era chamado a partir de um useEffect que era
acionado por uma constante que recebia alterações após o debounce sem alterações,
accionando o useEffect apenas após esse useDebounce. Foi criado um gancho
personalizado para este comportamento em /hooks/use-debounce.tsx (linha 252 - 255).
A função verificou então se a mensagem estava vazia e chamou a função correta em
conformidade (linhas 245 - 250).
A função de guardar verificou se o rascunho atual tinha sido alterado em relação ao
rascunho anterior, guardou-o se o tivesse feito, actualizou o ID e o estado do rascunho
com base no resultado de guardar e modificou o URL para refletir o novo ID do rascunho
enquanto revalidava o servidor (208 - 231).
A função de eliminação eliminou o rascunho atual da base de dados, caso tivesse um ID,
e actualizou o URL para remover o ID do rascunho, o que revalidou o servidor e voltou a
renderizar o componente (234 - 243).

Modais
Esta página utilizou os seguintes modais:

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 25 Maio 2025

• schedule-modals.tsx continha um modal para selecionar uma data de calendário
e outro para avisar o utilizador de que a data era inválida.

• recipient-info.tsx era mostrado quando um utilizador clicava numa ficha de
destinatário, apresentando informações adicionais sobre o destinatário (ou
contacto) selecionado.

Desafios
Em primeiro lugar, havia um problema com a gravação do projeto. Sempre que o URL era
atualizado (mesmo que apenas com os parâmetros de pesquisa do URL), fazia com que
todos os componentes dessa página fossem novamente renderizados, uma vez que o
componente do servidor de nível superior recuperava o parâmetro message_id do URL
para ir buscar os dados do rascunho. Esta nova apresentação levou a que todos os campos
perdessem os seus valores, incluindo popups ou menus popover anteriormente abertos,
que também ficavam ocultos. Para resolver este problema, foi criado um contexto que
mantinha todos os valores durante as novas apresentações.

Além disso, a criação da janela de destinatários sugeridos com todas as suas
funcionalidades e a garantia de que não tinha erros demorou muito tempo. Era difícil
encontrar uma configuração que tivesse sempre os valores mais actualizados e, à medida
que o new-message-context aumentava, tornava-se cada vez mais difícil trabalhar com ele.

Definições (/settings)

Determinar a arquitetura do código para as definições foi um desafio devido à falta de
orientações claras. Preferindo actualizações automáticas sempre que uma definição era
modificada, os botões de guardar foram evitados. A página de definições apresentava uma
configuração personalizada em que algumas definições eram geridas por bibliotecas e
outras com uma implementação personalizada.

Embora a maioria das configurações tenha sido salva no armazenamento local, os dados
do tema e o idioma atual foram armazenados em cookies devido à forma como as
bibliotecas os manipularam. No entanto, a atualização direta do armazenamento local não
actualizava os componentes React. Para resolver isso, um contexto de configurações foi
criado (/contexts/use-settings.tsx), que gerenciava o estado das configurações e
incluía várias funções auxiliares.

Foi criada uma ação de servidor chamada updateSetting que actualizava as definições
individuais uma de cada vez (/lib/actions/user.actions.ts), o que levou à criação de
vários formulários. Esta abordagem, embora resultasse em mais formulários, permitia uma
gestão mais fácil através de uma lógica centralizada (/components/settings-item.tsx).

Componentes reutilizáveis
Devido à natureza repetitiva das definições, foram desenvolvidos componentes
reutilizáveis: um SectionHeader para as categorias de definições e um SettingsItem
para as definições individuais.

O componente SectionHeader (/components/headers.tsx) era mais simples, uma vez
que era necessário passar o título e a legenda a apresentar, juntamente com o nome da
etiqueta de ancoragem.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 26 Maio 2025

O componente SettingsItem (/components/settings-item.tsx) era mais complexo,
pois continha todo o tratamento de erros e a lógica pendente. Tornou-se personalizável
adicionando uma prop renderInput, que permitia a passagem de HTML completamente
personalizado para entrada, enquanto ainda fornecia acesso aos manipuladores de envio
do banco de dados e outros dados importantes. Cada um destes formulários aderiu ao
"Cenário 2" encontrado na secção "Configurações de formulários" do capítulo "REGRAS
DE CONSISTÊNCIA".

Vale a pena mencionar que o alterador de idioma utilizava a função
updateLanguageCookie, que não podia ser implementada sem utilizar o router Next.js
para substituir e atualizar internamente. Devido a este refrescamento interno, causava um
reset, necessitando de um componente próprio devido ao aumento da complexidade da
alteração da língua.

Considerações
Inicialmente, considerou-se a possibilidade de utilizar um único formulário para todas as
definições, mas este foi rejeitado devido a problemas de desempenho e legibilidade. Um
único formulário complicaria o tratamento, exigindo que todo o conjunto de definições
fosse enviado para o servidor para cada modificação, o que dificultaria a validação e o
tratamento de erros.

Painel de controlo do administrador (/dashboard)

O painel de controlo administrativo foi construído em último lugar e incluía informações
estatísticas. Foi colocado fora dos grupos de apresentação principais, mas dentro de
/app/[locale]/, o que era necessário para que tivesse a localização atual.

A página só estava acessível aos administradores, tal como explicado na secção "Fluxo de
autenticação" do capítulo "AUTENTICAÇÃO E AUTORIZAÇÃO". A biblioteca ReCharts foi
usada para os gráficos de área e de pizza responsivos. Para colorir o gráfico de área, ela
recuperou a cor primária do tema e a cor do perfil. Para colorir o gráfico de pizza, foi usada
a cor primária de cada tema. A ordem foi aleatória e as cores foram guardadas num estado
para que se alterassem durante as novas renderizações de componentes causadas por
utilizadores que modificassem a data.

A página incluía:

3 cartões na parte superior que mostram o número de mensagens enviadas em
comparação com o passado.
Um gráfico de área que mostra as mensagens e o custo desde um determinado momento.
Uma opção que alterava a data de início dos outros gráficos.
Uma tabela de utilizadores classifica os utilizadores registados com base nas mensagens
enviadas desde a data de início selecionada. O parâmetro de pesquisa end_date também
poderia ser injetado no URL e a aplicação aplicaria o filtro para uma data final.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 27 Maio 2025

Um gráfico circular que apresenta informações sobre os países dos números de telefone
dos destinatários, obtidas a partir da API de estatísticas de etiquetas.

Filtragem de datas
A alternância da data de início, encontrada em /components/admin-dashboard/message-
area-chart.tsx, era um menu pendente Selecionar que substituía o URL atual por um

https://gatewayapi.com/docs/apis/statistics/

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 28 Maio 2025

novo URL com parâmetros de pesquisa actualizados sempre que o seu valor era alterado.

Obtenção de dados
Uma vez que se esperavam conjuntos de dados maiores após algum tempo de
implementação da aplicação, foi utilizado o "Cenário 2" da secção "Obtenção
conservadora de dados" em "REGRAS PARA A CONSISTÊNCIA". Isto significava que os
dados eram obtidos no componente de servidor de nível superior, onde o parâmetro URL
era recuperado e passado para as funções de obtenção de backend. Sempre que os
parâmetros do URL eram alterados, era feita uma nova renderização, fazendo com que os

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 29 Maio 2025

dados fossem actualizados.

Os dados do componente do servidor de nível superior foram então passados para o
componente do cliente AdminDashboard, onde foram efectuados cálculos e formatação de
dados adicionais.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 30 Maio 2025

Desafios
Um dos desafios foi conseguir que o gráfico circular funcionasse. Por vezes, não era
apresentado. Mais tarde, descobriu-se que isso se devia a uma altura demasiado pequena,
pelo que foi adicionada uma altura fixa ao seu contentor principal.

Além disso, teve de ser implementada uma dica de ferramenta personalizada para o
gráfico circular, que foi inspirada na dica de ferramenta do gráfico de área para manter a
coerência do design.

Outras páginas

Estas páginas eram muito semelhantes:

• /sent para mensagens enviadas
• /scheduled para mensagens agendadas com uma hora de envio no futuro. Uma

vez atingida a hora agendada, ela aparecia em /sent
• /failed para mensagens de falha em que ocorreu um erro do lado da API ou foi

cancelado pelo utilizador
• /drafts para mensagens em rascunho que tinham sido guardadas mas não

enviadas, permitindo aos utilizadores editá-las ou finalizá-las antes de as enviar
• /trash para as mensagens no lixo, onde é possível recuperá-las ou apagá-las

permanentemente
• /contacts para contactos - os contactos continham informações adicionais, como

o número de telefone, o nome e uma descrição. Esta página era ligeiramente
diferente das outras, mas era suficientemente semelhante para ser colocada no
mesmo esquema.

Layout partilhado
As páginas deste capítulo viviam no mesmo grupo de rotas devido à sua semelhança
(/app/[locale]/(root)/(message-layout)/) que partilhava o mesmo layout e ficheiros
de tratamento de erros. O layout envolveu as páginas filhas com um provedor para o
contexto de tradução enquanto carregava os namespaces necessários. Uma vez que as
páginas necessitavam de acesso aos contactos, as páginas-filhas foram agrupadas com um
fornecedor para o contexto de contactos, passando alguns contactos iniciais (linhas 34-

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 31 Maio 2025

36).

Arquitetura da página

• messages-page.tsx como suporte para os outros componentes
• messages-list.tsx que apresentava os resultados da pesquisa de contactos

(coluna do meio)
• message-display.tsx que exibia a mensagem em si e também estava envolvida

no componente de painel filho. Mais detalhes sobre isso foram fornecidos na seção
"Painéis redimensionáveis React" do capítulo "FRONT-END".

Pesquisa/filtragem
O componente search.tsx era a interface de utilizador da barra de pesquisa utilizada
para pesquisar mensagens e contactos. Chamava a função passada (onSearch) após as
alterações de entrada e mantinha a consulta do utilizador no URL para poder ser marcada
e actualizada acidentalmente. Esta atualização do URL não actualizou os componentes do
servidor, uma vez que não foram utilizados os ganchos Next.js.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 32 Maio 2025

As funções searchMessages e searchContacts filtraram as respectivas matrizes com
base num termo de pesquisa fornecido pelo utilizador, permitindo a pesquisa no lado do
cliente. Ambas as funções converteram o termo de pesquisa para minúsculas para
comparação sem distinção entre maiúsculas e minúsculas. searchMessages procurou
correspondências no assunto, corpo ou estado da mensagem, enquanto searchContacts
procurou o termo no nome ou número de telefone do contacto. Se não for fornecido

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 33 Maio 2025

nenhum termo de pesquisa em searchContacts, é devolvida a lista original de contactos.

Ecrã de mensagens
Estas páginas deste capítulo, exceto os contactos, tinham estes botões no visor de
mensagens:

O botão Reenviar servia para pegar em todos os campos de uma mensagem e inseri-los
novamente no formulário de nova mensagem. Funcionava criando primeiro um novo
rascunho na base de dados e depois passando o ID para o parâmetro message_id na
página /new-message.
O botão Mover para o lixo servia para mover mensagens para o lixo. Na própria página do
lixo, a mensagem era eliminada da base de dados.
O botão Fechar serve para anular a seleção do item atualmente selecionado, apresentado
na coluna da extrema direita. Botões específicos da página:
A página agendada também tinha um botão para cancelar a mensagem agendada, que
cancelava o SMS e obtinha um reembolso através da API, movendo a mensagem para
falhada. Isto foi útil para testar a aplicação sem custos.
A página do lixo também tinha um botão de recuperar mensagem, que movia a
mensagem de volta para a sua localização original, recuperando-a do lixo.
Foi decidido que cada mensagem apresentaria os seus destinatários em formato de fichas,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 34 Maio 2025

que, ao serem clicadas, abririam o modal recipient-info.tsx para mostrar mais
informações sobre o destinatário (ou contacto). Por defeito, os destinatários estavam
colapsados, podendo ser expandidos clicando na pequena seta à direita.
Vale a pena mencionar o esforço para apresentar os perfis dos contactos de forma
agradável. Os primeiros cinco destinatários/contactos foram apresentados num pequeno
elemento de visão geral com os círculos dos seus perfis. O seu estilo foi tratado no ficheiro
scattered-profiles.module.css utilizando módulos CSS. Os tamanhos e posições
foram codificados, mas as cores foram randomizadas armazenando um array embaralhado
em um estado, e cada vez que uma nova mensagem era selecionada, o procedimento era
repetido.

Página de contactos
Embora também fosse muito semelhante, tinha os seus próprios componentes porque os
dados eram completamente diferentes e o código precisava de ser mantido limpo:

• contacts-page.tsx em vez de messages-page.tsx.
• contacts-list.tsx em vez de messages-list.tsx.
• contact-display.tsx em vez de message-display.tsx.

Decidiu-se que esta página inclui um botão para criar, editar e apagar contactos na
base de dados.

Modais
Decidiu-se que todas as páginas mencionadas envolvem a sua componente de visualização
num fornecedor de modais, um fornecedor de um contexto para gerir os modais que estão
atualmente abertos.
As páginas de contacto utilizam estes modais:

• edit-contact.tsx continha um formulário para editar um contacto com uma
configuração useActionState

• create-contact.tsx continha um formulário para criar um contacto com uma
configuração useActionState
As outras páginas utilizam este modal:

• recipient-info.tsx apresentou mais informações sobre um destinatário (ou
contacto)

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 35 Maio 2025

REGRAS DE COERÊNCIA
Utilização de acções do servidor

A partir do Next.js 15 com o router de aplicações, foi recomendada a utilização de acções
de servidor para obter dados ou efetuar pedidos de API no backend. As acções do servidor
simplificaram o desenvolvimento, permitindo aos programadores definir funções do lado
do servidor invocadas diretamente a partir de componentes do cliente, fazendo
automaticamente pedidos POST no backend quando a ação é chamada.

Anteriormente, os programadores tinham de criar rotas de API separadas para a obtenção
de dados, o que era complicado e moroso. Na maioria dos casos, é melhor utilizar acções
do servidor em vez de rotas da API. O guia a seguir foi consultado sempre que havia
incerteza sobre qual deles usar.

Uma vez que o Next.js recomendava tratar as acções de servidor como rotas de API
públicas, era altamente recomendável verificar a autenticação do utilizador em cada ação
de servidor para fins de segurança.

Utilização de contextos React

Introdução: O React Contexts permitiu que os desenvolvedores gerenciassem o estado
global e compartilhassem dados entre componentes sem prop drilling. Isso se mostrou útil
para aplicativos em que vários componentes exigiam acesso aos mesmos dados, como
autenticação de usuário, temas ou configurações, levando a uma abordagem de
gerenciamento de estado mais eficiente.

Como funcionou: O React Context criou um objeto de contexto para guardar dados
partilhados. Um componente Provider envolveu partes da aplicação, tornando o valor do
contexto acessível aos componentes aninhados. Os componentes que precisavam do
contexto usavam o gancho useContext para acessar os dados, garantindo que apenas
esses componentes fossem renderizados novamente quando o valor do contexto fosse
alterado.

Quando foi aplicado: A regra para usar React Contexts foi estabelecida durante a fase de
configuração inicial para criar uma estratégia clara de gerenciamento de estado. Como
orientação, os contextos foram criados quando os dados precisavam de ser acedidos por
mais de quatro componentes ou quando a perfuração de adereços se estendia para além
de três camadas na árvore de componentes.

https://nextjs.org/docs/app/building-your-application/data-fetching/server-actions-and-mutations
https://nextjs.org/docs/app/building-your-application/data-fetching/server-actions-and-mutations

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 36 Maio 2025

Configurações de formulários

Havia dois cenários diferentes para os formulários. Com base na complexidade, foi
necessário escolher uma das seguintes opções para manter uma base de código
consistente:

Cenário 1: Em situações simples, recomendou-se que o formulário fosse enviado
diretamente para o servidor sem alterar o processo de envio.
Implementação: Esta configuração envolveu a utilização do gancho React
useActionState, com a ação passada para a action da etiqueta do formulário.
Resposta do servidor: Se a resposta da ação fosse necessária, era necessário criar um
useEffect com o estado do servidor na matriz de dependências.
Exemplo: Um exemplo deste cenário pode ser encontrado em
/components/modals/create-contact.tsx.
Cenário 2: Se fosse necessário executar código aquando da submissão do formulário,
interrompendo o comportamento natural de submissão, este cenário teria de ser utilizado.
Implementação: Em primeiro lugar, foi necessário criar uma função (normalmente
designada handleSubmit) para passar para a propriedade onSubmit da etiqueta do
formulário. Na função handleSubmit, a lógica especial poderia ser escrita e a ação do
servidor poderia ser chamada.
Resposta do servidor: Se o HTML exigisse a resposta da ação, era necessário criar um
useState que seria definido na função handleSubmit.
Exemplo: Um exemplo deste cenário pode ser encontrado em /components/login-
form.tsx.
Estes cenários foram desenvolvidos através de experiências, pesquisas e testes exaustivos
e provaram ser os mais legíveis, eficazes e eficientes.

Obtenção de componentes do servidor

O Next.js incentivou a obtenção de dados de componentes de servidor de nível superior,
uma prática que foi amplamente implementada na aplicação. Ao tirar partido dos
componentes do servidor para a obtenção de dados, tirou partido da renderização do lado
do servidor, o que melhorou o desempenho e garantiu que todos os componentes
aninhados tivessem acesso aos dados necessários sem a necessidade de obter dados
adicionais do lado do cliente.

Quando foram necessárias actualizações dos dados, foi utilizada a função
revalidatePath() da API Next.js. Ao chamar esta função no caminho específico, o
componente do servidor é re-renderizado, o que, por sua vez, reenvia os dados mais
recentes. Ao utilizar sempre as APIs Next.js, foi possível evitar a atualização da página
(apenas a atualização interna), o que fez com que se parecesse mais com uma aplicação.

Obtenção conservadora de dados

Havia muitas formas de obter dados no Next.js. Após extensa pesquisa e testes, 2 métodos
foram considerados:

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 37 Maio 2025

Método 1: Este método envolveu a obtenção de dados do componente do servidor uma
vez e, em seguida, a utilização de JavaScript do lado do cliente para efetuar a filtragem.
Minimizou a carga do servidor ao executar a consulta à base de dados apenas durante o
carregamento inicial da página, resultando em resultados de filtragem instantâneos.
Vantagem: Reduziu a carga do servidor devido a uma única extração de dados no
carregamento da página e proporcionou uma filtragem muito rápida para conjuntos de
dados de dimensão média ou inferior.
Desvantagem: Pode tornar-se lento se o conjunto de dados for demasiado grande ou se a
filtragem for demasiado complexa para o JavaScript do lado do cliente, especialmente se o
utilizador tiver um computador antigo.
Método 2: Este método envolveu a passagem de parâmetros de pesquisa actualizados do
componente cliente para as consultas dinâmicas da base de dados. Quando os parâmetros
de pesquisa eram alterados, o componente do servidor voltava automaticamente a
renderizar e a atualizar a base de dados.
Vantagem: não dependia do computador do utilizador, uma vez que a filtragem era feita
no servidor na consulta SQL.
Desvantagem: Aumentava a carga do servidor devido às frequentes recolhas de dados
(sempre que um filtro era atualizado), bem como ao atraso na consulta da base de dados.

Devido à dimensão média do conjunto de dados (menos de 1000 mensagens por
utilizador), o método 1 foi a abordagem mais adequada para a maioria dos casos de
utilização.

Ficheiros de capa de página

Cada página criada tinha de conter pelo menos um loading.tsx e um error.tsx, sendo o
layout opcional.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 38 Maio 2025

• error.tsx era um arquivo em Next.js que servia como um apanhado para erros
inesperados. Ele criava um limite de erro do React que impedia que o aplicativo
falhasse quando ocorriam exceções inesperadas.

• loading.tsx era um ficheiro mostrado enquanto a página estava a carregar,
contendo todo o esqueleto da IU para essa página.

• layout.tsx era um layout em torno da página. Para manter o page.tsx mais
limpo, era aconselhável colocar tudo o que fosse desnecessário no layout.tsx,
incluindo o fornecedor de traduções e outros fornecedores, se possível.

• page.tsx era a página em si, que deveria ser mantida o mais limpa possível, com
um componente de servidor para buscar dados mais tarde, se necessário.
Inicialmente, tinha tudo configurado com um limite de suspense React.Suspense
usado para carregar. Essa abordagem foi benéfica para implementar a pré-
renderização parcial, permitindo que algumas partes da página carregassem mais
rápido do que outras com um indicador de carregamento separado. No entanto,
descobriu-se rapidamente que usar apenas um poderia muito bem seguir a
convenção de arquivo Next.js, que mantinha os arquivos mais organizados.

Metadados

Os metadados básicos, como títulos de separadores, ícones e descrições, melhoraram a
capacidade de partilha e de marcação. Como resultado, ajudou os utilizadores a identificar
rapidamente o sítio Web.

Os metadados foram gerados no lado do servidor utilizando a função generateMetadata
da API Next.js, que foi essencial para a tradução de metadados.

O logótipo da aplicação foi apresentado com o nome favicon.ico e colocado em /app,
que o Next.js reconheceu automaticamente e utilizou para os metadados.

Também era possível exportar os metadados de forma estática, mas, nesse caso, teria sido
impossível traduzir para diferentes línguas.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 39 Maio 2025

BASE DE DADOS
O PostgreSQL foi escolhido pela sua fiabilidade e capacidades ricas em funcionalidades.
Sendo uma base de dados relacional de código aberto, oferecia uma integridade de dados
robusta e fortes caraterísticas de segurança. A conexão foi estabelecida usando pg, com o
ambiente de produção sendo executado em um contêiner Docker na porta 5432. Mais
informações podem ser encontradas no capítulo "DEPLOYMENT".

Inicialmente, considerou-se que o Prisma, um conjunto de ferramentas de base de dados e
uma camada de mapeamento objeto-relacional (ORM), era utilizado juntamente com a
base de dados PostgreSQL. Simplificou o acesso à base de dados, fornecendo uma API de
segurança de tipo. No entanto, foi rejeitado para manter o projeto leve e minimizar as
dependências.

Ligação à base de dados

Foi utilizada a biblioteca node-postgres, devido à sua forma eficiente de executar
consultas SQL e obter resultados.

Ao conectar-se ao PostgreSQL usando pg, havia 2 opções: pool ou cliente. Um pool era um
grupo de conexões reutilizáveis ideal para consultas concorrentes, que era utilizado devido
a múltiplas consultas ao mesmo tempo. Um cliente, por outro lado, representava uma
única conexão por interação.

Para simplificar a consulta, foi criada uma função auxiliar (/lib/db/index.ts) que recebia
a consulta SQL e os valores a inserir. Começava por criar uma nova pool, ligava-se a essa
pool para criar um novo cliente, e depois consultava-o enquanto detectava erros
inesperados, e por fim libertava o cliente de volta para a pool.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 40 Maio 2025

Agora era tão fácil quanto importar a função auxiliar db e passar a consulta SQL e os
valores. Para obter informações sobre o pg, foi consultada a documentação.

https://node-postgres.com/

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 41 Maio 2025

Esquema da base de dados

O esquema da base de dados, definido no ficheiro seed (/lib/db/seed.sql), criou quatro
tabelas:

1. O utilizador detinha todos os dados dos utilizadores, incluindo dados e
definições da conta.

2. O contacto continha todos os contactos, incluindo os seus dados importantes,
como o nome, o número de telefone, a descrição, a data de criação e a data da
última atualização.

3. A tabela de mensagens contém todas as mensagens, sendo que cada mensagem
faz referência à chave primária da tabela do utilizador. Além disso, cada
mensagem continha dados importantes, como o remetente, o assunto, o corpo
(conteúdo do SMS), a data de envio, o estado (enviado, agendado, falhado ou
rascunhado) e outros dados devolvidos pela API quando a mensagem foi enviada.

4. recipient continha todos os destinatários das mensagens, com cada destinatário
a fazer referência à chave primária da tabela de mensagens. Além disso, cada
destinatário era constituído por um número de telefone único e um índice utilizado
para apresentar o destinatário pela mesma ordem definida pelo utilizador na página
de novas mensagens durante as rendições de componentes.
Além disso, todas as tabelas mencionadas utilizavam um campo de chave primária
em série denominado id, utilizado para distinguir os diferentes itens.

Considerações
Uma consideração no início do projeto era ter tabelas separadas para os tipos de

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 42 Maio 2025

mensagens (rascunhos, lixo, etc.), mas percebeu-se que era desnecessariamente
complexo. Por fim, todas as mensagens foram armazenadas na mesma tabela, com cada
mensagem tendo campos como status e in_trash, que determinavam em qual categoria
ela seria mostrada no front-end.

Durante muito tempo, durante o desenvolvimento da aplicação, os contactos foram
ligados aos destinatários utilizando a chave primária. No entanto, após três quartos do
projeto, foi necessária uma migração devido a problemas de consulta e inserção, bem
como a falhas gerais na arquitetura. A nova solução envolvia a verificação de contactos no
front-end, passando pelos destinatários para verificar se os seus números de telefone
correspondiam aos de um contacto.

Embora funcionasse desta forma, outro aspeto a melhorar era o tratamento diferente das
mensagens agendadas. A partir desse momento, as mensagens agendadas permaneciam
com o estado "AGENDADO" mesmo quando a data de entrega era atingida, o que não era
logicamente exato. Para resolver este problema lógico, poderia ser sugerido mudar o
nome do campo para outra coisa ou atualizar o estado para "ENVIADO" quando a data de
entrega fosse atingida.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 43 Maio 2025

AUTENTICAÇÃO E AUTORIZAÇÃO
A aplicação utilizou uma combinação de Active Diretory (AD) e Iron Session para efeitos de
autenticação e autorização.

Diretório Ativo

Uma vez que a escola já utilizava um servidor AD para gerir as contas informáticas dos
alunos, este foi integrado na aplicação. Esta combinação tornou a gestão do acesso dos
utilizadores muito mais fácil mais tarde, uma vez que as contas dos utilizadores eram
geridas num único local.

O AD funcionava de forma semelhante a uma base de dados, armazenando informações
sobre todos os utilizadores e respectivos dados. Neste caso, a aplicação tinha 2 grupos
específicos configurados no AD: "Utilizadores-SMS" e "Administradores-SMS". Estes
grupos foram utilizados para determinar as permissões que cada utilizador tinha na
aplicação.

Se um utilizador fizesse parte do grupo "Utilizadores-SMS", era-lhe concedido acesso
básico à aplicação, permitindo-lhe enviar mensagens SMS e gerir as suas próprias
mensagens. Por outro lado, se um utilizador pertencesse ao grupo "Administradores-
SMS", tinha todas as mesmas permissões que o primeiro grupo, juntamente com acesso a
um painel de administração que oferecia estatísticas detalhadas sobre todos os
utilizadores e mensagens enviadas.

Implementação do Active Diretory

Para ligar ao servidor AD a partir do interior da aplicação, foram considerados 2 pacotes
diferentes: activedirectory e activedirectory2. O pacote activedirectory2 acabou
por ser escolhido por ser o mais atualizado, e o outro não funcionou.

Este pacote utilizava consultas LDAP (Lightweight Diretory Access Protocol) e fornecia um
invólucro JavaScript (JS) que permitia a passagem do e-mail e da palavra-passe de uma
conta AD válida e já registada, juntamente com alguns outros argumentos. Primeiro, foi
criado um objeto de instância do AD, como se mostra abaixo:

Depois disso, os métodos dessa instância podem ser usados como mostrado abaixo:

As funções utilizadas podem ser encontradas em /lib/auth/activedirectory. Para obter
informações sobre activedirectory2, foi consultada a documentação.

https://www.okta.com/identity-101/what-is-ldap/
https://www.npmjs.com/package/activedirectory2

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 44 Maio 2025

Gestão de sessões

A gestão de sessões era o processo de tratamento de sessões de utilizador em aplicações
Web, em que os dados da sessão eram normalmente armazenados como um cookie. Uma
biblioteca de gestão de sessões fornecia ferramentas para criar, manter e terminar sessões
de utilizador (cookies de autenticação), simplificando a autenticação e a gestão do estado.

Como a configuração do AD já tratava da maior parte da autenticação, não era necessária
uma biblioteca de autenticação completa. Na verdade, uma biblioteca leve de
gerenciamento de sessão fez o trabalho. O pacote iron-session foi escolhido devido à
sua natureza baseada em sessões e aos seus recursos leves, seguros e fáceis de
implementar.

Outra biblioteca de gestão de sessões chamada jose também foi considerada. No
entanto, foi rapidamente rejeitada, uma vez que a autenticação baseada em tokens não
era necessária para o projeto. Além disso, iron-session era mais leve e fácil de usar. Mais
informações sobre os tipos de autenticação podem ser encontradas na secção
"Autenticação baseada em sessão vs. autenticação baseada em token".

Além disso, foram exploradas diferentes opções de armazenamento do navegador para
manter os dados de autenticação do utilizador. No entanto, a utilização desta opção de
armazenamento para dados de autenticação do utilizador era inadequada, uma vez que o
armazenamento da sessão expirava quando o separador era fechado, ao contrário dos
cookies, que eram normalmente utilizados para persistir os dados da sessão.

Implementação da gestão de sessões

Quando um utilizador é autenticado com sucesso, a sua informação é armazenada na base
de dados e, subsequentemente, num cookie de id de sessão encriptado gerado pelo iron-
session.

Configuração
As sessões iron-session foram personalizadas através da modificação de um objeto de
configuração:

O nome e a palavra-passe podem ser qualquer coisa, mas para maior segurança a palavra-
passe foi gerada utilizando openssl
A sessão expirou após 24 horas em vez dos 14 dias predefinidos.

Ficheiro de configuração de autenticação localizado em /lib/auth/config.ts

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 45 Maio 2025

Funções auxiliares
Uma função auxiliar simples chamada getSession foi criada para envolver a API Iron
Session, que no lado do servidor recuperava a sessão ativa do cookie ou criava uma nova
se não existisse nenhuma. O objeto de configuração sessionOptions previamente
personalizado foi utilizado como um dos argumentos passados para a função
getIronSession.

Função auxiliar getSession localizada em /lib/auth/sessions.ts

Foi criada outra função auxiliar com o objetivo de criar uma nova sessão. Esta utilizou a
função getSession para obter primeiro a sessão atual e, em seguida, anexou à sessão
informações úteis sobre o utilizador e se este estava ou não autenticado e se era ou não
um administrador. Por fim, as modificações à sessão eram aplicadas (linha 29).

Função auxiliar createSession localizada em /lib/auth/sessions.ts

Para obter informações sobre o pacote iron-session, foi consultada a documentação.

Fluxo de autenticação

Com o Active Diretory inicial e a configuração da sessão de ferro fora do caminho, a
implementação final pode ser escrita.

Em resumo, o fluxo de autenticação envolveu as seguintes etapas:

Início de sessão do utilizador: Os utilizadores introduziram as suas credenciais (nome de
utilizador e palavra-passe) no cliente e enviaram o formulário para o servidor.
Autenticação AD: A aplicação verificou estas credenciais com o servidor do Active Diretory.
Criação da sessão de ferro: Se for bem sucedida, a Sessão de Ferro cria um novo cookie de
sessão e as informações do utilizador são guardadas na base de dados PostgreSQL.
Recuperação da sessão: Nos pedidos subsequentes, a aplicação verificou se a sessão do
utilizador ainda era válida, desencriptando o cookie no servidor e verificando se a
propriedade isAuthenticated estava definida como verdadeira.

https://www.npmjs.com/package/iron-session

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 46 Maio 2025

A lógica geral foi tratada na função de início de sessão, que começou por obter os valores
apresentados, validou-os utilizando zod (linhas 18 e 19), chamou a função de autenticação
e, por último, devolveu a resposta adequada ao cliente, criando uma nova sessão se o
utilizador tiver sido autenticado com êxito.

Função de início de sessão localizada em /lib/auth/index.ts

A função de autenticação continha a lógica importante para autenticar o utilizador com o
servidor AD e guardar o resultado na base de dados. Primeiro, a existência da conta no
servidor AD era verificada e, em caso negativo, a resposta correspondente era devolvida
mais cedo. Se existisse, os privilégios da conta eram inspeccionados e, por último, os
resultados destas consultas eram guardados na base de dados e devolvidos à função de
início de sessão.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 47 Maio 2025

A função Authenticate está localizada em /lib/auth/activedirectory/authenticate.ts

Para verificar se o utilizador existia (linha 20), foi utilizado o método ad.authenticate()
e para verificar se a conta existia no grupo AD específico (linhas 30 e 34), o método
ad.isUserMemberOf(). O código detalhado para isto estava localizado nos ficheiros em
lib/auth/activedirectory/.

Solicitações subsequentes
Em cada solicitação, o Next.js reconheceu automaticamente o arquivo /middleware.ts e
executou a exportação padrão desse arquivo antes que qualquer página fosse servida. Isto
tornou-o o local perfeito para verificar a autenticação do utilizador. O código incluía o
redireccionamento de utilizadores autenticados em /login para /, enquanto os
utilizadores não autenticados eram redireccionados para /login se ainda não estivessem
lá.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 48 Maio 2025

Como o Next.js recomendava tratar as ações do servidor como rotas de API públicas, a
autenticação do usuário também era verificada em cada ação do servidor.

Além disso, as verificações das permissões de administrador foram distribuídas pela
aplicação para lhes mostrar certas coisas que os utilizadores normais não deveriam ver,
sendo o ponto mais crítico um redireccionamento programático no layout do painel de
administração.

Layout do painel de controlo localizado em /app/[locale]/dashboard/layout.tsx

Autenticação baseada em sessão vs. autenticação baseada em token

Foram examinados dois métodos para manter as sessões de utilizador em segurança:

Autenticação baseada na sessão: Foi gerado um ID de sessão único aquando do início de
sessão, armazenado no servidor. O ID da sessão era enviado para o cliente como um
cookie para verificar a identidade do utilizador em pedidos subsequentes, com

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 49 Maio 2025

mecanismos de expiração e invalidação.

Autenticação baseada em token: Um JSON Web Token (JWT) foi gerado após o início de
sessão, contendo informações do utilizador e um carimbo de data/hora de expiração. O
cliente armazenava o token e enviava-o no cabeçalho de autorização com cada pedido.
Este método permitiu a autenticação sem estado, uma vez que o servidor não manteve o
estado da sessão, e suportou a autenticação entre domínios e a integração de aplicações
móveis.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 50 Maio 2025

Dado o escopo limitado da aplicação e a hospedagem em um único servidor, a
autenticação baseada em sessão foi considerada apropriada.

Fontes:

1. https://dev.to/fidalmathew/session-based-vs-token-based-authentication-which-is-
better-227o

2. https://www.geeksforgeeks.org/session-vs-token-based-authentication/

https://dev.to/fidalmathew/session-based-vs-token-based-authentication-which-is-better-227o
https://dev.to/fidalmathew/session-based-vs-token-based-authentication-which-is-better-227o
https://www.geeksforgeeks.org/session-vs-token-based-authentication/

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 51 Maio 2025

INTERNACIONALIZAÇÃO (i18n)
A internacionalização (i18n) era o processo de conceção e desenvolvimento de software
que podia ser facilmente adaptado a diferentes línguas, contextos culturais e regiões sem
grandes alterações à base de código principal. Incluía a tradução da interface do utilizador,
o tratamento do Unicode e a separação do conteúdo do código, garantindo que a
aplicação era acessível e utilizável por um público global.

A I18next foi escolhida como a biblioteca de base para a i18n, juntamente com pacotes
adicionais. Foi incluído um serviço externo chamado i18nexus, que fornece uma interface
gráfica do utilizador (GUI) para gerir traduções e a capacidade de traduzir
automaticamente cadeias de caracteres da língua de base para outras línguas.

Os termos especiais deste capítulo incluem:

espaço de nomes: Uma forma de organizar as chaves de tradução em grupos separados,
permitindo uma melhor gestão e estruturação das traduções no i18next.
cadeia de tradução: Um par chave-valor em que a chave era um identificador único para
uma cadeia de texto específica e o valor era o texto efetivamente traduzido na língua de
destino.
interpolador: Uma funcionalidade do i18next que permitia a inserção dinâmica de variáveis
nas cadeias de tradução, possibilitando a criação de traduções mais flexíveis e conscientes
do contexto.

Implementação

No início, o React-Intl foi considerado como uma biblioteca i18n. No entanto, o i18next foi
considerado a melhor escolha para internacionalização em aplicativos React devido ao seu
conjunto abrangente de recursos, integração mais fácil, API mais intuitiva, comunidade
maior e mais ativa e melhor desempenho, tornando-o a solução preferível para o projeto.

Para além do i18next, foram utilizados outros pacotes:

A i18next era a biblioteca de internacionalização principal que fornecia a funcionalidade
básica para gerir traduções e localização.
react-i18next foi o pacote que integrou o i18next com o React, fornecendo ganchos e
componentes que facilitaram o trabalho com traduções em componentes React.
i18next-resources-to-backend foi o plugin que permitiu o carregamento de recursos de
tradução a partir de um servidor backend. Era particularmente útil para a renderização do
lado do servidor (SSR), permitindo que a aplicação fosse buscar traduções dinamicamente
com base na localidade do utilizador.
next-i18n-router foi projetado especificamente para projetos de roteadores de aplicativos
Next.js. Ele implementou o roteamento internacionalizado e a deteção de localidade,
permitindo que os desenvolvedores gerenciem facilmente as rotas com base no idioma
selecionado sem ter que construir a lógica de roteamento do zero.

Configuração

Os pacotes foram instalados.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 52 Maio 2025

Foi criado um ficheiro de configuração (/i18n.config.ts)

Especificou uma propriedade locales, que era um conjunto de idiomas que a aplicação iria
suportar.
A propriedade defaultLocale era o idioma para o qual os visitantes voltariam se a
aplicação não suportasse o seu idioma.
Foi criado um segmento dinâmico dentro do diretório /app para conter todas as páginas e
esquemas, denominado [locale].
O middleware foi atualizado (/middleware.ts)

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 53 Maio 2025

O pacote next-18n-router facilitou o processo, uma vez que devolveu o valor da função
i18nRouter, tratando de toda a lógica de encaminhamento de localidades.
Foi criada a função initTranslations (/app/i18n.js), que utilizou o i18next-resources-to-
backend para carregar as traduções do lado do servidor, com código copiado do tutorial.
Foi adicionado o TranslationsProvider (/contexts/translations-provider.jsx), que
envolveu os componentes onde foi utilizada a função t do react-i18next, com código
copiado do tutorial.
A função generateStaticParams da API Next.js foi adicionada ao layout raiz para gerar
estaticamente rotas no momento da construção, em vez de sob demanda no momento da
solicitação.
A aplicação foi ligada à plataforma i18nexus, com mais pormenores disponíveis nas secções
"i18nexus" e "integração i18nexus".

Para a configuração, foram consultados os tutoriais da i18nexus:

• Tutorial escrito
• Tutorial em vídeo (30 min)

Utilização
Num componente cliente, a função de tradução (chamada t) foi obtida através da sua
desestruturação a partir do hook useTranslation do react-i18next.

Numa componente de servidor, a função de tradução (chamada t) foi obtida através da
sua desestruturação a partir da função initTranslations criada na configuração, passando o
locale atual e um conjunto de espaços de nomes.

Depois disso, a função t pode ser utilizada em qualquer parte do componente, passando a
cadeia de tradução e, se aplicável, o interpolador.

O i18next incluía uma série de outras funcionalidades, mas estas foram as únicas utilizadas
neste projeto.

i18nexus

A i18nexus era uma plataforma que simplificava a internacionalização (i18n) e a localização
(l10n) de aplicações de software. O método antigo envolvia a criação manual de vários
ficheiros JSON para cada espaço de nome e idioma. No entanto, as traduções eram
escritas e geridas na Interface Gráfica do Utilizador (GUI) fornecida pelo i18nexus. As
traduções eram primeiro escritas numa língua base (Inglês) e depois traduzidas
automaticamente para outras línguas.

https://nextjs.org/docs/app/building-your-application/rendering/server-components#static-rendering-default
https://nextjs.org/docs/app/building-your-application/rendering/server-components#static-rendering-default
https://i18nexus.com/tutorials/nextjs/react-i18next
https://www.youtube.com/watch?v=J8tnD2BWY28

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 54 Maio 2025

Um aspeto notável foi o facto de a aplicação não depender de um serviço externo. Foi
possível puxar todos os ficheiros JSON de tradução para o projeto utilizando um comando
no terminal.

Inicialmente, foi utilizado apenas o plano gratuito, mas mais tarde foi adquirido o plano
básico devido ao facto de as cadeias de tradução se terem esgotado. Depois de terminar a
aplicação, este plano foi cancelado e a aplicação continuou a funcionar.

Um problema detectado foi o facto de a plataforma utilizar a API do Google Translate nos
planos gratuito e básico, que apenas suportava o português do Brasil. Após contactar o
suporte, foi possível implementar rapidamente uma correção em que a plataforma
utilizava o tradutor DeepL para o português europeu, mesmo nos níveis inferiores.

Ao utilizar o Roteador de aplicativos com o i18next, era uma boa prática "namespace" as
cadeias de caracteres por página. Esta abordagem permitiu evitar o carregamento de
todas as cadeias de caracteres de toda a aplicação ao visualizar uma página, permitindo-lhe
carregar apenas as cadeias de caracteres dessa página específica de cada vez.

Integração do i18nexus

Para ligar a aplicação ao i18nexus, foram seguidos estes passos:

O i18nexus-cli foi instalado globalmente (bun i i18nexus-cli -g) e como uma
dependência de desenvolvimento (bun i i18nexus-cli --save-dev), que era a interface
de linha de comandos utilizada para puxar os ficheiros de tradução para o projeto.
A chave da API do projeto foi adicionada ao ficheiro .env com a variável denominada
I18NEXUS_API_KEY.
O comando i18nexus pull foi executado a partir do terminal no diretório raiz do projeto
para extrair ou atualizar as localidades.
Por conveniência, este comando também foi adicionado aos scripts package.json, de
modo a que as traduções mais actualizadas fossem automaticamente retiradas sempre
que um servidor fosse ativado.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 55 Maio 2025

AUTO-HOSPEDAGEM E IMPLANTAÇÃO
A aplicação foi implementada num computador da escola num contentor Docker. Para
simplificar o acesso, obteve um nome de domínio gratuito do No-IP, um fornecedor de
DDNS. O tráfego fluía da seguinte forma:

Um cliente solicitou etpzp-sms.ddns.net.
O router recebeu o pedido e encaminhou-o para o Nginx.
O Nginx redireccionou para HTTPS, se necessário, e encaminhou o pedido para o contentor
Docker.
O servidor Node.js no contentor processou o pedido.
Esta configuração permitiu um acesso fácil à aplicação através de um nome de domínio
simples, garantindo simultaneamente o encaminhamento e a segurança adequados.

Docker

O Docker foi escolhido como uma plataforma de código aberto que permite aos
programadores empacotar aplicações e as suas dependências em contentores leves e
portáteis, simplificando a implementação e melhorando a portabilidade em diferentes
ambientes.

Durante a produção, havia dois contentores Docker separados: um para a aplicação Web
com o próprio servidor Node.js e outro para a base de dados PostgreSQL. Qualquer um
deles executava o Alpine Linux, que era um sistema operativo Linux muito leve.

Outros ficheiros relacionados com o Docker que não foram explicados incluem
.env.docker e .dockerignore, que foram utilizados para gerir variáveis de ambiente e
especificar ficheiros e diretórios que devem ser excluídos do contexto de compilação do
Docker, respetivamente.

Dockerfile explicado

Um Dockerfile era um ficheiro de texto que continha uma série de instruções para
construir uma imagem Docker, especificando o ambiente da aplicação, as dependências e a
configuração necessária para executar a aplicação. Havia 2 Dockerfiles na aplicação.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 56 Maio 2025

Dockerfile do Node.js
Este foi o Dockerfile mais importante localizado em /Dockerfile:

Imagem de base: Foi definida uma imagem de base utilizando um ambiente leve Alpine
Linux com Bun (linha 1).
Instalar o Node.js e o i18nexus: O Node.js e o npm foram instalados, juntamente com o
i18nexus CLI para traduções (linhas 4-5).
Estágio de Dependências: Um novo estágio chamado deps foi criado para instalar as
dependências do aplicativo. Ele definiu o diretório de trabalho, copiou os arquivos
necessários e executou o comando de instalação (linhas 8-12).
Estágio de construção: A fase de construção foi iniciada, onde definiu o diretório de
trabalho, copiou as dependências instaladas da fase anterior e construiu a aplicação (linhas
15-19).
Etapa do servidor de produção: A fase final, runner, definiu o diretório de trabalho e
definiu a variável de ambiente para produção. Os ficheiros da aplicação compilados na fase
anterior foram copiados (linhas 22-28).
Copiando arquivos adicionais: O código também copiou o package.json e node_modules
do estágio anterior para garantir que todos os arquivos necessários estivessem disponíveis
(linhas 33-34).
Expor porta: O Dockerfile expôs a porta 3000, permitindo o acesso externo ao aplicativo
(linha 36).
Comando de início: Finalmente, foi especificado um comando para iniciar a aplicação (linha
37).

Dockerfile do banco de dados
Esta foi a configuração mais simples localizada em /lib/db/Dockerfile para configurar e
propagar a base de dados:

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 57 Maio 2025

Imagem de base: A imagem de base foi definida usando uma versão específica do
PostgreSQL, que foi baseada numa variante leve do Alpine Linux (linha 1).
Copiar script de seed: Um arquivo SQL chamado seed.sql foi copiado para um diretório
designado dentro do container do PostgreSQL usado para semear o banco de dados
quando o container foi iniciado (linha 2).

Explicação do docker-compose.yaml

Um arquivo docker-compose.yaml era um arquivo de texto que definia um aplicativo
Docker com vários contêineres. Ele especificava os serviços (contêineres) que compunham
o aplicativo, suas configurações e como eles interagiam uns com os outros. Esse arquivo
permitia a definição e o gerenciamento de toda a pilha de aplicativos, incluindo rede,
volumes e variáveis de ambiente, em um único arquivo.

Teria sido possível alcançar os mesmos resultados sem o Docker Compose, criando e
gerindo os contentores Docker individuais, redes, volumes e outros recursos necessários
para a aplicação. No entanto, isso teria sido mais complexo e demorado.

O ficheiro Docker Compose, localizado em /docker-compose.yaml, definiu 2 serviços: web
e base de dados.

O serviço Web:
Ele construiu a imagem do Docker usando o Dockerfile no diretório atual.
Carregou variáveis de ambiente a partir do ficheiro .env.docker.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 58 Maio 2025

Expôs a porta 3000 no anfitrião e mapeou-a para a porta 3000 no contentor.
Dependia do serviço de base de dados e aguardava que este estivesse operacional antes
de iniciar.
O serviço de base de dados:
Construiu a imagem do Docker usando o Dockerfile no diretório ./lib/db.
Definiu o nome do contentor para postgres.
Carregou variáveis de ambiente a partir do ficheiro .env.docker.
Expôs a variável de ambiente POSTGRES_PORT no anfitrião e mapeou-a para a mesma porta
no contentor.
Montou um volume chamado database-v no diretório /var/lib/postgresql/data no
contentor.
Ele definiu um healthcheck que verificava se o PostgreSQL estava pronto para aceitar
conexões a cada 5 segundos, com um timeout de 5 segundos e um máximo de 5
tentativas.
O volume database-v foi definido para manter os dados PostgreSQL.

Sem IP e reencaminhamento de portas

Para simplificar o acesso dos utilizadores, foi obtido um nome de domínio gratuito junto do
No-IP, um fornecedor dinâmico de serviços de nomes de domínio (DNS). Isto permitiu aos
utilizadores ligarem-se à aplicação utilizando um nome de domínio memorável em vez do
endereço IP do router, que pode ter mudado frequentemente.

O No-IP actualizava automaticamente o nome de domínio para refletir o endereço IP atual
do router, garantindo um acesso consistente. Este recurso era particularmente útil em
ambientes onde o endereçamento IP dinâmico era comum. Por outras palavras,
basicamente fazia com que o IP dinâmico se comportasse como um IP estático.

Para configurar o No-IP, foi consultado este guia que explica o que foi feito para configurar
o No-IP:

Criar uma conta: Foi criada uma nova conta no sítio Web do No-IP e foram preenchidas as
informações necessárias.
Confirmar a conta: Foi verificada a existência de uma ligação de confirmação no correio
eletrónico e clicou-se nela.
Iniciar sessão: Acedeu à conta utilizando o e-mail e a palavra-passe.
Adicionar um nome de anfitrião: Foi criado um nome de anfitrião para o servidor
(Opcional) Criar uma chave DNS dinâmica: Foi criada uma chave DNS dinâmica para maior
segurança e compatibilidade.
Tornando o host dinâmico: O Cliente de Atualização Dinâmica (DUC) do No-IP foi instalado
e configurou o dispositivo para actualizações.
Configuração do router: O encaminhamento de portas foi configurado para os serviços
necessários (por exemplo, web, FTP).
Execução dos serviços: A configuração foi verificada com uma ferramenta de verificação
de portas e começou a utilizar os serviços.

https://www.noip.com/support/knowledgebase/free-dynamic-dns-getting-started-guide-ip-version

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 59 Maio 2025

O encaminhamento de portas foi configurado no router para direcionar o tráfego de
entrada para a porta específica do contentor Docker que executa a aplicação. Esta
configuração permitiu que os utilizadores acedessem à aplicação facilmente e a partir de
redes que não apenas a rede da escola. Para a configuração, este guia foi referenciado.

Nginx
O Nginx forneceu vários recursos, servindo principalmente como um servidor web e
funcionando como um proxy reverso para redirecionar o tráfego para outros servidores.
Neste projeto, foi utilizado para configurar certificados SSL, redirecionar o tráfego http
para https e redirecionar o tráfego para a aplicação executada no Docker. Para aprender
os conceitos básicos do Nginx, foi consultado este tutorial.

O Nginx foi bastante fácil de configurar:
1. O Nginx foi instalado.
2. Ele foi iniciado usando o comando nginx.
3. Primeiro foi gerado um certificado SSL auto-assinado usando este comando: openssl
req -x509 -nodes -days 365 -newkey rsa:2048 -keyout nginx-selfsigned.key -
out nginx-selfsigned.crt
4. Em seguida, foi feita uma tentativa de usar um comando do Certbot para gerar um
certificado SSL assinado por autoridade gratuitamente. No entanto, este processo
deparou-se com um problema porque o Certbot não era compatível com o computador da
escola com Windows.
5. O resto do trabalho consistiu em editar o ficheiro nginx.conf, onde foi definido todo o
comportamento do Nginx.

https://www.noip.com/support/knowledgebase/general-port-forwarding-guide
https://www.youtube.com/watch?v=q8OleYuqntY

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 60 Maio 2025

nginx.conf
Apesar de o ficheiro de configuração do Nginx (/nginx.conf) ter sido enviado para o
repositório, não foi lido a partir deste ficheiro. Ele existia para garantir a disponibilidade
quando necessário. A localização real do arquivo de configuração pode ser verificada
executando nginx -V, permitindo que o caminho que contém o arquivo de configuração
nginx.conf seja copiado. Aqui estava a configuração básica:

Ele configurou o Nginx com 1 processo de trabalho e 1024 conexões.
Redireccionou todo o tráfego HTTP (porta 80) para HTTPS (porta 443).
Utilizava certificados SSL auto-assinados para HTTPS.
Fazia proxy de pedidos para um serviço de backend executado na porta 3000.
Transmitia informações do cliente através de cabeçalhos para o backend.

Comandos úteis

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 61 Maio 2025

1. nginx -s reload recarregou a configuração sem deixar cair as conexões.
2. nginx -s stop pára graciosamente o servidor.
3. nginx -s quit parou o servidor imediatamente após fechar as ligações actuais.

Para obter mais informações sobre o nginx, a documentação foi referenciada.

Certificados SSL
Obter um certificado SSL auto-assinado foi feito facilmente usando o seguinte comando.
Ele gerou uma chave auto-assinada, que foi colocada em ~/nginx-certs/ e então
referenciada a partir do arquivo de configuração do Nginx usando o caminho absoluto. Ele
mudou para esse diretório recém-criado:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout nginx-selfsigned.key -out
nginx-selfsigned.crt

A obtenção de um certificado SSL assinado por uma autoridade foi feita usando o Certbot,
completando um "desafio". Para isso, foi necessário o nome de domínio, leia mais aqui:

sudo certbot --nginx -d< your_domain_name> .com

Depois disso, ele ainda tinha que fazer mais tarefas, como gerar um link simbólico. Ele
seguiu este tutorial para todas as etapas.

https://nginx.org/en/docs/
https://youtu.be/BeafoOFxIcI?si=TqB9XVm-e6TdVPJE&t=301

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 62 Maio 2025

CONCLUSÃO
Em conclusão, foi determinado que a aplicação abordou eficazmente os elevados custos
das mensagens de texto para a escola, oferecendo uma solução de comunicação SMS
eficiente e económica, acessível a todos os utilizadores. O projeto era totalmente reativo e
utilizável em dispositivos móveis, com todas as funcionalidades planeadas implementadas
e outras adicionais incluídas. Com capacidades como o envio de mensagens para vários
destinatários, envios programados e uma interface de fácil utilização, simplificou a
comunicação e integrou-se perfeitamente no Active Diretory da escola para autenticação.

O sítio Web foi reconhecido pela sua rápida produção, graças a tecnologias robustas e a
uma forte ênfase no desempenho. Esta ênfase resultou numa interface rápida com
latência mínima, melhorando a experiência do utilizador e fazendo com que se parecesse
mais com uma aplicação do que com um sítio Web. Construído com tecnologias de topo
como Next.js e PostgreSQL, mostrou o potencial de alavancar APIs REST para a
funcionalidade SMS. Por último, a sua implementação utilizando o Docker e o Nginx num
computador local da escola foi excelente para aprender as noções básicas de alojamento e
demonstrou a aplicação prática destas tecnologias.

Embora o projeto tenha apresentado desafios, foi particularmente difícil encerrá-lo no
final, o que acabou por servir como uma experiência de aprendizagem significativa. Com os
conhecimentos adquiridos, previa-se que as futuras iterações de aplicações semelhantes
pudessem ser desenvolvidas de forma mais eficiente e eficaz.

Arrependimentos
Utilizar apenas as funcionalidades básicas do i18next sem o i18nexus, evitando o plural e a
ramificação da tradução.
Repetição frequente de cálculos complexos da área de deslocação em vez de os gerir num
único local
Configuração complexa das definições do front-end com algumas definições a serem
tratadas por bibliotecas
Realização lenta da incompatibilidade entre os componentes Sheet e ScrollArea do
ShadCN
A utilização de .safeParse em vez de .parse com zod faz com que o código de
tratamento de erros fique no bloco try, o que não respeita a separação de preocupações
Sem snippets para código repetitivo
Não existe uma forma uniforme de tratar os erros nas acções do servidor
Não há convenções de nomenclatura claras/consistentes para funções, tipos TypeScript e
esquemas Zod

Caraterísticas omitidas

A caraterística mais importante não implementada foi a sondagem da API quanto ao
estado de entrega das SMS. Era crucial porque, embora os erros imediatos fossem geridos
tanto do lado do utilizador como do lado da API de gateway, as mensagens podiam não
chegar ao destinatário final devido a questões como um número de telefone inválido ou
problemas com o telefone do destinatário. Este estado devia ser apresentado na aplicação.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 63 Maio 2025

Para obter informações sobre como pesquisar a API, foi consultada a documentação da
GatewayAPI.

Embora a API recomendasse a utilização de webhooks em vez de sondagens por motivos
de eficiência, necessitava de sondagens de mensagens devido à sua configuração de auto-
hospedagem. Esta abordagem permitiu-lhe gerir situações em que o servidor podia ser
desligado durante as férias, garantindo que ainda podia recuperar o estado da entrega de
SMS quando o servidor estivesse novamente online.

Embora esta funcionalidade não tenha sido implementada, foram tomadas notas:

Do ponto de vista lógico, o estado do campo da base de dados das mensagens
programadas não deve ser "PROGRAMADO" quando a data de entrega é atingida.
No início de sessão do utilizador, as mensagens podem ser verificadas quanto ao
sinalizador confirmed_delivery.
Os erros de entrega para destinatários individuais podem ser apresentados no ecrã de
mensagens.
Um campo como was_scheduled ou scheduled_send poderia ser adicionado para indicar
como a mensagem foi enviada.
Para atualizar os indicadores de quantidade, pode ser adicionado na estrutura de raiz um
temporizador de atualização de 5 minutos para sondar os estados de entrega de
mensagens programadas.

Outras caraterísticas

Ligações para o item modificado/criado em mensagens de sucesso para um acesso fácil
aos detalhes
Apenas administradores:
Ligações para a página de início de sessão da GatewayAPI no painel de administração
Definição de max-age do cookie de autenticação
Opção para efetuar cópias de segurança e restaurar a base de dados
Opção para especificar as opções de seleção disponíveis para o nome do remetente
Mais informações de contacto apresentadas em cada item de mensagem da lista
Fotografias de perfil de contacto
Os valores não definidos devem ser passados como nulos para a base de dados

https://gatewayapi.com/docs/apis/rest/#get-sms-and-sms-status
https://gatewayapi.com/docs/apis/rest/#get-sms-and-sms-status
https://gatewayapi.com/docs/apis/rest/#webhooks

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 64 Maio 2025

ANEXO I - MANUAL DO UTILIZADOR
Este capítulo fornece explicações claras e passo a passo de procedimentos comuns e
processos não intuitivos para ajudar os novos utilizadores a navegar no projeto e a aceder
às ferramentas necessárias para a expansão. Dicas e guias adicionais para configurações
específicas podem ser encontrados noutros capítulos.

Como começar

Este é um projeto de router de aplicações Next.js 15.

O utilizador instala o gestor de pacotes Bun seguindo as instruções do seu sítio Web.
O utilizador define as variáveis de ambiente necessárias encontradas na secção ANEXAS.
Estas incluem .env e .env.docker, que vão ambas para o diretório raiz do projeto.
O utilizador navega para o diretório correto a partir de uma aplicação terminal à sua
escolha.
O utilizador instala os pacotes executando o comando de terminal bun install.
O utilizador inicia o servidor de desenvolvimento executando o comando de terminal bun
dev. Se ocorrer um erro, o utilizador pode utilizar o comando alternativo: bun next dev.

Nota: O usuário pode utilizar qualquer gerenciador de pacotes que preferir, mas
o autor recomenda o uso do Bun por ser o gerenciador de pacotes mais rápido e
eficiente, além de fornecer uma API quase idêntica ao npm.

GitHub

Primeiros passos: O utilizador cria uma conta GitHub e configura o Git na sua máquina
local. Ele configura seu nome de usuário e e-mail com git config --global user.name
"Seu nome" e git config --global user.email "your.email@example.com".

Clonando o repositório: O utilizador utiliza o comando git clone <repositório-url>
para copiar um repositório remoto para a sua máquina local, permitindo-lhe trabalhar no
projeto localmente.

Adicionando um novo ramo e configurando o upstream: O usuário cria um novo ramo com
git checkout -b <nome do ramo> e, em seguida, faz o push para o repositório remoto
pela primeira vez usando git push -u origin <nome do ramo>. O sinalizador -u define
a referência de rastreamento upstream, vinculando o ramo local ao ramo remoto. Os
ramos são criados apenas para novos recursos e, quando um recurso é concluído, testado
e funcionando, ele pode ser mesclado no ramo principal.

Enviando para o repositório: Depois de fazer as alterações, o usuário as encena com git
add ., faz o commit com git commit -m "Sua mensagem", e faz o push para o repositório
remoto usando git push origin <branch-name>.

Trabalhar num ambiente de desenvolvimento

Este processo pode ser complicado em diferentes plataformas, mas a configuração e
algumas dicas para desenvolver este projeto são explicadas abaixo.

https://nextjs.org/
https://bun.sh/
mailto:your.email@example.com

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 65 Maio 2025

Servidor Web Node.js
Para iniciar um servidor de desenvolvimento, é utilizado o seguinte comando:

desenvolvimento de pão

Se não houver ligação à Internet ou ocorrer outro erro, é utilizado o comando abaixo:

bun next dev

Depurando o banco de dados PostgreSQL
No macOS, o Postgres.app deve estar em execução em segundo plano para funcionar
corretamente. Para consultar a base de dados diretamente, o utilizador executa o
comando psql num terminal para aceder à shell psql, onde todas as consultas podem ser
executadas.

No Windows, o Postgres deve estar sempre em execução. O utilizador abre a aplicação
psql, que contém a shell psql para execução de consultas.

Sugestão: Os problemas de ligação devem-se provavelmente a credenciais
inválidas.

Comandos PostgreSQL

Para semear a base de dados, o utilizador
executayour_project_file_path/lib/db/seed.sql na shell psql. Este comando é o
mesmo para macOS e Windows. No entanto, se surgirem problemas no Windows, o
utilizador deve tentar usar barras invertidas (\) em vez de barras (/).
Comandos SQL:
Para eliminar todas as tabelas: DROP TABLE IF EXISTS destinatário, contacto,
mensagem, public.user;
Para verificar quantas mensagens foram enviadas nos últimos 30 dias: SELECT COUNT(*)
FROM message WHERE send_time >= CURRENT_DATE - INTERVAL '1 months' AND
in_trash = false AND status NOT IN ('FAILED', 'DRAFTED');

Trabalhar num ambiente de produção (implantação)
O utilizador garante que o motor Docker está a funcionar abrindo a aplicação Docker.
O utilizador inicia os contentores Docker com o seguinte comando:

docker-compose up --build
Se o Nginx não estiver em execução, o utilizador executa este comando:

nginx
O utilizador reinicia o servidor Web Nginx utilizando o comando:

nginx -s recarregar

Observação: No primeiro comando, o sinalizador --build é opcional. Ele solicita
que o Docker reconstrua as imagens e deve ser usado quando há alterações que
precisam ser aplicadas. Se omitido, o Docker Compose usa imagens existentes,
acelerando o processo.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 66 Maio 2025

Depuração do Docker

Aceder a um contentor Docker: Para aceder a um contentor Docker em execução, o
utilizador executa o seguinte comando:

docker exec -it< nome_do_contentor_ou_id> /bin/sh

O utilizador substitui <nome_do_contentor_ou_id> pelo nome real ou ID do contentor.
Como o Alpine está em uso, o usuário acessa o shell sh em vez do bash.

Acessando um banco de dados PostgreSQL em um container Docker: Para acessar um
banco de dados PostgreSQL através do shell psql em execução dentro de um contêiner
Docker, o usuário executa:

docker exec -it< postgres_container_name_or_id> psql -U< username> -d<
database_name>

O utilizador substitui <postgres_container_name_or_id>, <username> e
<database_name> pelos valores apropriados.

Mais comandos:

Listagem de contentores em execução: docker ps
Parar um contentor: docker stop <nome_do_contentor_ou_id>
Iniciando um contêiner: docker start <nome_do_contêiner_ou_id>
Removendo um contêiner: docker rm <nome_do_contêiner_ou_id>
Ver os registos do contentor: docker logs <nome_do_contentor_ou_id>

Zona de perigo:

Remoção de contentores parados: docker container prune
Remoção de imagens não utilizadas: docker image prune
Remoção de volumes não utilizados: docker volume prune
Remoção de redes não utilizadas: docker network prune
Remoção de todos os recursos do Docker: docker system prune -a --volumes

Trabalhar com a i18nexus
Aviso: Optar por não utilizar o i18nexus e editar manualmente os ficheiros JSON
resulta na perda permanente de alterações quando se executa o comando pull,
uma vez que o diretório /locales não é confirmado no git.

O utilizador inicia sessão na plataforma i18nexus com a conta fornecida.
O utilizador faz alterações na plataforma. O plano gratuito limita as cadeias de tradução,
impedindo a adição de novas. Está disponível um espaço de nomes "arquivo (não utilizado
em lado nenhum)" para mover e editar traduções não utilizadas.
O utilizador sincroniza as alterações executando:

i18nexus pull

https://app.i18nexus.com/sign-in

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 67 Maio 2025

ANEXO II - FICHEIROS DE CÓDIGO
/middleware.ts

import { i18nRouter } from "next-i18n-router";
import { i18nConfig } from "./i18n.config";
import { NextRequest, NextResponse } from "next/server";
import { getSession } from "./lib/auth/sessions";

export default async function middleware(request: NextRequest) {
 // Handle i18n routing
 const i18nResponse = i18nRouter(request, i18nConfig);
 const session = await getSession(request, i18nResponse);
 const { pathname } = request.nextUrl;
 const locale = request.cookies.get("NEXT_LOCALE")?.value || "en";

 // Pathname checks use `.includes()` instead of `.startsWith()`, because
of possible locale between url segments.
 if (session.isAuthenticated && pathname.includes("/login")) {
 // Redirect logged in users to home
 return NextResponse.redirect(new URL(`/${locale}/`, request.url));
 }

 if (!session.isAuthenticated && !pathname.includes("/login")) {
 // Redirect unauthorized users to login
 return NextResponse.redirect(new URL(`/${locale}/login`, request.url));
 }

 // Return the i18n-router response for all other cases
 return i18nResponse;
}

// applies this middleware only to files in the app directory
export const config = {
 matcher: "/((?!api|static|.*\\..*|_next).*)",
};

/docker-compose.yaml

services:
 web:
 build:
 context: .
 dockerfile: Dockerfile
 env_file: .env.docker
 ports:
 - "3000:3000"
 depends_on:
 database:

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 68 Maio 2025

 condition: service_healthy
 database:
 build:
 context: ./lib/db
 dockerfile: Dockerfile
 container_name: postgres
 env_file: .env.docker
 ports:
 - ${POSTGRES_PORT}:${POSTGRES_PORT}
 volumes:
 - database-v:/var/lib/postgresql/data
 healthcheck:
 test:
 [
 "CMD-SHELL",
 "pg_isready -p ${POSTGRES_PORT} -U ${POSTGRES_USER} -d ${POSTGRES
_DB}",
]
 start_period: 0s
 interval: 5s
 timeout: 5s
 retries: 5
volumes:
 database-v:
 name: "database-v"

/types/contact.ts

export type DBContact = {
 id: string;
 phone: string;

 // contact information
 user_id: string;
 name: string;
 description?: string; // Optional field
 created_at: Date;
 updated_at: Date;
};

/types/dashboard.ts

export type LightDBMessage = {
 user_id: string;
 send_time: Date;
 cost: string;
};

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 69 Maio 2025

/types/action.ts

import { ContactSchema } from "@/lib/form.schemas";
import { DBContact } from "./contact";
import { z } from "zod";

// this is for useActionState() forms
export type ActionResponse<T> = {
 success: boolean;
 message: string[];
 errors?: {
 [K in keyof T]?: string[];
 };
 inputs?: {
 [K in keyof T]?: string;
 };
};

export type DraftActionResponse<T> = {
 success: boolean;
 message: string[];
 draftId?: T;
};

export type DataActionResponse<T> = {
 success: boolean;
 message: string[];
 data?: T;
};

export type UpdateSettingResponse = {
 success: boolean;
 name?: string;
 input: string;
 error?: string;
 data?: any;
};

export type CreateContactResponse = {
 success: boolean;
 message: string[];
 data?: DBContact;
 errors?: {
 [K in keyof z.infer<typeof ContactSchema>]?: string[];
 };
 inputs?: {
 [K in keyof z.infer<typeof ContactSchema>]?: string;
 };
};

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 70 Maio 2025

/types/recipient.ts

type BaseRecipient = {
 phone: string;
 // if it is a contact
 contact?: {
 id: string;
 name?: string;
 phone: string;
 description?: string;
 };
};

// Recipients used in the new message form.
export type NewRecipient = {
 formattedPhone?: string;
 isValid: boolean;
 error?: {
 type?: "error" | "warning";
 message?: string;
 };
 proneForDeletion: boolean;
} & BaseRecipient;

export type WithContact = {
 id: string;
} & BaseRecipient;

// No joins - normal query directly from the DB
export type DBRecipient = {
 id: string;
 phone: string;
};

export type FetchedRecipient = DBRecipient & { last_used: Date };
export type RankedRecipient = DBRecipient & { usageCount: number };

/types/index.ts

import { z } from "zod";
import { DBRecipient, NewRecipient } from "./recipient";
import { MessageSchema } from "@/lib/form.schemas";

export type StatusEnums = "SENT" | "SCHEDULED" | "FAILED" | "DRAFTED";
export type CategoryEnums =
 | "SENT"
 | "SCHEDULED"

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 71 Maio 2025

 | "FAILED"
 | "DRAFTS"
 | "TRASH";

// export type StringBoolMap = { [key: string]: boolean };
export type Modals = {
 schedule: boolean;
 scheduleAlert: boolean;
 contact: {
 create: boolean;
 edit: boolean;
 info: boolean;
 insert: boolean;
 };
};

export type Message = z.infer<typeof MessageSchema> & {
 recipients: NewRecipient[];
};

export type DBMessage = {
 id: string;
 user_id: string;
 sender?: string;
 subject?: string | null;
 body: string;
 created_at: Date;
 send_time: Date;
 status: StatusEnums;
 in_trash: boolean;
 api_error_code: number | null;
 api_error_details_json: string | null;
 recipients: DBRecipient[];
 sms_reference_id: string;
 cost: number | null;
 cost_currency: string | null;
};

export type AmountIndicators = {
 sent: number;
 scheduled: number;
 failed: number;
 drafts: number;
 trash: number;
 contacts: number;
};

/types/theme.ts

import { themes } from "@/lib/theme.colors";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 72 Maio 2025

export type ThemeProperties = {
 background: string;
 foreground: string;
 card: string;
 cardForeground: string;
 popover: string;
 popoverForeground: string;
 primary: string;
 primaryForeground: string;
 secondary: string;
 secondaryForeground: string;
 muted: string;
 mutedForeground: string;
 accent: string;
 accentForeground: string;
 destructive: string;
 destructiveForeground: string;
 border: string;
 input: string;
 ring: string;
 radius: string;
};

export type Theme = {
 light: ThemeProperties;
 dark: ThemeProperties;
};

export type Themes = {
 [key: string]: Theme;
};

export type ThemeColors = keyof typeof themes; // This will be 'Orange' | '
Blue' | 'Green' | 'Rose' | 'Zinc'

export type ThemeMode = "light" | "dark";

/types/user.ts

export const validSettingNames = [
 "lang",
 "display_name",
 "profile_color_id",

 "primary_color_id",
 "appearance_layout",
 "dark_mode",
];

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 73 Maio 2025

export const appearanceLayoutValues = ["MODERN", "SIMPLE"] as const; // thi
s is needed for zod
export type LayoutType = (typeof appearanceLayoutValues)[number];
export type UserSettings = {
 lang: string;

 profile_color_id: number;
 display_name: string;

 dark_mode: boolean;
 primary_color_id: number;
 appearance_layout: LayoutType;
};

export type User = {
 id: string;
 name: string;
 email: string;
 first_name: string;
 last_name: string;
};

// All user fields
export type DBUser = User &
 UserSettings & {
 role: "USER" | "ADMIN";
 created_at?: Date;
 updated_at?: Date;
 };

export type SettingName =
 | "lang"
 | "profile_color_id"
 | "display_name"
 | "primary_color_id"
 | "appearance_layout"
 | "dark_mode";

/global.config.ts

import { MessageState } from "./contexts/use-new-message";

// These date formats are used for the date-fns library
export const PT_DATE_FORMAT = "dd/MM/yyyy HH:mm";
export const PT_DATE_FORMAT_NO_TIME = "dd/MM/yyyy";
export const ISO8601_DATE_FORMAT = "yyyy-MM-dd";
export const DEFAULT_START_DATE = "2025-01-01";

export const EMPTY_MESSAGE: MessageState = {
 sender: "ETPZP",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 74 Maio 2025

 subject: "",
 recipients: [],
 body: "",
 recipientInput: {
 recipientsExpanded: false,
 value: "",
 error: undefined,
 isHidden: false,
 },
 scheduledDate: new Date(),
 scheduledDateModified: false,
 scheduledDateConfirmed: false,
};

// This is used in the metadata
export const METADATA_APP_NAME = "ETPZP SMS | ";

/contexts/use-modal.tsx

"use client";

import { Modals } from "@/types";
import React, {
 createContext,
 Dispatch,
 SetStateAction,
 useContext,
 useEffect,
 useState,
} from "react";

const ModalContext = createContext<{
 modal: Modals;
 setModal: Dispatch<SetStateAction<Modals>>;
 scheduleDropdown: boolean;
 setScheduleDropdown: Dispatch<SetStateAction<boolean>>;
} | null>(null);

// These are popups used to work with contacts (create, edit, insert into n
ew message, view more info) used on /contacts and /new-message.
export function ModalProvider({
 children,
}: {
 children: Readonly<React.ReactNode>;
}) {
 const [modal, setModal] = useState<Modals>({
 schedule: false,
 scheduleAlert: false,
 contact: { create: false, edit: false, insert: false, info: false },
 });

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 75 Maio 2025

 const [scheduleDropdown, setScheduleDropdown] = useState(false);

 return (
 <ModalContext.Provider
 value={{ modal, setModal, scheduleDropdown, setScheduleDropdown }}
 >
 {children}
 </ModalContext.Provider>
);
}

export function useModal() {
 const context = useContext(ModalContext);
 if (!context) {
 throw new Error("ModalContext must be within ModalProvider");
 }
 return context;
}

/contexts/use-layout.tsx

"use client";

import { fetchAmountIndicators } from "@/lib/db/general";
import { AmountIndicators } from "@/types";
import {
 createContext,
 Dispatch,
 SetStateAction,
 useContext,
 useEffect,
 useState,
} from "react";

type LayoutContextType = {
 amountIndicators: AmountIndicators | undefined;
 fallbackLayout: number[];

 layout: number[];
 setLayout: Dispatch<SetStateAction<number[]>>;

 isCollapsed: boolean;
 setIsCollapsed: Dispatch<SetStateAction<boolean>>;

 mobileNavPanel: boolean;
 setMobileNavPanel: Dispatch<SetStateAction<boolean>>;

 isFullscreen: boolean;
 setIsFullscreen: Dispatch<SetStateAction<boolean>>;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 76 Maio 2025

 refetchAmountIndicators: () => void;
};

const LayoutContext = createContext<LayoutContextType | undefined>(undefine
d);

export function LayoutProvider({
 children,
 initialLayout,
 initialIsCollapsed,
 initialAmountIndicators,
}: {
 children: React.ReactNode;
 initialLayout: number[];
 initialIsCollapsed: boolean;
 initialAmountIndicators: AmountIndicators | undefined;
}) {
 // desktop layout 3 column react-resizable-panels data
 const [layout, setLayout] = useState(initialLayout);
 const [isCollapsed, setIsCollapsed] = useState(initialIsCollapsed);
 const fallbackLayout = [20, 32, 48];
 const [amountIndicators, setAmountIndicators] = useState(
 initialAmountIndicators
);
 // Simple state to keep track of whether the mobile nav panel is open
 const [mobileNavPanel, setMobileNavPanel] = useState(false);
 const [isFullscreen, setIsFullscreen] = useState(false);

 const refetchAmountIndicators = async () => {
 const amountIndicators = await fetchAmountIndicators();

 if (amountIndicators) {
 setAmountIndicators(amountIndicators);
 }
 };

 useEffect(() => {
 setAmountIndicators(initialAmountIndicators);
 }, [initialAmountIndicators]);
 return (
 <LayoutContext.Provider
 value={{
 layout,
 setLayout,
 isCollapsed,
 setIsCollapsed,
 fallbackLayout,
 amountIndicators,
 mobileNavPanel,
 setMobileNavPanel,
 isFullscreen,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 77 Maio 2025

 setIsFullscreen,
 refetchAmountIndicators,
 }}
 >
 {children}
 </LayoutContext.Provider>
);
}

export function useLayout() {
 const context = useContext(LayoutContext);
 if (context === undefined) {
 throw new Error("useLayout must be used within a LayoutProvider");
 }
 return context;
}

/contexts/use-new-message.tsx

"use client";

import type React from "react";
import {
 createContext,
 useState,
 useContext,
 useCallback,
 useMemo,
 useEffect,
} from "react";
import { toast } from "sonner";
import type { Message } from "@/types";
import type { DBContact } from "@/types/contact";
import type {
 DBRecipient,
 NewRecipient,
 RankedRecipient,
 WithContact,
} from "@/types/recipient";
import {
 convertToRecipient,
 getUniques,
 matchContactsToRecipients,
 validatePhoneNumber,
} from "@/lib/utils";
import { useContacts } from "./use-contacts";
import { useTranslation } from "react-i18next";
import { z } from "zod";
import { MessageSchema } from "@/lib/form.schemas";
import InsertContactModal from "@/components/modals/insert-contact";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 78 Maio 2025

import CreateContactModal from "@/components/modals/create-contact";
import RecipientInfoModal from "@/components/modals/recipient-info";
import { EMPTY_MESSAGE } from "@/global.config";
import ScheduleMessageModal, {
 ScheduleAlertModal,
} from "@/components/modals/schedule-modals";

// This is our biggest state where we store all data related to the active
message, that should be persisted during draft saving re-renders
// MessageState is only used here & for EMPTY_MESSAGE
export type MessageState = Message & {
 // This is only for the front end composing of the message and will not b
e used on the server
 recipientInput: {
 value: string;
 error?: string;
 isHidden: boolean;
 recipientsExpanded: boolean;
 };
 serverStateErrors?: { [K in keyof z.infer<typeof MessageSchema>]?: string
[] };
 invalidRecipients?: NewRecipient[];

 scheduledDate: Date;
 scheduledDateModified: boolean;
 scheduledDateConfirmed: boolean;
};
type DraftState = {
 id: string | null;
 pending: boolean;
 lastSaveSuccessful: boolean;
};

type MessageContextValues = {
 // Message state
 message: MessageState;
 setMessage: React.Dispatch<React.SetStateAction<MessageState>>;

 // Recipient management
 recipients: NewRecipient[];
 addRecipient: (phone: string) => void;
 removeRecipient: (
 recipient: NewRecipient,
 replaceWithRecipient?: NewRecipient
) => void;

 // Recipient search and suggestions
 searchRecipients: (searchTerm: string) => void;
 suggestedRecipients: WithContact[];

 // UI state
 showInfoAbout: React.Dispatch<React.SetStateAction<NewRecipient | null>>;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 79 Maio 2025

 selectedPhone: string | null;
 updateSelectedPhone: (direction: "ArrowDown" | "ArrowUp") => void;

 revalidateRecipients: () => void;
 focusedInput: string | null;
 setFocusedInput: React.Dispatch<React.SetStateAction<string | null>>;

 form: HTMLFormElement | null;
 setForm: React.Dispatch<React.SetStateAction<HTMLFormElement | null>>;
 draft: DraftState;
 setDraft: React.Dispatch<React.SetStateAction<DraftState>>;
};
type ContextProps = {
 children: React.ReactNode;
 rankedRecipients: RankedRecipient[];
 initialMessage?: MessageState;
 draftId: string | null;
};

const NewMessageContext = createContext<MessageContextValues | null>(null);

export function NewMessageProvider({
 children,
 rankedRecipients,
 initialMessage,
 draftId,
}: ContextProps) {
 // Message state
 const [message, setMessage] = useState<MessageState>(
 initialMessage || EMPTY_MESSAGE
);
 // keep draft state separate because we don't want the draft saver to get
triggered when this data gets updated
 const [draft, setDraft] = useState<DraftState>({
 id: draftId,
 pending: false,
 lastSaveSuccessful: !!initialMessage ? true : false,
 });
 const { contacts } = useContacts();
 const { t } = useTranslation(["new-message-page"]);

 // Associate contacts with matching phone numbers to recipients
 const initialRecipients: WithContact[] =
 matchContactsToRecipients(rankedRecipients, contacts) || [];

 // UI state
 const [moreInfoOn, showInfoAbout] = useState<NewRecipient | null>(null);
 const [selectedPhone, setSelectedPhone] = useState<string | null>(null);
 const [suggestedRecipients, setSuggestedRecipients] =
 useState(initialRecipients);
 const [focusedInput, setFocusedInput] = useState<string | null>(null);
 const [form, setForm] = useState<HTMLFormElement | null>(null);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 80 Maio 2025

 // Memoized values
 const recommendedRecipients: WithContact[] = useMemo(() => {
 // adjust this to your liking
 const AMOUNT = 10;
 const topRecipients = initialRecipients.slice(0, AMOUNT);

 if (topRecipients.length === AMOUNT) {
 // Check if there are enough topRecipients
 return topRecipients;
 } else {
 // If not look for unused contacts to fill the gap
 const extraContacts: WithContact[] = contacts
 // 1. Filter out the ones that already exist in the top recipients
 .filter(
 (contact) => !topRecipients.some((top) => top.phone === contact.p
hone)
)
 // 2. Get only the extra ones we need to fill the gap
 .slice(0, AMOUNT - topRecipients.length)
 // 3. Adjust the contacts to match the other recipients in the arra
y
 .map(({ id, phone, name, description }) => ({
 id,
 phone,
 contact: {
 id,
 name,
 phone,
 description,
 },
 }));

 return [...topRecipients, ...extraContacts] as WithContact[];
 }
 }, [contacts]);

 // Helper functions
 const revalidateRecipients = () => {
 setMessage((prevMessage) => ({
 // For some reason this inner part gets run twice while the outer fun
ction only gets run once
 ...prevMessage,
 recipients: prevMessage.recipients.map((recipient, index) => {
 const foundContact = contacts.find(
 (contact) => contact.phone === recipient.phone
);

 if (foundContact) {
 return { ...recipient, contact: foundContact };
 } else return recipient;
 }),

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 81 Maio 2025

 }));
 };

 const DEFAULT_SELECTED_PHONE_INDEX = null;
 // Recipient management functions
 const addRecipient = (phone: string) => {
 if (message.recipients.some((item) => item.phone === phone)) {
 // I know this is not on the server, but I wanted to keep the same fo
rmat
 return toast.error(t("server-duplicate_recipients_error"), {
 description: t("server-duplicate_recipients_error_caption"),
 });
 }

 setMessage((prev) => {
 const validatedRecipient = validatePhoneNumber(phone);
 const foundContact = contacts.find((contact) => contact.phone === pho
ne);
 return {
 ...prev,
 recipients: [
 ...prev.recipients,
 // In case `recipientWithContact` has some old fields
 {
 ...validatedRecipient,
 contact: foundContact
 ? convertToRecipient(foundContact).contact
 : undefined,
 },
],
 };
 });

 // Update selectedPhone to the next available recipient
 setSelectedPhone((prevSelected) => {
 if (prevSelected === phone) {
 const nextRecipient = suggestedRecipients.find(
 (r) => r.phone !== phone
);
 return nextRecipient ? nextRecipient.phone : null;
 }
 return prevSelected;
 });
 // Reset the input and search:
 setMessage((m) => ({
 ...m,
 recipientInput: { ...m.recipientInput, value: "" },
 recipients: m.recipients.map((r) => ({
 ...r,
 proneForDeletion: false,
 })),
 }));
 };

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 82 Maio 2025

 const removeRecipient = useCallback(
 (recipient: NewRecipient, replaceWithRecipient?: NewRecipient) => {
 setMessage((prev) => ({
 ...prev,
 // recipientInput: { ...prev.recipientInput, value: "" },
 recipients: prev.recipients
 .map((r) => (r === recipient ? replaceWithRecipient : r))
 .filter((r) => r !== undefined), // Filter out undefined values
 }));
 },
 []
);

 // Search and suggestion functions
 const searchRecipients = (rawSearchTerm: string) => {
 const searchTerm = rawSearchTerm.trim().toLowerCase();
 if (!suggestedRecipients.length && !recommendedRecipients.length) {
 // Searched suggested- and recommended recipients are empty -
 // All recipients from the suggested list have already been added!
 return setSelectedPhone(null);
 }

 // There are still suggested recipients that haven't been added yet, so
do additional checks
 if (searchTerm.length) {
 const filteredRecipients = getUniques(
 message.recipients,
 initialRecipients.filter(
 (recipient) =>
 (recipient.contact?.name?.toLowerCase().includes(searchTerm) ||
 recipient.phone.toLowerCase().includes(searchTerm)) &&
 !message.recipients.some((r) => r.phone === recipient.phone)
)
);
 setSuggestedRecipients(filteredRecipients);

 if (!filteredRecipients.length) {
 // No recipients found (the suggested panel will be hidden) - desel
ect the previous phone
 setSelectedPhone(null);
 } else {
 setSelectedPhone(
 DEFAULT_SELECTED_PHONE_INDEX
 ? filteredRecipients[DEFAULT_SELECTED_PHONE_INDEX]?.phone
 : DEFAULT_SELECTED_PHONE_INDEX
);
 }
 } else {
 setSuggestedRecipients(
 getUniques(message.recipients, recommendedRecipients)
);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 83 Maio 2025

 setSelectedPhone(
 DEFAULT_SELECTED_PHONE_INDEX
 ? recommendedRecipients[DEFAULT_SELECTED_PHONE_INDEX]?.phone
 : DEFAULT_SELECTED_PHONE_INDEX
);
 }
 };

 // UI update functions
 const updateSelectedPhone = useCallback(
 (input: "ArrowDown" | "ArrowUp") => {
 setSelectedPhone((prevPhone) => {
 const currentIndex = suggestedRecipients.findIndex(
 (item) => item.phone === prevPhone
);
 const length = suggestedRecipients.length;
 const newIndex =
 input === "ArrowUp"
 ? (currentIndex - 1 + length) % length
 : (currentIndex + 1) % length;
 return suggestedRecipients[newIndex]?.phone;
 });
 },
 [suggestedRecipients]
);

 useEffect(() => {
 // Revalidate recipients when contacts get re-fetched
 revalidateRecipients();
 }, [contacts]);

 useEffect(() => {
 if (!!initialMessage === false) {
 // If initialMessage is undefined, reset all the controlled inputs to
an empty value
 setMessage(EMPTY_MESSAGE);
 }
 }, [initialMessage]);

 // When recipients change do this:
 useEffect(() => {
 // If we still freshly have the invalid recipients error
 if (message.invalidRecipients) {
 const validRecipientExists = !!message.recipients.find(
 (r) => r.isValid === true
);
 if (validRecipientExists) {
 // If the new recipient is valid, we clear the error, allowing erro
r pulsing for more invalid recipients.
 setMessage((prev) => ({ ...prev, invalidRecipients: undefined }));
 }
 }

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 84 Maio 2025

 // Note: Works only correctly here; won't update correctly with add/rem
ove operations.
 searchRecipients(message.recipientInput.value);
 }, [message.recipients]);
 return (
 <NewMessageContext.Provider
 value={{
 message,
 setMessage,
 recipients: message.recipients,
 addRecipient,
 removeRecipient,
 suggestedRecipients,
 searchRecipients,

 showInfoAbout,
 selectedPhone,
 updateSelectedPhone,
 revalidateRecipients,
 focusedInput,
 setFocusedInput,

 form,
 setForm,
 draft,
 setDraft,
 }}
 >
 {/* We move modals here, because unlike the form component, this does
n't re-render when a draft gets saved */}
 <InsertContactModal />
 <ScheduleMessageModal />
 <ScheduleAlertModal />
 {/* This should always be defined as we pass a defaultPhone and may c
reate a contact from scratch. */}
 <CreateContactModal
 defaultPhone={moreInfoOn?.phone}
 onCreateSuccess={(contact) => {
 // After creating the new contact, replace the old recipient
 const oldRecipient = message.recipients.find(
 (r) => r.phone == moreInfoOn?.phone
);
 const newRecipient = convertToRecipient(contact);
 showInfoAbout(newRecipient);
 if (oldRecipient) {
 removeRecipient(oldRecipient, newRecipient);
 }
 }}
 />

 {moreInfoOn && (

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 85 Maio 2025

 <RecipientInfoModal recipient={moreInfoOn} allowContactCreation />
)}
 {children}
 </NewMessageContext.Provider>
);
}

export function useNewMessage() {
 const context = useContext(NewMessageContext);
 if (!context) {
 throw new Error("useNewMessage must be used within a NewMessageProvider
");
 }
 return context;
}

/contexts/use-settings.tsx

"use client";

import { useThemeContext } from "@/contexts/theme-data-provider";
import { i18nConfig } from "@/i18n.config";
import { fetchUserSettings } from "@/lib/db/general";
import { usePathname, useRouter } from "next/navigation";
import { useTheme as useNextTheme } from "next-themes";
import {
 createContext,
 Dispatch,
 SetStateAction,
 useContext,
 useEffect,
 useState,
} from "react";
import { LayoutType } from "@/types/user";
import useIsMounted from "@/hooks/use-mounted";

type SettingsState = {
 displayName?: string;
 profileColorId?: number;
 layout: LayoutType | undefined;
};

type SettingsContext = {
 settings: SettingsState;
 setSettings: Dispatch<SetStateAction<SettingsState>>;
 updateLanguageCookie: (newLocale: string) => void;
 normalizePath: (path: string) => string;
 // hasLanguageCookie: () => boolean; not used outside as of now
 syncWithDB: () => Promise<void>;
 resetLocalSettings: () => void;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 86 Maio 2025

};

const SettingsContext = createContext<SettingsContext | null>(null);

export function SettingsProvider({
 children,
 currentLocale,
}: {
 children: Readonly<React.ReactNode>;
 currentLocale: string;
}) {
 const isMounted = useIsMounted();
 // Localstorage state without theme color (primary_color) and theme mode
because those are handled internally by our packages
 const [settings, setSettings] = useState<SettingsState>({
 displayName: localStorage.getItem("display_name") || undefined,
 profileColorId:
 Number(localStorage.getItem("profile_color_id")) || undefined,
 layout:
 (localStorage.getItem("appearance_layout") as LayoutType) || undefine
d,
 });

 const router = useRouter();
 const currentPathname = usePathname();
 const { setThemeColor } = useThemeContext();
 const { setTheme } = useNextTheme();

 // Helper function to normalize paths
 function normalizePath(path: string) {
 const defaultLocale = i18nConfig.defaultLocale as string;

 // Remove leading slash and split into segments
 const segments = path.replace(/^\//, "").split("/");

 // If the first segment is a locale and it's not the default, remove it
 if (segments[0] === currentLocale && currentLocale !== defaultLocale) {
 segments.shift();
 }

 return "/" + segments.join("/");
 }

 const updateLanguageCookie = (newLocale: string) => {
 // set cookie for next-i18n-router
 const days = 30;
 const date = new Date();
 date.setTime(date.getTime() + days * 24 * 60 * 60 * 1000);
 const expires = date.toUTCString();
 document.cookie = `NEXT_LOCALE=${newLocale};expires=${expires};path=/`;

 // redirect to the new locale path

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 87 Maio 2025

 if (
 currentLocale === i18nConfig.defaultLocale &&
 !i18nConfig.prefixDefault
) {
 router.push("/" + newLocale + currentPathname);
 } else {
 router.push(
 currentPathname.replace(`/${currentLocale}`, `/${newLocale}`)
);
 }

 router.refresh();
 };

 const hasLanguageCookie = () => {
 const cookies = document.cookie.split(";").map((cookie) => cookie.trim(
));
 return cookies.some((cookie) =>
 cookie.startsWith("NEXT_LOCALE=")
) as boolean;
 };

 const syncWithDB = async () => {
 const settings = await fetchUserSettings();

 if (settings) {
 const {
 profile_color_id,
 display_name,
 dark_mode,
 primary_color_id,
 lang,
 appearance_layout,
 } = settings;
 // Profile
 localStorage.setItem("profile_color_id", profile_color_id.toString())
;
 localStorage.setItem("display_name", display_name);

 // Appearance
 setTheme(dark_mode === true ? "dark" : "light"); // theme is stored a
s strings because we are using next-themes
 setThemeColor(primary_color_id);
 localStorage.setItem("appearance_layout", appearance_layout);

 // Language - this comes last because it will refresh the page, which
might cause issues
 updateLanguageCookie(lang);

 // Update components when localstorage settings change
 setSettings({
 displayName: display_name,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 88 Maio 2025

 profileColorId: profile_color_id,
 layout: appearance_layout,
 });
 }
 };

 const resetLocalSettings = () => {
 localStorage.clear();
 setTheme("light");
 setThemeColor(1);
 updateLanguageCookie(i18nConfig.defaultLocale);
 };

 // This will also get triggered on load
 useEffect(() => {
 const referenceHeaderHeight = parseInt(
 getComputedStyle(document.documentElement).getPropertyValue(
 "--simple-header-height"
),
 10 // base 10 integer
);
 if (settings.layout === "MODERN") {
 document.documentElement.style.setProperty(
 "--header-height",
 `${referenceHeaderHeight * 2}px`
);
 } else if (settings.layout === "SIMPLE") {
 document.documentElement.style.setProperty(
 "--header-height",
 `${referenceHeaderHeight}px`
);
 }
 }, [settings.layout]);
 useEffect(() => {
 if (isMounted) {
 if (
 localStorage.getItem("profile_color_id") == null ||
 localStorage.getItem("display_name") == null ||
 localStorage.getItem("primary_color_id") == null ||
 localStorage.getItem("theme") == null ||
 hasLanguageCookie() === false
) {
 syncWithDB();
 }
 }
 }, [isMounted]);

 return (
 <SettingsContext.Provider
 value={{
 settings,
 setSettings,
 updateLanguageCookie,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 89 Maio 2025

 normalizePath,
 // hasLanguageCookie,
 syncWithDB,
 resetLocalSettings,
 }}
 >
 {children}
 </SettingsContext.Provider>
);
}

export function useSettings() {
 const context = useContext(SettingsContext);
 if (!context) {
 throw new Error("SettingsContext must be within SettingsProvider");
 }
 return context;
}

/contexts/theme-data-provider.tsx

"use client";

import setGlobalColorTheme from "@/lib/theme.colors";
import { ThemeProviderProps, useTheme as useNextTheme } from "next-themes";
import React, { createContext, useContext, useEffect, useState } from "reac
t";

type ThemeColorStateParams = {
 themeColor: number;
 setThemeColor: React.Dispatch<React.SetStateAction<number>>;
};
const ThemeContext = createContext<ThemeColorStateParams>(
 {} as ThemeColorStateParams
);

export default function ThemeDataProvider({ children }: ThemeProviderProps)
{
 if (typeof localStorage === "undefined") {
 return null;
 }
 const getSavedThemeColor = (): number => {
 return Number(localStorage.getItem("primary_color_id")) || 1;
 };

 const { theme } = useNextTheme();
 const [themeColor, setThemeColor] = useState<number>(getSavedThemeColor()
);
 const [isMounted, setIsMounted] = useState<boolean>(false);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 90 Maio 2025

 useEffect(() => {
 localStorage.setItem("primary_color_id", themeColor.toString());
 setGlobalColorTheme(theme as "light" | "dark", themeColor);

 if (!isMounted) {
 setIsMounted(true);
 }
 }, [themeColor, theme, isMounted]);
 if (!isMounted) {
 return null;
 }

 return (
 <ThemeContext.Provider value={{ themeColor, setThemeColor }}>
 {children}
 </ThemeContext.Provider>
);
}

export function useThemeContext() {
 return useContext(ThemeContext);
}

/contexts/use-contacts.tsx

"use client";

import { fetchContacts } from "@/lib/db/contact";
import { DBContact } from "@/types/contact";
import React, { createContext, useContext, useEffect, useState } from "reac
t";
import { useTranslation } from "react-i18next";

type ContactContextValues = {
 contacts: DBContact[];
 refetchContacts: () => void;
 contactFetchError: string | null;
};

const ContactsContext = createContext<ContactContextValues | null>(null);

export function ContactsProvider({
 children,
 initialContacts,
}: {
 children: Readonly<React.ReactNode>;
 initialContacts: DBContact[] | undefined;
}) {
 const { t } = useTranslation(["contacts-page"]);
 const [contacts, setContacts] = useState<DBContact[]>(initialContacts ||

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 91 Maio 2025

[]);
 const unknownFetchError = t("fetch_error");
 const [error, setError] = useState<string | null>(
 initialContacts === undefined ? unknownFetchError : null
);

 const refetchContacts = async () => {
 const newContacts = await fetchContacts();
 setContacts(newContacts || []);

 if (newContacts === undefined) {
 setError(unknownFetchError);
 }
 };

 return (
 <ContactsContext.Provider
 value={{ contacts, refetchContacts, contactFetchError: error }}
 >
 {children}
 </ContactsContext.Provider>
);
}

export function useContacts() {
 const context = useContext(ContactsContext);
 if (!context) {
 throw new Error("ContactsContext must be within ContactsProvider");
 }
 return context;
}

/contexts/translations-provider.jsx

"use client";

import { I18nextProvider } from "react-i18next";
import initTranslations from "@/app/i18n";
import { createInstance } from "i18next";

// This provider is for client-component useTranslation() hook
export default function TranslationsProvider({
 children,
 locale,
 namespaces,
 resources,
}) {
 const i18n = createInstance();

 initTranslations(locale, namespaces, i18n, resources);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 92 Maio 2025

 return <I18nextProvider i18n={i18n}>{children}</I18nextProvider>;
}

/app/[locale]/(root)/(message-layout)/drafts/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
 return <MessagesPageSkeleton category="DRAFTS" />;
}

/app/[locale]/(root)/(message-layout)/drafts/page.tsx

import initTranslations from "@/app/i18n";
import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";
import { fetchMessagesByStatus } from "@/lib/db/message";

export default async function Page() {
 const messages = await fetchMessagesByStatus("DRAFTED");

 return (
 <MessagesPage
 messages={messages || []}
 error={messages === undefined}
 category="DRAFTS"
 />
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("drafts-title"),
 description: t("drafts-description"),
 };
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 93 Maio 2025

/app/[locale]/(root)/(message-layout)/contacts/loading.tsx

import ContactsPageSkeleton from "@/components/contacts-page-skeleton";

export default function Loading() {
 return <ContactsPageSkeleton />;
}

/app/[locale]/(root)/(message-layout)/contacts/page.tsx

import ContactsPage from "@/components/contacts-page";
import { ModalProvider } from "@/contexts/use-modal";
import initTranslations from "@/app/i18n";
import { METADATA_APP_NAME } from "@/global.config";

export default async function Page() {
 return (
 <ModalProvider>
 <ContactsPage />
 </ModalProvider>
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("contacts-title"),
 description: t("contacts-description"),
 };
}

/app/[locale]/(root)/(message-layout)/trash/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
 return <MessagesPageSkeleton category="TRASH" />;
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 94 Maio 2025

/app/[locale]/(root)/(message-layout)/trash/page.tsx

import initTranslations from "@/app/i18n";
import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";
import { fetchTrashedMessages } from "@/lib/db/message";

export default async function Page() {
 const messages = await fetchTrashedMessages();

 return (
 <MessagesPage
 messages={messages || []}
 error={messages === undefined}
 category="TRASH"
 />
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("trash-title"),
 description: t("trash-description"),
 };
}

/app/[locale]/(root)/(message-layout)/sent/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
 return <MessagesPageSkeleton category="SENT" />;
}

/app/[locale]/(root)/(message-layout)/sent/page.tsx

import initTranslations from "@/app/i18n";
import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 95 Maio 2025

import { fetchSentIn } from "@/lib/db/message";

export default async function Page() {
 const messages = await fetchSentIn("PAST");

 return (
 <MessagesPage
 messages={messages || []}
 error={messages === undefined}
 category="SENT"
 />
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("sent-title"),
 description: t("sent-description"),
 };
}

/app/[locale]/(root)/(message-layout)/failed/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
 return <MessagesPageSkeleton category="FAILED" />;
}

/app/[locale]/(root)/(message-layout)/failed/page.tsx

import initTranslations from "@/app/i18n";
import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";
import { fetchMessagesByStatus } from "@/lib/db/message";

export default async function Page() {
 const messages = await fetchMessagesByStatus("FAILED");

 return (

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 96 Maio 2025

 <MessagesPage
 messages={messages || []}
 error={messages === undefined}
 category="FAILED"
 />
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("failed-title"),
 description: t("failed-description"),
 };
}

/app/[locale]/(root)/(message-layout)/layout.tsx

import initTranslations from "@/app/i18n";
import TranslationsProvider from "@/contexts/translations-provider";
import { ContactsProvider } from "@/contexts/use-contacts";
import { fetchContacts } from "@/lib/db/contact";

type LayoutProps = Readonly<{
 children: React.ReactNode;
 params: Promise<{ locale: string }>;
}>;

export default async function TranslationLayout({
 children,
 params,
}: LayoutProps) {
 // Internationalization (i18n) stuff
 const i18nNamespaces = [
 "messages-page",
 "contacts-page",
 "modals",
 "common",
 "errors",
];
 const { locale } = await params;
 const { resources } = await initTranslations(locale, i18nNamespaces);

 return (

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 97 Maio 2025

 /* This is a client layout component containing the translation provide
r for the nav panel */
 <TranslationsProvider
 /* Only wrap what's necessary with the TranslationsProvider */
 resources={resources}
 locale={locale}
 namespaces={i18nNamespaces}
 >
 <ContactsProvider initialContacts={(await fetchContacts()) || []}>
 {children}
 </ContactsProvider>
 </TranslationsProvider>
);
}

/app/[locale]/(root)/(message-layout)/error.tsx

"use client";

import ChildrenPanel from "@/components/shared/children-panel";
import ErrorComponent from "@/components/shared/error-component";
import { Button } from "@/components/ui/button";
import { useEffect } from "react";
import { useTranslation } from "react-i18next";

export default function Error({
 error,
 reset,
}: {
 error: Error & { digest?: string };
 reset: () => void;
}) {
 const { t } = useTranslation(["errors"]);

 useEffect(() => {
 // Log the error to an error reporting service
 console.error(error);
 }, [error]);
 return (
 <ChildrenPanel>
 <ErrorComponent
 title={t("error-header")}
 subtitle={t("error-header_caption")}
 >
 <Button
 onClick={
 // Attempt to recover by trying to re-render the segment
 () => reset()
 }
 >

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 98 Maio 2025

 {t("try_again")}
 </Button>
 </ErrorComponent>
 </ChildrenPanel>
);
}

/app/[locale]/(root)/(message-layout)/scheduled/loading.tsx

import MessagesPageSkeleton from "@/components/messages-page-skeleton";

export default function Loading() {
 return <MessagesPageSkeleton category="SCHEDULED" />;
}

/app/[locale]/(root)/(message-layout)/scheduled/page.tsx

import initTranslations from "@/app/i18n";
import MessagesPage from "@/components/messages-page";
import { METADATA_APP_NAME } from "@/global.config";
import { fetchSentIn } from "@/lib/db/message";

export default async function Page() {
 const messages = await fetchSentIn("FUTURE");

 return (
 <MessagesPage
 messages={messages || []}
 error={messages === undefined}
 category="SCHEDULED"
 />
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("scheduled-title"),
 description: t("scheduled-description"),
 };
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 99 Maio 2025

/app/[locale]/(root)/layout.tsx

import initTranslations from "@/app/i18n";
import AppLayout from "@/components/app-layout";
import { SettingsProvider } from "@/contexts/use-settings";
import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = Readonly<{
 children: React.ReactNode;
 params: Promise<{ locale: string }>;
}>;

export default async function NavPanelLayout({
 children,
 params,
}: LayoutProps) {
 // Internationalization (i18n) stuff - no need to include errors namespac
e as we only put in more specific locations
 const i18nNamespaces = ["navigation", "welcome-page", "modals", "common"]
;
 const { locale } = await params;
 const { resources } = await initTranslations(locale, i18nNamespaces);

 return (
 <SettingsProvider currentLocale={locale}>
 <AppLayout
 /* This is a client layout component containing the translation pro
vider for the nav panel */
 resources={resources}
 locale={locale}
 namespaces={i18nNamespaces}
 >
 {children}
 </AppLayout>
 </SettingsProvider>
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("welcome-title"),
 description: t("welcome-description"),

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 100 Maio 2025

 };
}

/app/[locale]/(root)/page.tsx

"use client";
import ChildrenPanel from "@/components/shared/children-panel";
import { useLayout } from "@/contexts/use-layout";
import Link from "next/link";
import { cn } from "@/lib/utils";
import { buttonVariants } from "@/components/ui/button";
import { Trans, useTranslation } from "react-i18next";
import LinkCard from "@/components/cards";
import { useThemeContext } from "@/contexts/theme-data-provider";
import Envelope from "@/public/icons/envelope-solid.svg";
import Contact from "@/public/icons/user-solid.svg";
import { PageHeader } from "@/components/headers";
import { ScrollArea } from "@/components/ui/scroll-area";
import { useIsMobile } from "@/hooks/use-mobile";

export default function WelcomePage() {
 const { amountIndicators } = useLayout();
 const { themeColor } = useThemeContext();
 const onMobile = useIsMobile();

 const { t, i18n } = useTranslation(["welcome-page"]);
 const gradientStyle = {
 fontSize: "48px", // Adjust the font size as needed
 fontWeight: "bold", // Make the text bold
 background: `linear-gradient(135deg, ${themeColor}, orange`, // Diagona
l gradient using CSS variables
 WebkitBackgroundClip: "text", // Clip the background to the text
 WebkitTextFillColor: "transparent", // Make the text color transparent
 display: "inline-block", // Ensure the gradient applies correctly
 };
 return (
 <ChildrenPanel>
 <ScrollArea className="h-full">
 {onMobile && <PageHeader />}

 <div className="flex-1 flex flex-col p-4 min-h-[calc(100vh-var(--si
mple-header-height))]">
 <div className="flex-1 flex flex-col items-center justify-center
gap-10">
 {/* <PageHeader title="Welcome to the Etpzp SMS App!" /> */}

 <div className="text-center">

 {t("welcome_message")}{" "}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 101 Maio 2025

 ETPZP-SMS

 </div>

 {/* */}
 <div className="flex flex-col xs:flex-row gap-2 w-full justify-
center items-center">
 <LinkCard
 href="/contacts"
 heroValue={amountIndicators?.contacts || 0}
 Icon={Contact}
 title={t("card_1-title")}
 />
 <LinkCard
 href="/sent"
 heroValue={
 (amountIndicators?.sent || 0) +
 (amountIndicators?.scheduled || 0)
 }
 Icon={Envelope}
 title={t("card_2-title")}
 />
 </div>
 </div>

 <p className="text-sm text-center my-8" /**mb-12 */>
 {t("developer_credit")}{" "}
 <Link
 href="https://github.com/devdogfish"
 className={cn(
 buttonVariants({ variant: "link" }),
 "p-0 h-min"
 // "underline hover:no-underline"
)}
 target="_blank"
 >
 Luigi Girke
 </Link>
 </p>
 </div>
 </ScrollArea>
 </ChildrenPanel>
);
}

/app/[locale]/(root)/(other)/_seed/page.tsx

import ChildrenPanel from "@/components/shared/children-panel";
import db from "@/lib/db";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 102 Maio 2025

// Function to generate a random date up to 3 years ago
function getRandomDate() {
 const now = new Date();
 const threeYearsAgo = new Date(now.setFullYear(now.getFullYear() - 2));
 const randomDate = new Date(
 threeYearsAgo.getTime() +
 Math.random() * (Date.now() - threeYearsAgo.getTime())
);
 return randomDate;
}

// Function to generate random message data
function getRandomMessageData() {
 const users = Array.from({ length: 10 }, (_, i) => i + 1); // User IDs fr
om 1 to 10
 const subjects = [
 "Hello",
 "Meeting Reminder",
 "Invoice",
 "Newsletter",
 "Promotion",
];
 const bodies = [
 "This is a test message.",
 "Don’t forget about our meeting tomorrow.",
 "Your invoice is attached.",
 "Check out our latest newsletter.",
 "Exclusive offer just for you!",
];
 const statuses = ["SENT", "SCHEDULED", "FAILED", "DRAFTED"];

 return {
 user_id: users[Math.floor(Math.random() * users.length)],
 sender: `user${Math.floor(Math.random() * 10) + 1}@example.com`,
 subject: subjects[Math.floor(Math.random() * subjects.length)],
 body: bodies[Math.floor(Math.random() * bodies.length)],
 send_time: getRandomDate(),
 status: statuses[Math.floor(Math.random() * statuses.length)],
 in_trash: false, // Randomly true or false
 cost: parseFloat((Math.random() * 0.1).toFixed(4)), // Random cost betw
een 0.0 and 0.1
 cost_currency: "EUR",
 };
}

// Function to insert a message into the database
async function insertMessage() {
 const messageData = getRandomMessageData();

 const query = `
 INSERT INTO "message" (user_id, sender, subject, body, send_time, s

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 103 Maio 2025

tatus, in_trash, cost, cost_currency)
 VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9)
 `;

 const values = [
 messageData.user_id,
 messageData.sender,
 messageData.subject,
 messageData.body,
 messageData.send_time,
 messageData.status,
 messageData.in_trash,
 messageData.cost,
 messageData.cost_currency,
];

 try {
 await db(query, values);
 console.log("Message inserted successfully:", messageData);
 } catch (err) {
 console.error("Error inserting message:", err);
 }
}

async function insertUsers() {
 try {
 const result = await db(
 `
 INSERT INTO "user" (name, email, role, created_at, updated_at, firs
t_name, last_name, lang, profile_color_id, display_name, dark_mode, primary
_color_id)
 VALUES
 ('Alice Johnson', 'alice@example.com', 'USER', NOW(), NOW(), 'Ali
ce', 'Johnson', 'en', 1, 'Alice J.', false, 1),
 ('Bob Smith', 'bob@example.com', 'USER', NOW(), NOW(), 'Bob', 'Sm
ith', 'en', 1, 'Bob S.', false, 1),
 ('Charlie Brown', 'charlie@example.com', 'ADMIN', NOW(), NOW(), '
Charlie', 'Brown', 'en', 1, 'Charlie B.', false, 1),
 ('David Wilson', 'david@example.com', 'USER', NOW(), NOW(), 'Davi
d', 'Wilson', 'pt', 1, 'David W.', false, 1),
 ('Eve Davis', 'eve@example.com', 'ADMIN', NOW(), NOW(), 'Eve', 'D
avis', 'pt', 1, 'Eve D.', true, 1),
 ('Frank Miller', 'frank@example.com', 'USER', NOW(), NOW(), 'Fran
k', 'Miller', 'en', 1, 'Frank M.', false, 1),
 ('Grace Lee', 'grace@example.com', 'USER', NOW(), NOW(), 'Grace',
'Lee', 'en', 1, 'Grace L.', false, 1),
 ('Hank Green', 'hank@example.com', 'USER', NOW(), NOW(), 'Hank',
'Green', 'pt', 1, 'Hank G.', true, 1),
 ('Irene Taylor', 'irene@example.com', 'ADMIN', NOW(), NOW(), 'Ire
ne', 'Taylor', 'en', 1, 'Irene T.', false, 1),
 ('Jack White', 'jack@example.com', 'USER', NOW(), NOW(), 'Jack',
'White', 'pt', 1, 'Jack W.', false, 1);
 `

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 104 Maio 2025

);
 console.log("Users inserted successfully:", result.rows);
 } catch (err) {
 console.error("Error inserting users:", err);
 }
}

// Call the function to insert a message
export default async function Page() {
 await insertUsers();
 for (let i = 1; i <= 300; i++) {
 await insertMessage();
 }

 return (
 <ChildrenPanel>
 <div className="centered">Seeded successfully</div>
 </ChildrenPanel>
);
}

/app/[locale]/(root)/(other)/settings/layout.tsx

import initTranslations from "@/app/i18n";
import TranslationsProvider from "@/contexts/translations-provider";
import ChildrenPanel from "@/components/shared/children-panel";
import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = Readonly<{
 children: React.ReactNode;
 params: Promise<{ locale: string }>;
}>;

export default async function TranslationLayout({
 children,
 params,
}: LayoutProps) {
 // Internationalization (i18n) stuff
 const i18nNamespaces = ["settings-page", "common", "errors"];
 const { locale } = await params;
 const { resources } = await initTranslations(locale, i18nNamespaces);

 return (
 /* This is a client layout component containing the translation provide
r for the nav panel */
 <TranslationsProvider
 /* Only wrap what's necessary with the TranslationsProvider */
 resources={resources}
 locale={locale}
 namespaces={i18nNamespaces}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 105 Maio 2025

 >
 <ChildrenPanel>{children}</ChildrenPanel>
 </TranslationsProvider>
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("settings-title"),
 description: t("settings-description"),
 };
}

/app/[locale]/(root)/(other)/settings/error.tsx

"use client";

import ChildrenPanel from "@/components/shared/children-panel";
import ErrorComponent from "@/components/shared/error-component";
import { Button } from "@/components/ui/button";
import { useEffect } from "react";
import { useTranslation } from "react-i18next";

export default function Error({
 error,
 reset,
}: {
 error: Error & { digest?: string };
 reset: () => void;
}) {
 const { t } = useTranslation(["errors"]);

 useEffect(() => {
 // Log the error to an error reporting service
 console.error(error);
 }, [error]);
 return (
 <ErrorComponent
 title={t("error-header")}
 subtitle={t("error-header_caption")}
 >
 <Button
 onClick={

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 106 Maio 2025

 // Attempt to recover by trying to re-render the segment
 () => reset()
 }
 >
 {t("try_again")}
 </Button>
 </ErrorComponent>
);
}

/app/[locale]/(root)/(other)/settings/page.tsx

"use client";

import { PageHeader, SectionHeader } from "@/components/headers";
import {
 LanguageChanger,
 ThemeToggle,
 ThemeColorChanger,
 createSelectItems,
 ColorDropdown,
} from "@/components/settings";
import { Button, buttonVariants } from "@/components/ui/button";
import {
 Select,
 SelectContent,
 SelectItem,
 SelectTrigger,
 SelectValue,
} from "@/components/ui/select";
import { useTranslation } from "react-i18next";
import SettingsItem from "../../../../../components/settings-item";
import { cn } from "@/lib/utils";
import { useTheme as useNextTheme } from "next-themes";
import { useThemeContext } from "@/contexts/theme-data-provider";
import { ScrollArea } from "@/components/ui/scroll-area";
import { useIsMobile } from "@/hooks/use-mobile";

export default function Settings() {
 const { t } = useTranslation();
 const { theme } = useNextTheme();
 const { themeColor, setThemeColor } = useThemeContext();
 const onMobile = useIsMobile();

 const initialValues = {
 profile: {
 displayName:
 localStorage.getItem("display_name") || "Initial display name",
 colorId: localStorage.getItem("profile_color_id") || undefined,
 },

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 107 Maio 2025

 appearance: {
 darkMode: theme,
 layout: localStorage.getItem("appearance_layout") || "MODERN",
 primaryColor: themeColor.toString(),
 },
 };

 return (
 <>
 <PageHeader title={t("header")} />

 <ScrollArea
 className={
 onMobile
 ? "h-[calc(100vh-var(--simple-header-height))]"
 : "h-[calc(100vh-var(--header-height))]"
 }
 >
 <div
 className="p-4" /* Inside looks better with rimless bottom on scr
oll on scroll */
 >
 <div className="space-y-12">
 <SectionHeader
 title={t("language-header")}
 subtitle={t("language-header_caption")}
 anchorName="language"
 >
 <SettingsItem
 name="lang"
 label={t("language-language_label")}
 caption={t("language-language_label_caption")}
 renderInput={({
 value,
 onChange,
 onBlur,
 id,
 isPending,
 setServerState,
 }) => {
 return (
 <LanguageChanger
 // This component has custom behavior—only select pro
ps are used as it handles its own submission,
 // and setServerState is passed so elements update wi
th errors.
 id={id}
 value={value}
 onChange={onChange}
 onBlur={onBlur}
 isPending={isPending}
 setServerState={setServerState}
 />

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 108 Maio 2025

);
 }}
 />
 </SectionHeader>

 <SectionHeader
 title={t("profile-header")}
 subtitle={t("profile-header_caption")}
 anchorName="profile"
 >
 <SettingsItem
 name="profile_color_id" // this might need to be the exact
database field
 label={t("profile-color_label")}
 caption={t("profile-color_label_caption")}
 renderInput={({ value, onChange, onBlur, id, isPending }) =
> (
 <ColorDropdown
 initialValue={initialValues.profile.colorId}
 id={id}
 value={value}
 isPending={isPending}
 // We need to do nothing here because the this type of
setting is handled internally (in settings-item)
 onValueChange={(colorIndex: string) => {}}
 onChange={onChange}
 onBlur={onBlur}
 />
)}
 />
 <SettingsItem
 name="display_name"
 label={t("profile-name_label")}
 caption={t("profile-name_label_caption")}
 initialValue={initialValues.profile.displayName}
 />
 </SectionHeader>

 <SectionHeader
 title={t("appearance-header")}
 subtitle={t("appearance-header_caption")}
 anchorName="appearance"
 >
 <SettingsItem
 name="primary_color_id" // this might need to be the exact
database field
 label={t("appearance-color_label")}
 caption={t("appearance-color_label_caption")}
 renderInput={({ value, onChange, onBlur, id, isPending }) =
> (
 <ColorDropdown
 initialValue={initialValues.appearance.primaryColor}
 // Initial value handled internally

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 109 Maio 2025

 id={id}
 value={value}
 isPending={isPending}
 onValueChange={(colorIndex: string) =>
 setThemeColor(Number(colorIndex))
 }
 // we call these in onValueChange
 onChange={onChange}
 onBlur={onBlur}
 />
)}
 />

 <SettingsItem
 name="appearance_layout" // this might need to be the exact
database field
 label={t("appearance-layout_label")}
 caption={t("appearance-layout_label_caption")}
 renderInput={({ value, onChange, onBlur, id, isPending }) =
> {
 const layouts = [
 {
 value: "MODERN",
 name: "Modern",
 },
 {
 value: "SIMPLE",
 name: "Simple",
 },
];
 return (
 <Select
 defaultValue={initialValues.appearance.layout}
 onValueChange={(value) => {
 onChange(value);
 setTimeout(() => {
 onBlur(undefined, value);
 }, 200);
 }}
 disabled={isPending}
 >
 <SelectTrigger
 id={id}
 className={cn(
 buttonVariants({ variant: "outline" }),
 "w-[200px] appearance-none font-normal justify-be
tween"
)}
 >
 <SelectValue />
 </SelectTrigger>
 <SelectContent>
 {createSelectItems(layouts, theme)}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 110 Maio 2025

 </SelectContent>
 </Select>
);
 }}
 />
 <SettingsItem
 name="dark_mode"
 label={t("appearance-theme_label")}
 caption={t("appearance-theme_label_caption")}
 renderInput={({ value, onChange, onBlur, id, isPending }) =
> (
 <ThemeToggle
 id={id}
 value={value}
 onChange={onChange}
 onBlur={onBlur}
 className="order-2"
 initialValue={initialValues.appearance.darkMode}
 isPending={isPending}
 />
)}
 />
 </SectionHeader>
 </div>
 </div>
 </ScrollArea>
 </>
);
}

/app/[locale]/(root)/(other)/new-message/layout.tsx

import initTranslations from "@/app/i18n";
import TranslationsProvider from "@/contexts/translations-provider";
import ChildrenPanel from "@/components/shared/children-panel";
import { ContactsProvider } from "@/contexts/use-contacts";
import { fetchContacts } from "@/lib/db/contact";
import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = Readonly<{
 children: React.ReactNode;
 params: Promise<{ locale: string }>;
}>;

export default async function TranslationLayout({
 children,
 params,
}: LayoutProps) {
 // Internationalization (i18n) stuff
 const i18nNamespaces = ["new-message-page", "modals", "common", "errors"]

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 111 Maio 2025

;
 const { locale } = await params;
 const { resources } = await initTranslations(locale, i18nNamespaces);

 return (
 /* This is a client layout component containing the translation provide
r for the nav panel */
 <TranslationsProvider
 /* Only wrap what's necessary with the TranslationsProvider */
 resources={resources}
 locale={locale}
 namespaces={i18nNamespaces}
 >
 <ChildrenPanel>
 <ContactsProvider initialContacts={(await fetchContacts()) || []}>
 {children}
 </ContactsProvider>
 </ChildrenPanel>
 </TranslationsProvider>
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("new_message-title"),
 description: t("new_message-description"),
 };
}

/app/[locale]/(root)/(other)/new-message/error.tsx

"use client";

import ErrorComponent from "@/components/shared/error-component";
import { Button } from "@/components/ui/button";
import { useEffect } from "react";
import { useTranslation } from "react-i18next";

export default function Error({
 error,
 reset,
}: {
 error: Error & { digest?: string };

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 112 Maio 2025

 reset: () => void;
}) {
 const { t } = useTranslation(["errors"]);

 useEffect(() => {
 // Log the error to an error reporting service
 console.error(error);
 }, [error]);
 return (
 <ErrorComponent
 title={t("error-header")}
 subtitle={t("error-header_caption")}
 >
 <Button
 onClick={
 // Attempt to recover by trying to re-render the segment
 () => reset()
 }
 >
 {t("try_again")}
 </Button>
 </ErrorComponent>
);
}

/app/[locale]/(root)/(other)/new-message/loading.tsx

"use client";

import { Separator } from "@/components/ui/separator";
import {
 ChevronDown,
 Maximize2,
 Minimize2,
 Send,
 Trash2,
 X,
} from "lucide-react";
import { useTranslation } from "react-i18next";
import { PageHeader } from "@/components/headers";
import { Button, buttonVariants } from "@/components/ui/button";
import { usePathname, useRouter, useSearchParams } from "next/navigation";
import {
 Select,
 SelectContent,
 SelectItem,
 SelectTrigger,
 SelectValue,
} from "@/components/ui/select";
import { useLayout } from "@/contexts/use-layout";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 113 Maio 2025

import { useIsMobile } from "@/hooks/use-mobile";

import Skeleton from "react-loading-skeleton";
import { cn } from "@/lib/utils";

const PULSE_BODY_WIDTH = "70%";
const PULSE_SUBJECT_WIDTH = "25%";

export default function Loading() {
 const { t } = useTranslation(["new-message-page"]);
 const router = useRouter();
 const { isFullscreen, setIsFullscreen } = useLayout();

 const onMobile = useIsMobile();

 return (
 <div className="">
 <PageHeader title={t("header")} skeleton>
 <p>{t("common:loading")}</p>
 {!onMobile && (
 <Button variant="ghost" size="icon" disabled>
 {isFullscreen ? (
 <Minimize2 className="h-4 w-4" />
) : (
 <Maximize2 className="h-4 w-4" />
)}
 </Button>
)}

 <Button
 variant="ghost"
 className={cn(buttonVariants({ variant: "ghost" }), "aspect-1 p-0
")}
 disabled
 >
 <X className="h-4 w-4" />
 </Button>
 </PageHeader>
 <div className="h-screen flex flex-col">
 <div className="flex flex-col h-[calc(100vh-var(--header-height))]"
>
 <div className="flex flex-col px-4 mt-2">
 <div className={cn("border-b focus-within:border-black")}>
 <Select name="sender" defaultValue="ETPZP" disabled>
 {/** It defaults to the first SelectItem */}
 <SelectTrigger className="w-full rounded-none border-none s
hadow-none focus:ring-0 px-5 py-1 h-11">
 <SelectValue placeholder="ETPZP" />
 </SelectTrigger>
 <SelectContent>
 <SelectItem value="ETPZP">ETPZP</SelectItem>
 <SelectItem value="Test">Test</SelectItem>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 114 Maio 2025

 </SelectContent>
 </Select>
 </div>

 <InputSkeleton title={t("common:to")} />
 <InputSkeleton />
 </div>
 <div className="px-4 flex-grow mt-[1.25rem] mb-2 w-full">
 <span className="mb-1 flex items-center text-sm text-muted-fore
ground flex-1 min-w-8">
 <Skeleton
 height={16}
 containerClassName={`min-w-[${PULSE_BODY_WIDTH}]`}
 />

 </div>

 <Separator />
 <div className="flex px-4 py-2 justify-end gap-2">
 <Button
 variant="secondary"
 type="button"
 className="w-max"
 disabled
 >
 <Trash2 className="h-4 w-4" />
 {t("discard")}
 </Button>

 <div className="flex">
 <Button
 className="rounded-tr-none rounded-br-none border-primary-f
oreground border-r"
 disabled
 >
 <Send className="w-4 h-4" />
 {t("submit_btn-normal")}
 </Button>
 <div
 className={cn("flex gap-3 items-center justify-start w-full
")}
 >
 <Button
 className="px-[1px] rounded-tl-none rounded-bl-none shado
w-none"
 type="button"
 disabled
 >
 <ChevronDown className={cn("h-4 w-4 transition-transform"
)} />
 </Button>
 </div>
 </div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 115 Maio 2025

 </div>
 </div>
 </div>
 </div>
);
}

function InputSkeleton({ title }: { title?: string }) {
 return (
 <div className="flex-1 py-1 relative ">
 <div className="max-h-24 overflow-auto">
 <div className="w-full flex flex-wrap items-center gap-x-1 py-1 h-f
ull border-b px-5 z-50 min-h-[45px]">
 {title ? (
 <span className="my-0.5 mr-0.5 px-0 flex items-center text-sm t
ext-muted-foreground">
 {title}

) : (
 <span className="mb-1 flex items-center text-sm text-muted-fore
ground flex-1 min-w-8">
 <Skeleton
 height={16}
 width=""
 containerClassName={`min-w-[${PULSE_SUBJECT_WIDTH}]`}
 />

)}
 </div>
 </div>
 </div>
);
}

/app/[locale]/(root)/(other)/new-message/page.tsx

import NewMessageForm from "@/components/new-message-form";
import { MessageState, NewMessageProvider } from "@/contexts/use-new-messag
e";
import { fetchRecipients } from "@/lib/db/recipients";
import { fetchDraft } from "@/lib/db/message";
import { rankRecipients, validatePhoneNumber } from "@/lib/utils";
import { ModalProvider } from "@/contexts/use-modal";
import { EMPTY_MESSAGE } from "@/global.config";

type NewMessagePageProps = {
 searchParams: Promise<{ message_id: string }>;
};

export default async function Page({ searchParams }: NewMessagePageProps) {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 116 Maio 2025

 const rawRecipients = await fetchRecipients();
 const draftInUrl = await searchParams;
 const fetchedDraft = await fetchDraft(draftInUrl.message_id);

 return (
 <ModalProvider>
 <NewMessageProvider
 rankedRecipients={rankRecipients(rawRecipients || []) || []}
 // initialMessage={fetchedDraft || EMPTY_MESSAGE}
 initialMessage={
 fetchedDraft
 ? {
 body: fetchedDraft?.body || EMPTY_MESSAGE.body,
 subject: fetchedDraft?.subject || EMPTY_MESSAGE.subject,
 sender: fetchedDraft?.sender || EMPTY_MESSAGE.sender,
 recipients:
 fetchedDraft?.recipients.map((r) => {
 return {
 ...r,
 ...validatePhoneNumber(r.phone),
 };
 }) || EMPTY_MESSAGE.recipients,
 recipientInput: EMPTY_MESSAGE.recipientInput,
 scheduledDate:
 fetchedDraft.send_time || EMPTY_MESSAGE.scheduledDate,
 scheduledDateModified: EMPTY_MESSAGE.scheduledDateModified,
 scheduledDateConfirmed: EMPTY_MESSAGE.scheduledDateConfirme
d,
 }
 : undefined
 }
 draftId={fetchedDraft?.id || null}
 >
 <NewMessageForm message_id={fetchedDraft} />
 </NewMessageProvider>
 </ModalProvider>
);
}

/app/[locale]/dashboard/layout.tsx

import TranslationsProvider from "@/contexts/translations-provider";
import initTranslations from "@/app/i18n";
import { SettingsProvider } from "@/contexts/use-settings";
import { getSession } from "@/lib/auth/sessions";
import UnauthorizedPage from "@/components/403";
import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = {
 children: React.ReactNode;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 117 Maio 2025

 params: Promise<{ locale: string }>;
};

export default async function DashboardLayout({
 children,
 params,
}: LayoutProps) {
 const i18nNamespaces = ["dashboard-page", "errors", "common", "navigation
"];
 const { locale } = await params;
 const { resources } = await initTranslations(locale, i18nNamespaces);

 // Prevent non-admins from viewing the admin-dashboard and display an aut
horization message.
 const session = await getSession();
 if (!session?.isAdmin) return <UnauthorizedPage />;

 return (
 <TranslationsProvider
 resources={resources}
 locale={locale}
 namespaces={i18nNamespaces}
 >
 <SettingsProvider currentLocale={locale}>{children}</SettingsProvider
>
 </TranslationsProvider>
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("dashboard-title"),
 description: t("dashboard-description"),
 };
}

/app/[locale]/dashboard/page.tsx

import {
 fetchCountryStats,
 fetchMessagesInDateRange,
 fetchUsers,
} from "@/lib/db/dashboard";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 118 Maio 2025

import { format } from "date-fns";
import AdminDashboard from "@/components/admin-dashboard";
import { DEFAULT_START_DATE, ISO8601_DATE_FORMAT } from "@/global.config";

export type CountryStat = { country: string; amount: number; cost: number }
;

export default async function Dashboard({
 searchParams,
}: {
 searchParams?: Promise<{
 // We expect both of these to be in ISO 8601 format (YYYY-MM-DD)
 start_date?: string;
 end_date?: string;
 }>;
}) {
 const s = await searchParams;
 const dateRange = {
 startDate: s?.start_date || format(DEFAULT_START_DATE, ISO8601_DATE_FOR
MAT),
 endDate: s?.end_date || format(new Date(), ISO8601_DATE_FORMAT),
 };
 const messages = await fetchMessagesInDateRange(dateRange);
 const users = await fetchUsers();
 const countryData = await fetchCountryStats(dateRange);

 return (
 <AdminDashboard
 messages={messages || []}
 users={users || []}
 countryStats={countryData}
 />
);
}

/app/[locale]/login/layout.tsx

import TranslationsProvider from "@/contexts/translations-provider";
import initTranslations from "@/app/i18n";
import { SettingsProvider } from "@/contexts/use-settings";
import { METADATA_APP_NAME } from "@/global.config";

type LayoutProps = {
 children: React.ReactNode;
 params: Promise<{ locale: string }>;
};

export default async function LoginLayout({ children, params }: LayoutProps
) {
 const i18nNamespaces = ["login-page", "common"];

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 119 Maio 2025

 const { locale } = await params;
 const { resources } = await initTranslations(locale, i18nNamespaces);

 return (
 <TranslationsProvider
 resources={resources}
 locale={locale}
 namespaces={i18nNamespaces}
 >
 <SettingsProvider currentLocale={locale}>{children}</SettingsProvider
>
 </TranslationsProvider>
);
}

export async function generateMetadata({
 params,
}: {
 params: Promise<{ locale: string }>;
}) {
 const { locale } = await params;
 const { t } = await initTranslations(locale, ["metadata"]);

 return {
 title: METADATA_APP_NAME + t("login-title"),
 description: t("login-description"),
 };
}

/app/[locale]/login/page.tsx

import LoginForm from "@/components/login-form";

export default async function LoginPage() {
 return <LoginForm />;
}

/app/scattered-profiles.module.css

/* Base class for absolute centering (if needed) */
.profile-absolute {
 position: absolute;
 /* Reducing width/height and increasing scale makes the text inside the e
lement bigger */
 width: 67%;
 height: 67%;
 /* Uncomment this if you prefer

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 120 Maio 2025

 opacity: 0.9; */
}

/* Big profile: centered in container with scale */
.profile-big {
 z-index: 1;
 /* Center using helper translate and scale */
 top: 40%;
 left: 52%;
 transform: translate(-50%, -50%) scale(1.15);
}

.profile-top-left {
 top: 0;
 left: -7px;
 transform: scale(0.7);
 transform-origin: top left;
}

.profile-bottom-left {
 left: 0;
 bottom: 0;
 transform-origin: bottom left;
 transform: scale(0.4);
}

.profile-top-right {
 top: -5px;
 right: 0;
 transform: scale(0.3);
 transform-origin: top right;
}

.profile-bottom-right {
 z-index: 2;

 /* This works, while top:100% and left: 100% places it way outside of the
parent. */
 right: 0;
 bottom: -3px;
 transform-origin: bottom right;
 transform: scale(0.82);
 font-weight: 700;
}

/app/layout.tsx

import localFont from "next/font/local";
import "./globals.css";
import { dir } from "i18next";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 121 Maio 2025

import { ThemeProvider as NextThemesProvider } from "next-themes";
import ThemeProvider from "@/contexts/theme-data-provider";
import { cookies } from "next/headers";
import { TooltipProvider } from "@/components/ui/tooltip";
import { LayoutProvider } from "@/contexts/use-layout";
import { Toaster } from "sonner";
import { fetchAmountIndicators } from "@/lib/db/general";
import { i18nConfig } from "@/i18n.config";

// We can't export this, because in layout or page files Next.js expects on
ly components and some other stuff to be exported
const disketMonoRegular = localFont({
 src: "./fonts/Disket-Mono-Bold.ttf",
 variable: "--font-disket-mono-regular",
 weight: "100 900",
});

// Let Next.js statically generate pages for each of our languages
export function generateStaticParams() {
 return i18nConfig.locales.map((locale) => ({ locale }));
}

export default async function RootLayout({
 children,
}: {
 children: React.ReactNode;
}) {
 // We can't get the locale from the url params, thus we parse it from the
locale cookie
 const cookieStore = await cookies();
 const currentLocale = cookieStore.get("NEXT_LOCALE")?.value;

 const layoutCookie = cookieStore.get("react-resizable-panels:layout:app")
;
 const collapsedCookie = cookieStore.get("react-resizable-panels:collapsed
");

 const initialLayout: number[] = layoutCookie
 ? JSON.parse(layoutCookie.value)
 : undefined;
 const initialIsCollapsed: boolean = collapsedCookie
 ? JSON.parse(collapsedCookie.value)
 : undefined;

 const amountIndicators = await fetchAmountIndicators();

 return (
 <html
 lang={currentLocale}
 dir={dir(currentLocale)}
 suppressHydrationWarning
 >

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 122 Maio 2025

 <body
 className={`${disketMonoRegular.variable} antialiased flex flex-col
h-screen`}
 >
 <NextThemesProvider
 attribute="class"
 defaultTheme="light"
 enableSystem
 disableTransitionOnChange
 >
 <ThemeProvider>
 <TooltipProvider delayDuration={0}>
 <LayoutProvider
 initialLayout={initialLayout}
 initialIsCollapsed={initialIsCollapsed}
 initialAmountIndicators={amountIndicators}
 >
 <Toaster richColors position="top-center" />
 {children}
 </LayoutProvider>
 </TooltipProvider>
 </ThemeProvider>
 </NextThemesProvider>
 </body>
 </html>
);
}

/app/i18n.js

import { createInstance } from "i18next";
import { initReactI18next } from "react-i18next/initReactI18next";
import resourcesToBackend from "i18next-resources-to-backend";
import { i18nConfig } from "@/i18n.config";

export default async function initTranslations(
 locale,
 namespaces,
 i18nInstance,
 resources
) {
 i18nInstance = i18nInstance || createInstance();

 i18nInstance.use(initReactI18next);

 if (!resources) {
 i18nInstance.use(
 resourcesToBackend((language, namespace) =>
 import(`@/locales/${language}/${namespace}.json`)
)

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 123 Maio 2025

);
 }

 await i18nInstance.init({
 lng: locale,
 resources,
 fallbackLng: i18nConfig.defaultLocale,
 supportedLngs: i18nConfig.locales,
 defaultNS: namespaces[0],
 fallbackNS: namespaces[0],
 ns: namespaces,
 preload: resources ? [] : i18nConfig.locales,
 });

 return {
 i18n: i18nInstance,
 resources: i18nInstance.services.resourceStore.data,
 t: i18nInstance.t,
 };
}

/app/globals.css

@tailwind base;
@tailwind components;
@tailwind utilities;

@layer base {
 :root {
 /* Custom variables here */
 /* --simple-header-height is a constant for the SIMPLE layout, used as
a reference for other layouts. */
 --simple-header-height: 52px;
 /* header-height on the other hand is dynamic */
 --header-height: 52px;
 }

 :root {
 --background: 0 0% 100%;
 --foreground: 20 14.3% 4.1%;
 --card: 0 0% 100%;
 --cardForeground: 20 14.3% 4.1%;
 --popover: 0 0% 100%;
 --popoverForeground: 20 14.3% 4.1%;
 --primary: 47.9 95.8% 53.1%;
 --primaryForeground: 26 83.3% 14.1%;
 --secondary: 60 4.8% 95.9%;
 --secondaryForeground: 24 9.8% 10%;
 --muted: 60 4.8% 95.9%;
 --mutedForeground: 25 5.3% 44.7%;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 124 Maio 2025

 --accent: 60 4.8% 95.9%;
 --accentForeground: 24 9.8% 10%;
 --destructive: 0 84.2% 60.2%;
 --destructiveForeground: 60 9.1% 97.8%;
 --border: 240 5.9% 90%;
 --input: 20 5.9% 90%;
 --ring: 20 14.3% 4.1%;
 --radius: 0.5rem;
 --chart1: 207 90% 57%;
 --chart2: 100.15, 63.11%, 59.61%;
 --chart3: 51 100% 50%;
 --chart4: 36 100% 50%;
 --chart5: 262 52% 47%;
 --sidebar-background: 0 0% 98%;
 --sidebar-foreground: 240 5.3% 26.1%;
 --sidebar-primary: 240 5.9% 10%;
 --sidebar-primary-foreground: 0 0% 98%;
 --sidebar-accent: 240 4.8% 95.9%;
 --sidebar-accent-foreground: 240 5.9% 10%;
 --sidebar-border: 220 13% 91%;
 --sidebar-ring: 217.2 91.2% 59.8%;
 }

 .dark {
 --background: 20 14.3% 4.1%;
 --foreground: 60 9.1% 97.8%;
 --card: 20 14.3% 4.1%;
 --cardForeground: 60 9.1% 97.8%;
 --popover: 20 14.3% 4.1%;
 --popoverForeground: 60 9.1% 97.8%;
 --primary: 47.9 95.8% 53.1%;
 --primaryForeground: 26 83.3% 14.1%;
 --secondary: 12 6.5% 15.1%;
 --secondaryForeground: 60 9.1% 97.8%;
 --muted: 12 6.5% 15.1%;
 --mutedForeground: 24 5.4% 63.9%;
 --accent: 12 6.5% 15.1%;
 --accentForeground: 60 9.1% 97.8%;
 --destructive: 0 62.8% 30.6%;
 --destructiveForeground: 60 9.1% 97.8%;
 --border: 240 3.7% 15.9%;
 --input: 12 6.5% 15.1%;
 --ring: 35.5 91.7% 32.9%;
 --chart1: 207 90% 57%;
 --chart2: 100.15, 63.11%, 59.61%;
 --chart3: 51 100% 50%;
 --chart4: 36 100% 50%;
 --chart5: 262 52% 47%;
 --sidebar-background: 240 5.9% 10%;
 --sidebar-foreground: 240 4.8% 95.9%;
 --sidebar-primary: 224.3 76.3% 48%;
 --sidebar-primary-foreground: 0 0% 100%;
 --sidebar-accent: 240 3.7% 15.9%;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 125 Maio 2025

 --sidebar-accent-foreground: 240 4.8% 95.9%;
 --sidebar-border: 240 3.7% 15.9%;
 --sidebar-ring: 217.2 91.2% 59.8%;
 }
}

@layer base {
 * {
 @apply border-border;
 }
 html {
 @apply scroll-smooth;
 }
 body {
 @apply bg-background text-foreground overscroll-none;
 /* font-feature-settings: "rlig" 1, "calt" 1; */
 font-synthesis-weight: none;
 text-rendering: optimizeLegibility;
 }

 @supports (font: -apple-system-body) and (-webkit-appearance: none) {
 [data-wrapper] {
 @apply min-[1800px]:border-t;
 }
 }

 /* Custom scrollbar styling. Thanks @pranathiperii. */
 ::-webkit-scrollbar {
 width: 5px;
 }
 ::-webkit-scrollbar-track {
 background: transparent;
 }
 ::-webkit-scrollbar-thumb {
 background: hsl(var(--border));
 border-radius: 5px;
 }
 * {
 scrollbar-width: thin;
 scrollbar-color: hsl(var(--border)) transparent;
 }
}

h1 {
 @apply text-4xl font-bold;
}
h2 {
 @apply text-xl font-bold;
}
h3 {
 @apply text-lg font-medium;
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 126 Maio 2025

p.subtitle {
 @apply text-sm text-muted-foreground;
}

h6 {
 font-size: 1.15em;
 line-height: 1.5;
}
* {
 box-sizing: border-box;
}

body {
 overflow: hidden;
}
.font-disket-mono-regular {
 font-family: var(--font-disket-mono-regular);
}

.gradient-text {
 font-weight: bold; /* Make the text bold */
 /* background: linear-gradient(135deg, var(--border), orange); /* Diagona
l gradient */
 background: linear-gradient(
 135deg,
 hsl(var(--primary)),
 hsl(var(--primaryForeground))
);
 -webkit-background-clip: text; /* Clip the background to the text */
 -webkit-text-fill-color: transparent; /* Make the text color transparent
*/
 display: inline-block; /* Ensure the gradient applies correctly */
}
.focus-primary-ring {
 @apply focus-visible:ring-1 focus-visible:ring-primary focus-visible:outl
ine-none;
}

.user-select-none {
 user-select: none; /* Prevent text selection */
}
.new-message-input {
 @apply h-11 rounded-none pl-5 shadow-none border-0 border-b-[1px] border-
border focus-visible:border-b-ring disabled:opacity-100 placeholder:text-mu
ted-foreground;
}

.shadcn-input {
 @apply flex h-9 w-full rounded-md bg-transparent px-3 py-1 text-base shad
ow-sm transition-colors file:border-0 file:bg-transparent file:text-sm file
:font-medium file:text-accent-foreground placeholder:text-accent-foreground
focus-visible:outline-none focus-visible:ring-1 focus-visible:ring-ring dis

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 127 Maio 2025

abled:cursor-not-allowed disabled:opacity-50 md:text-sm;
}

.centered {
 text-align: center;
 align-content: center;
}
.flex-centered {
 display: flex;
 align-items: center;
 justify-content: center;
}
.closeX:hover * {
 color: var(--background);
}

.error-border-pulse {
 animation: pulse 1000ms infinite;
}
@keyframes pulse {
 0% {
 @apply border-border;
 }
 50% {
 @apply border-destructive;
 }
 100% {
 @apply border-border;
 }
}

/* Helper class to center an element absolutely using transform */
.center-absolute {
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
}

.ellipsis {
 white-space: nowrap; /* Prevents text from wrapping */
 overflow: hidden; /* Hides overflowed text */
 text-overflow: ellipsis; /* Adds ellipsis (...) */
}

.container-overlay {
 position: absolute;
 width: 100%;
 height: 100%;
}

.frozen {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 128 Maio 2025

 pointer-events: none; /* Prevents all mouse events */
 user-select: none; /* Prevents text selection */
 opacity: 0.5; /* Optional: make it look "frozen" */
}

/app/not-found.tsx

import { buttonVariants } from "@/components/ui/button";
import Link from "next/link";
import { cookies } from "next/headers";
import initTranslations from "./i18n";
import { i18nConfig } from "@/i18n.config";
import ErrorComponent from "@/components/shared/error-component";

export default async function NotFound() {
 // we have to get it directly from the cookie here, because we are not in
the [locale] route segment
 const cookieStore = await cookies();
 const currentLocale = cookieStore.get("NEXT_LOCALE")?.value;

 const { t } = await initTranslations(
 currentLocale || i18nConfig.defaultLocale,
 ["errors", "common"]
);

 return (
 <ErrorComponent
 title={t("404_error-header")}
 subtitle={t("404_error-header_caption")}
 >
 <Link href="/" className={buttonVariants({ variant: "default" })}>
 {t("common:go_back")}
 </Link>
 </ErrorComponent>
);
}

/postcss.config.mjs

/** @type {import('postcss-load-config').Config} */
const config = {
 plugins: {
 tailwindcss: {},
 },
};

export default config;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 129 Maio 2025

/Dockerfile

FROM oven/bun:alpine AS base

Install Node.js, npm, and i18nexus for translations
RUN apk add --no-cache nodejs npm
RUN bun i -g i18nexus-cli

Stage 1: Install dependencies
FROM base AS deps
set a path to for the following commands to be run on
WORKDIR /app
COPY package.json bun.lock ./
RUN bun install

Stage 2: Build the application
FROM base AS builder
WORKDIR /app
COPY --from=deps /app/node_modules ./node_modules
COPY . .
RUN bun run build

Stage 3: Production server
FROM base AS runner
WORKDIR /app
ENV NODE_ENV=production
COPY --from=builder /app/public ./public

COPY --from=builder /app/.next/standalone ./
COPY --from=builder /app/.next/static ./.next/static
If it at some point doesn't work anymore, copy the entire directory
COPY --from=builder /app/.next ./.next

This is for the `start` script, but when replacing the start command with
server.js (also part of the build) I can't access the site on localhost
COPY --from=builder /app/package.json ./
COPY --from=builder /app/node_modules ./node_modules

EXPOSE 3000
CMD ["bun", "run", "start"]

/i18n.config.ts

export const i18nConfig = {
 locales: ["pt", "de", "en"],
 defaultLocale: "pt",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 130 Maio 2025

 // Set to `true` if you want the default locale to be included in the url
 prefixDefault: false,
};

/next-env.d.ts

/// <reference types="next" />
/// <reference types="next/image-types/global" />

// NOTE: This file should not be edited
// see https://nextjs.org/docs/app/api-reference/config/typescript for more
information.

/.prettierignore

README.md
.env**

/README.md
This is a Next.js 15 app router project

https://nextjs.org/

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 131 Maio 2025

Getting Started
First, run the development server:

npm run dev
or
yarn dev
or
pnpm dev
or
bun dev

Open http://localhost:3000 with your browser to see the result.

/tailwind.config.ts

import type { Config } from "tailwindcss";
import tailwindcssAnimate from "tailwindcss-animate";

export default {
 darkMode: ["class"],
 content: [
 "./pages/**/*.{js,ts,jsx,tsx,mdx}",
 "./components/**/*.{js,ts,jsx,tsx,mdx}",
 "./app/**/*.{js,ts,jsx,tsx,mdx}",
],
 theme: {
 extend: {
 colors: {
 background: "hsl(var(--background))",
 foreground: "hsl(var(--foreground))",
 card: {
 DEFAULT: "hsl(var(--card))",
 foreground: "hsl(var(--cardForeground))",
 },
 popover: {
 DEFAULT: "hsl(var(--popover))",
 foreground: "hsl(var(--popoverForeground))",
 },
 primary: {
 DEFAULT: "hsl(var(--primary))",
 foreground: "hsl(var(--primaryForeground))",
 },
 secondary: {
 DEFAULT: "hsl(var(--secondary))",
 foreground: "hsl(var(--secondaryForeground))",
 },
 muted: {
 DEFAULT: "hsl(var(--muted))",
 foreground: "hsl(var(--mutedForeground))",

http://localhost:3000/

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 132 Maio 2025

 },
 accent: {
 DEFAULT: "hsl(var(--accent))",
 foreground: "hsl(var(--accentForeground))",
 },
 destructive: {
 DEFAULT: "hsl(var(--destructive))",
 foreground: "hsl(var(--destructiveForeground))",
 },
 border: "hsl(var(--border))",
 input: "hsl(var(--input))",
 ring: "hsl(var(--ring))",
 chart: {
 "1": "hsl(var(--chart1))",
 "2": "hsl(var(--chart2))",
 "3": "hsl(var(--chart3))",
 "4": "hsl(var(--chart4))",
 "5": "hsl(var(--chart5))",
 },
 sidebar: {
 DEFAULT: "hsl(var(--sidebar-background))",
 foreground: "hsl(var(--sidebar-foreground))",
 primary: "hsl(var(--sidebar-primary))",
 "primary-foreground": "hsl(var(--sidebar-primary-foreground))",
 accent: "hsl(var(--sidebar-accent))",
 "accent-foreground": "hsl(var(--sidebar-accent-foreground))",
 border: "hsl(var(--sidebar-border))",
 ring: "hsl(var(--sidebar-ring))",
 },
 },
 borderRadius: {
 lg: "var(--radius)",
 md: "calc(var(--radius) - 2px)",
 sm: "calc(var(--radius) - 4px)",
 },
 keyframes: {
 "accordion-down": {
 from: {
 height: "0",
 },
 to: {
 height: "var(--radix-accordion-content-height)",
 },
 },
 "accordion-up": {
 from: {
 height: "var(--radix-accordion-content-height)",
 },
 to: {
 height: "0",
 },
 },
 },

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 133 Maio 2025

 animation: {
 "accordion-down": "accordion-down 0.2s ease-out",
 "accordion-up": "accordion-up 0.2s ease-out",
 },
 },
 screens: {
 sm: "640px",
 md: "768px",
 lg: "1024px",
 xl: "1280px",
 "2xl": "1536px",
 // Custom breakpoints
 xs: "435px",
 },
 aspectRatio: {
 "1": "1 / 1",
 },
 },
 plugins: [tailwindcssAnimate],
} satisfies Config;

/components/settings.tsx

"use client";

import { Button, buttonVariants } from "@/components/ui/button";
import {
 Select,
 SelectContent,
 SelectItem,
 SelectTrigger,
 SelectValue,
} from "@/components/ui/select";
import { useThemeContext } from "@/contexts/theme-data-provider";
import { cn } from "@/lib/utils";
import { useTheme as useNextTheme } from "next-themes";
import { useTranslation } from "react-i18next";
import { RenderInputArgs } from "@/components/settings-item";
import { useEffect, useState } from "react";
import { updateSetting } from "@/lib/actions/user.actions";
import { useSettings } from "@/contexts/use-settings";

export function LanguageChanger({
 // value,
 onChange,
 id,
 setServerState,
}: RenderInputArgs) {
 const { t, i18n } = useTranslation();
 const currentLocale = i18n.language;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 134 Maio 2025

 const { updateLanguageCookie } = useSettings();
 const [isPending, setIsPending] = useState<boolean>(false);

 const handleChange = async (newLocale: string) => {
 // Update the database first
 setIsPending(true);
 const formData = new FormData();
 formData.append("name", "lang");
 formData.append("value", newLocale);

 const result = await updateSetting(formData);
 if (setServerState) setServerState(result);
 setIsPending(false);

 updateLanguageCookie(newLocale);
 };
 return (
 <Select
 defaultValue={currentLocale}
 // When turning into a controlled input by passing in a value, the ap
p breaks - I'm not sure why.
 // value={value}
 onValueChange={handleChange}
 disabled={isPending}
 >
 <SelectTrigger
 id={id}
 className={cn(
 buttonVariants({ variant: "outline" }),
 "w-[200px] appearance-none font-normal justify-between"
)}
 >
 <SelectValue placeholder="Select Language" />
 </SelectTrigger>
 <SelectContent>
 <SelectItem value="en">English</SelectItem>
 <SelectItem value="pt">Português</SelectItem>
 <SelectItem value="de">Deutsch</SelectItem>
 </SelectContent>
 </Select>
);
}

const COLORS = [
 {
 value: "1",
 name: "Zinc",
 light: "bg-zinc-900",
 dark: "bg-zinc-700",
 },
 {
 value: "2",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 135 Maio 2025

 name: "Rose",
 light: "bg-rose-600",
 dark: "bg-rose-700",
 },
 {
 value: "3",
 name: "Blue",
 light: "bg-blue-600",
 dark: "bg-blue-700",
 },
 {
 value: "4",
 name: "Green",
 light: "bg-green-600",
 dark: "bg-green-500",
 },
 {
 value: "5",
 name: "Orange",
 light: "bg-orange-500",
 dark: "bg-orange-700",
 },
 {
 value: "6",
 name: "Yellow",
 light: "bg-yellow-300",
 dark: "bg-yellow-500",
 },
];
export function ThemeColorChanger({
 onChange,
 onBlur,
 id,
 isPending,
}: RenderInputArgs) {
 const { themeColor, setThemeColor } = useThemeContext();
 const { theme } = useNextTheme();

 const handleChange = (colorIndex: string) => {
 setThemeColor(Number(colorIndex));
 onChange(colorIndex);

 // Remove this if you are sure that it works this way
 // setTimeout(() => {
 onBlur(undefined, colorIndex);
 // }, 200);
 };

 return (
 <Select
 defaultValue={themeColor.toString()}
 onValueChange={handleChange}
 disabled={isPending}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 136 Maio 2025

 >
 <SelectTrigger
 id={id}
 className={cn(
 buttonVariants({ variant: "outline" }),
 "w-[200px] appearance-none font-normal justify-between"
)}
 >
 <SelectValue />
 </SelectTrigger>
 <SelectContent>{createSelectItems(COLORS, theme)}</SelectContent>
 </Select>
);
}
export function ColorDropdown({
 onValueChange,
 id,
 isPending,
 onChange,
 onBlur,
 initialValue,
}: RenderInputArgs & { onValueChange: (value: string) => void }) {
 const { theme } = useNextTheme();

 return (
 <Select
 defaultValue={initialValue}
 onValueChange={(colorIndex) => {
 onValueChange(colorIndex);
 onChange(colorIndex);
 onBlur(undefined, colorIndex);
 }}
 disabled={isPending}
 >
 <SelectTrigger
 id={id}
 className={cn(
 buttonVariants({ variant: "outline" }),
 "w-[200px] appearance-none font-normal justify-between"
)}
 >
 <SelectValue />
 </SelectTrigger>
 <SelectContent>{createSelectItems(COLORS, theme)}</SelectContent>
 </Select>
);
}

export function ThemeToggle({
 onChange,
 onBlur,
 id,
 initialValue,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 137 Maio 2025

 className,
 isPending,
}: RenderInputArgs) {
 const { theme, setTheme } = useNextTheme();
 const { t } = useTranslation();
 const activeString = `(${t("common:active").toLowerCase()})`;

 const handleChange = (value: string) => {
 setTheme(value);
 onChange(value);
 setTimeout(() => {
 onBlur(undefined, value);
 }, 200);
 };
 return (
 <div
 className={cn(
 className,
 "flex flex-col gap-1 sm:flex-row sm:gap-8 max-w-md pt-2"
)}
 >
 <div
 onClick={isPending ? () => {} : () => handleChange("light")}
 className={cn(isPending && "opacity-50 cursor-not-allowed")}
 >
 <div className="items-center rounded-md border-2 border-muted p-1 h
over:border-accent">
 <div className="space-y-2 rounded-sm bg-[#ecedef] p-2">
 <div className="space-y-2 rounded-md bg-white p-2 shadow-sm">
 <div className="h-2 w-[80px] rounded-lg bg-[#ecedef]" />
 <div className="h-2 w-[100px] rounded-lg bg-[#ecedef]" />
 </div>
 <div className="flex items-center space-x-2 rounded-md bg-white
p-2 shadow-sm">
 <div className="h-4 w-4 rounded-full bg-[#ecedef]" />
 <div className="h-2 w-[100px] rounded-lg bg-[#ecedef]" />
 </div>
 <div className="flex items-center space-x-2 rounded-md bg-white
p-2 shadow-sm">
 <div className="h-4 w-4 rounded-full bg-[#ecedef]" />
 <div className="h-2 w-[100px] rounded-lg bg-[#ecedef]" />
 </div>
 </div>
 </div>
 <label className="block w-full p-2 text-center font-normal text-sm"
>
 {t("appearance-theme_light")}{" "}
 {!isPending && theme === "light" && activeString}
 </label>
 </div>

 <div
 onClick={isPending ? () => {} : () => handleChange("dark")}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 138 Maio 2025

 className={cn(isPending && "opacity-50 cursor-not-allowed")}
 >
 <div
 className={cn(
 "items-center rounded-md border-2 border-muted bg-popover p-1",
 !isPending && "hover:bg-accent hover:text-accent-foreground"
)}
 >
 <div className="space-y-2 rounded-sm bg-slate-950 p-2">
 <div className="space-y-2 rounded-md bg-slate-800 p-2 shadow-sm
">
 <div className="h-2 w-[80px] rounded-lg bg-slate-400" />
 <div className="h-2 w-[100px] rounded-lg bg-slate-400" />
 </div>
 <div className="flex items-center space-x-2 rounded-md bg-slate
-800 p-2 shadow-sm">
 <div className="h-4 w-4 rounded-full bg-slate-400" />
 <div className="h-2 w-[100px] rounded-lg bg-slate-400" />
 </div>
 <div className="flex items-center space-x-2 rounded-md bg-slate
-800 p-2 shadow-sm">
 <div className="h-4 w-4 rounded-full bg-slate-400" />
 <div className="h-2 w-[100px] rounded-lg bg-slate-400" />
 </div>
 </div>
 </div>
 <label className="block w-full p-2 text-center font-normal text-sm"
>
 {t("appearance-theme_dark")}{" "}
 {!isPending && theme === "dark" && activeString}
 </label>
 </div>
 </div>
);
}

export const createSelectItems = (data: any[], theme: string | undefined) =
> {
 return data.map(({ name, light, dark, value }) => (
 <SelectItem key={value} value={value || name}>
 <div className="flex gap-2">
 {light && dark && (
 <div
 className={cn(
 "w-[20px]",
 "h-[20px]",
 "rounded-full",
 theme === "light" ? light : dark
)}
 />
)}
 <div className="text-sm">{name}</div>
 </div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 139 Maio 2025

 </SelectItem>
));
};

/components/ui/alert-dialog.tsx

"use client";

import * as React from "react";
import * as AlertDialogPrimitive from "@radix-ui/react-alert-dialog";

import { cn } from "@/lib/utils";
import { buttonVariants } from "@/components/ui/button";

const AlertDialog = AlertDialogPrimitive.Root;

const AlertDialogTrigger = AlertDialogPrimitive.Trigger;

const AlertDialogPortal = AlertDialogPrimitive.Portal;

const AlertDialogOverlay = React.forwardRef<
 React.ElementRef<typeof AlertDialogPrimitive.Overlay>,
 React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Overlay>
>(({ className, ...props }, ref) => (
 <AlertDialogPrimitive.Overlay
 className={cn(
 "fixed inset-0 z-50 bg-black/80 data-[state=open]:animate-in data-[st
ate=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fa
de-in-0",
 className
)}
 {...props}
 ref={ref}
 />
));
AlertDialogOverlay.displayName = AlertDialogPrimitive.Overlay.displayName;

const AlertDialogContent = React.forwardRef<
 React.ElementRef<typeof AlertDialogPrimitive.Content>,
 React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Content>
>(({ className, ...props }, ref) => (
 <AlertDialogPortal>
 <AlertDialogOverlay />
 <AlertDialogPrimitive.Content
 ref={ref}
 className={cn(
 "fixed left-[50%] top-[50%] z-50 grid w-full bg-background max-w-lg
translate-x-[-50%] translate-y-[-50%] gap-4 border bg-background p-6 shadow
-lg duration-200 data-[state=open]:animate-in data-[state=closed]:animate-o
ut data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=c

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 140 Maio 2025

losed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[state=closed]:slide-o
ut-to-left-1/2 data-[state=closed]:slide-out-to-top-[48%] data-[state=open]
:slide-in-from-left-1/2 data-[state=open]:slide-in-from-top-[48%] sm:rounde
d-lg",
 className
)}
 {...props}
 />
 </AlertDialogPortal>
));
AlertDialogContent.displayName = AlertDialogPrimitive.Content.displayName;

const AlertDialogHeader = ({
 className,
 ...props
}: React.HTMLAttributes<HTMLDivElement>) => (
 <div
 className={cn(
 "flex flex-col space-y-2 text-center sm:text-left",
 className
)}
 {...props}
 />
);
AlertDialogHeader.displayName = "AlertDialogHeader";

const AlertDialogFooter = ({
 className,
 ...props
}: React.HTMLAttributes<HTMLDivElement>) => (
 <div
 className={cn(
 "flex flex-col-reverse sm:flex-row sm:justify-end sm:space-x-2",
 className
)}
 {...props}
 />
);
AlertDialogFooter.displayName = "AlertDialogFooter";

const AlertDialogTitle = React.forwardRef<
 React.ElementRef<typeof AlertDialogPrimitive.Title>,
 React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Title>
>(({ className, ...props }, ref) => (
 <AlertDialogPrimitive.Title
 ref={ref}
 className={cn("text-lg font-semibold", className)}
 {...props}
 />
));
AlertDialogTitle.displayName = AlertDialogPrimitive.Title.displayName;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 141 Maio 2025

const AlertDialogDescription = React.forwardRef<
 React.ElementRef<typeof AlertDialogPrimitive.Description>,
 React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Description>
>(({ className, ...props }, ref) => (
 <AlertDialogPrimitive.Description
 ref={ref}
 className={cn("text-sm text-muted-foreground ", className)}
 {...props}
 />
));
AlertDialogDescription.displayName =
 AlertDialogPrimitive.Description.displayName;

const AlertDialogAction = React.forwardRef<
 React.ElementRef<typeof AlertDialogPrimitive.Action>,
 React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Action>
>(({ className, ...props }, ref) => (
 <AlertDialogPrimitive.Action
 ref={ref}
 className={cn(buttonVariants(), className)}
 {...props}
 />
));
AlertDialogAction.displayName = AlertDialogPrimitive.Action.displayName;

const AlertDialogCancel = React.forwardRef<
 React.ElementRef<typeof AlertDialogPrimitive.Cancel>,
 React.ComponentPropsWithoutRef<typeof AlertDialogPrimitive.Cancel>
>(({ className, ...props }, ref) => (
 <AlertDialogPrimitive.Cancel
 ref={ref}
 className={cn(
 buttonVariants({ variant: "outline" }),
 "mt-2 sm:mt-0",
 className
)}
 {...props}
 />
));
AlertDialogCancel.displayName = AlertDialogPrimitive.Cancel.displayName;

export {
 AlertDialog,
 AlertDialogPortal,
 AlertDialogOverlay,
 AlertDialogTrigger,
 AlertDialogContent,
 AlertDialogHeader,
 AlertDialogFooter,
 AlertDialogTitle,
 AlertDialogDescription,
 AlertDialogAction,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 142 Maio 2025

 AlertDialogCancel,
};

/components/ui/tabs.tsx

"use client";

import * as React from "react";
import * as TabsPrimitive from "@radix-ui/react-tabs";

import { cn } from "@/lib/utils";

const Tabs = TabsPrimitive.Root;

const TabsList = React.forwardRef<
 React.ElementRef<typeof TabsPrimitive.List>,
 React.ComponentPropsWithoutRef<typeof TabsPrimitive.List>
>(({ className, ...props }, ref) => (
 <TabsPrimitive.List
 ref={ref}
 className={cn(
 "inline-flex h-9 items-center justify-center rounded-lg bg-muted p-1
text-muted-foreground",
 className
)}
 {...props}
 />
));
TabsList.displayName = TabsPrimitive.List.displayName;

const TabsTrigger = React.forwardRef<
 React.ElementRef<typeof TabsPrimitive.Trigger>,
 React.ComponentPropsWithoutRef<typeof TabsPrimitive.Trigger>
>(({ className, ...props }, ref) => (
 <TabsPrimitive.Trigger
 ref={ref}
 className={cn(
 "inline-flex items-center justify-center whitespace-nowrap rounded-md
px-3 py-1 text-sm font-medium ring-offset-ring transition-all focus-visible
:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ri
ng-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=ac
tive]:bg-background data-[state=active]:text-foreground data-[state=active]
:shadow",
 className
)}
 {...props}
 />
));
TabsTrigger.displayName = TabsPrimitive.Trigger.displayName;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 143 Maio 2025

const TabsContent = React.forwardRef<
 React.ElementRef<typeof TabsPrimitive.Content>,
 React.ComponentPropsWithoutRef<typeof TabsPrimitive.Content>
>(({ className, ...props }, ref) => (
 <TabsPrimitive.Content
 ref={ref}
 className={cn(
 "mt-2 ring-offset-white focus-visible:outline-none focus-visible:ring
-2 focus-visible:ring-slate-950 focus-visible:ring-offset-2 dark:ring-offse
t-slate-950 dark:focus-visible:ring-primary",
 className
)}
 {...props}
 />
));
TabsContent.displayName = TabsPrimitive.Content.displayName;

export { Tabs, TabsList, TabsTrigger, TabsContent };

/components/ui/card.tsx

import * as React from "react";

import { cn } from "@/lib/utils";

const Card = React.forwardRef<
 HTMLDivElement,
 React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
 <div
 ref={ref}
 className={cn(
 "rounded-xl border bg-background text-foreground shadow",
 className
)}
 {...props}
 />
));
Card.displayName = "Card";

const CardHeader = React.forwardRef<
 HTMLDivElement,
 React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
 <div
 ref={ref}
 className={cn("flex flex-col space-y-1.5 p-6", className)}
 {...props}
 />
));

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 144 Maio 2025

CardHeader.displayName = "CardHeader";

const CardTitle = React.forwardRef<
 HTMLDivElement,
 React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
 <div
 ref={ref}
 className={cn("font-semibold leading-none tracking-tight", className)}
 {...props}
 />
));
CardTitle.displayName = "CardTitle";

const CardDescription = React.forwardRef<
 HTMLDivElement,
 React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
 <div
 ref={ref}
 className={cn("text-sm text-muted-foreground ", className)}
 {...props}
 />
));
CardDescription.displayName = "CardDescription";

const CardContent = React.forwardRef<
 HTMLDivElement,
 React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
 <div ref={ref} className={cn("p-6 pt-0", className)} {...props} />
));
CardContent.displayName = "CardContent";

const CardFooter = React.forwardRef<
 HTMLDivElement,
 React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => (
 <div
 ref={ref}
 className={cn("flex items-center p-6 pt-0", className)}
 {...props}
 />
));
CardFooter.displayName = "CardFooter";

export {
 Card,
 CardHeader,
 CardFooter,
 CardTitle,
 CardDescription,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 145 Maio 2025

 CardContent,
};

/components/ui/popover.tsx

"use client";

import * as React from "react";
import * as PopoverPrimitive from "@radix-ui/react-popover";

import { cn } from "@/lib/utils";

const Popover = PopoverPrimitive.Root;

const PopoverTrigger = PopoverPrimitive.Trigger;

const PopoverAnchor = PopoverPrimitive.Anchor;

const PopoverContent = React.forwardRef<
 React.ElementRef<typeof PopoverPrimitive.Content>,
 React.ComponentPropsWithoutRef<typeof PopoverPrimitive.Content>
>(({ className, align = "center", sideOffset = 4, ...props }, ref) => (
 <PopoverPrimitive.Portal>
 <PopoverPrimitive.Content
 ref={ref}
 align={align}
 sideOffset={sideOffset}
 className={cn(
 "z-50 w-72 rounded-md border bg-background p-4 text-slate-950 shado
w-md outline-none data-[state=open]:animate-in data-[state=closed]:animate-
out data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=
closed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-i
n-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide
-in-from-left-2 data-[side=top]:slide-in-from-bottom-2 dark:border-slate-80
0 bg-background dark:text-slate-50",
 className
)}
 {...props}
 />
 </PopoverPrimitive.Portal>
));
PopoverContent.displayName = PopoverPrimitive.Content.displayName;

export { Popover, PopoverTrigger, PopoverContent, PopoverAnchor };

/components/ui/chart.tsx

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 146 Maio 2025

"use client";

import * as React from "react";
import * as RechartsPrimitive from "recharts";

import { cn } from "@/lib/utils";

// Format: { THEME_NAME: CSS_SELECTOR }
const THEMES = { light: "", dark: ".dark" } as const;

export type ChartConfig = {
 [k in string]: {
 label?: React.ReactNode;
 icon?: React.ComponentType;
 } & (
 | { color?: string; theme?: never }
 | { color?: never; theme: Record<keyof typeof THEMES, string> }
);
};

type ChartContextProps = {
 config: ChartConfig;
};

const ChartContext = React.createContext<ChartContextProps | null>(null);

function useChart() {
 const context = React.useContext(ChartContext);

 if (!context) {
 throw new Error("useChart must be used within a <ChartContainer />");
 }

 return context;
}

const ChartContainer = React.forwardRef<
 HTMLDivElement,
 React.ComponentProps<"div"> & {
 config: ChartConfig;
 children: React.ComponentProps<
 typeof RechartsPrimitive.ResponsiveContainer
 >["children"];
 }
>(({ id, className, children, config, ...props }, ref) => {
 const uniqueId = React.useId();
 const chartId = `chart-${id || uniqueId.replace(/:/g, "")}`;

 return (
 <ChartContext.Provider value={{ config }}>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 147 Maio 2025

 <div
 data-chart={chartId}
 ref={ref}
 className={cn(
 "flex aspect-video justify-center text-xs [&_.recharts-cartesian-
axis-tick_text]:fill-muted-foreground [&_.recharts-cartesian-grid_line[stro
ke='#ccc']]:stroke-border/50 [&_.recharts-curve.recharts-tooltip-cursor]:st
roke-border [&_.recharts-dot[stroke='#fff']]:stroke-transparent [&_.rechart
s-layer]:outline-none [&_.recharts-polar-grid_[stroke='#ccc']]:stroke-borde
r [&_.recharts-radial-bar-background-sector]:fill-muted [&_.recharts-rectan
gle.recharts-tooltip-cursor]:fill-muted [&_.recharts-reference-line_[stroke
='#ccc']]:stroke-border [&_.recharts-sector[stroke='#fff']]:stroke-transpar
ent [&_.recharts-sector]:outline-none [&_.recharts-surface]:outline-none",
 className
)}
 {...props}
 >
 <ChartStyle id={chartId} config={config} />
 <RechartsPrimitive.ResponsiveContainer>
 {children}
 </RechartsPrimitive.ResponsiveContainer>
 </div>
 </ChartContext.Provider>
);
});
ChartContainer.displayName = "Chart";

const ChartStyle = ({ id, config }: { id: string; config: ChartConfig }) =>
{
 const colorConfig = Object.entries(config).filter(
 ([, config]) => config.theme || config.color
);

 if (!colorConfig.length) {
 return null;
 }

 return (
 <style
 dangerouslySetInnerHTML={{
 __html: Object.entries(THEMES)
 .map(
 ([theme, prefix]) => `
${prefix} [data-chart=${id}] {
${colorConfig
 .map(([key, itemConfig]) => {
 const color =
 itemConfig.theme?.[theme as keyof typeof itemConfig.theme] ||
 itemConfig.color;
 return color ? ` --color-${key}: ${color};` : null;
 })
 .join("\n")}
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 148 Maio 2025

`
)
 .join("\n"),
 }}
 />
);
};

const ChartTooltip = RechartsPrimitive.Tooltip;

const ChartTooltipContent = React.forwardRef<
 HTMLDivElement,
 React.ComponentProps<typeof RechartsPrimitive.Tooltip> &
 React.ComponentProps<"div"> & {
 hideLabel?: boolean;
 hideIndicator?: boolean;
 indicator?: "line" | "dot" | "dashed";
 nameKey?: string;
 labelKey?: string;
 }
>(
 (
 {
 active,
 payload,
 className,
 indicator = "dot",
 hideLabel = false,
 hideIndicator = false,
 label,
 labelFormatter,
 labelClassName,
 formatter,
 color,
 nameKey,
 labelKey,
 },
 ref
) => {
 const { config } = useChart();

 const tooltipLabel = React.useMemo(() => {
 if (hideLabel || !payload?.length) {
 return null;
 }

 const [item] = payload;
 const key = `${labelKey || item?.dataKey || item?.name || "value"}`;
 const itemConfig = getPayloadConfigFromPayload(config, item, key);
 const value =
 !labelKey && typeof label === "string"
 ? config[label as keyof typeof config]?.label || label

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 149 Maio 2025

 : itemConfig?.label;

 if (labelFormatter) {
 return (
 <div className={cn("font-medium", labelClassName)}>
 {labelFormatter(value, payload)}
 </div>
);
 }

 if (!value) {
 return null;
 }

 return <div className={cn("font-medium", labelClassName)}>{value}</di
v>;
 }, [
 label,
 labelFormatter,
 payload,
 hideLabel,
 labelClassName,
 config,
 labelKey,
]);

 if (!active || !payload?.length) {
 return null;
 }

 const nestLabel = payload.length === 1 && indicator !== "dot";

 return (
 <div
 ref={ref}
 className={cn(
 "grid min-w-[8rem] items-start gap-1.5 rounded-lg border border-s
late-200/50 bg-background px-2.5 py-1.5 text-xs shadow-xl dark:border-slate
-800 dark:border-slate-800/50 bg-background",
 className
)}
 >
 {!nestLabel ? tooltipLabel : null}
 <div className="grid gap-1.5">
 {payload.map((item, index) => {
 const key = `${nameKey || item.name || item.dataKey || "value"}
`;
 const itemConfig = getPayloadConfigFromPayload(config, item, ke
y);
 const indicatorColor = color || item.payload.fill || item.color
;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 150 Maio 2025

 return (
 <div
 key={item.dataKey}
 className={cn(
 "flex w-full flex-wrap items-stretch gap-2 [&>svg]:h-2.5
[&>svg]:w-2.5 [&>svg]:text-muted-foreground dark:[&>svg]:text-muted-foregro
und",
 indicator === "dot" && "items-center"
)}
 >
 {formatter && item?.value !== undefined && item.name ? (
 formatter(item.value, item.name, item, index, item.payloa
d)
) : (
 <>
 {itemConfig?.icon ? (
 <itemConfig.icon />
) : (
 !hideIndicator && (
 <div
 className={cn(
 "shrink-0 rounded-[2px] border-[--color-border]
bg-[--color-bg]",
 {
 "h-2.5 w-2.5": indicator === "dot",
 "w-1": indicator === "line",
 "w-0 border-[1.5px] border-dashed bg-transpar
ent":
 indicator === "dashed",
 "my-0.5": nestLabel && indicator === "dashed"
,
 }
)}
 style={
 {
 "--color-bg": indicatorColor,
 "--color-border": indicatorColor,
 } as React.CSSProperties
 }
 />
)
)}
 <div
 className={cn(
 "flex flex-1 justify-between leading-none",
 nestLabel ? "items-end" : "items-center"
)}
 >
 <div className="grid gap-1.5">
 {nestLabel ? tooltipLabel : null}

 {itemConfig?.label || item.name}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 151 Maio 2025

 </div>
 {item.value && (
 <span className="font-mono font-medium tabular-nums
text-slate-950 dark:text-slate-50">
 {item.value.toLocaleString()}

)}
 </div>
 </>
)}
 </div>
);
 })}
 </div>
 </div>
);
 }
);
ChartTooltipContent.displayName = "ChartTooltip";

const ChartLegend = RechartsPrimitive.Legend;

const ChartLegendContent = React.forwardRef<
 HTMLDivElement,
 React.ComponentProps<"div"> &
 Pick<RechartsPrimitive.LegendProps, "payload" | "verticalAlign"> & {
 hideIcon?: boolean;
 nameKey?: string;
 }
>(
 (
 { className, hideIcon = false, payload, verticalAlign = "bottom", nameK
ey },
 ref
) => {
 const { config } = useChart();

 if (!payload?.length) {
 return null;
 }

 return (
 <div
 ref={ref}
 className={cn(
 "flex items-center justify-center gap-4",
 verticalAlign === "top" ? "pb-3" : "pt-3",
 className
)}
 >
 {payload.map((item) => {
 const key = `${nameKey || item.dataKey || "value"}`;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 152 Maio 2025

 const itemConfig = getPayloadConfigFromPayload(config, item, key)
;

 return (
 <div
 key={item.value}
 className={cn(
 "flex items-center gap-1.5 [&>svg]:h-3 [&>svg]:w-3 [&>svg]:
text-muted-foreground dark:[&>svg]:text-muted-foreground"
)}
 >
 {itemConfig?.icon && !hideIcon ? (
 <itemConfig.icon />
) : (
 <div
 className="h-2 w-2 shrink-0 rounded-[2px]"
 style={{
 backgroundColor: item.color,
 }}
 />
)}
 {itemConfig?.label}
 </div>
);
 })}
 </div>
);
 }
);
ChartLegendContent.displayName = "ChartLegend";

// Helper to extract item config from a payload.
function getPayloadConfigFromPayload(
 config: ChartConfig,
 payload: unknown,
 key: string
) {
 if (typeof payload !== "object" || payload === null) {
 return undefined;
 }

 const payloadPayload =
 "payload" in payload &&
 typeof payload.payload === "object" &&
 payload.payload !== null
 ? payload.payload
 : undefined;

 let configLabelKey: string = key;

 if (
 key in payload &&

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 153 Maio 2025

 typeof payload[key as keyof typeof payload] === "string"
) {
 configLabelKey = payload[key as keyof typeof payload] as string;
 } else if (
 payloadPayload &&
 key in payloadPayload &&
 typeof payloadPayload[key as keyof typeof payloadPayload] === "string"
) {
 configLabelKey = payloadPayload[
 key as keyof typeof payloadPayload
] as string;
 }

 return configLabelKey in config
 ? config[configLabelKey]
 : config[key as keyof typeof config];
}

export {
 ChartContainer,
 ChartTooltip,
 ChartTooltipContent,
 ChartLegend,
 ChartLegendContent,
 ChartStyle,
};

/components/ui/sheet.tsx

"use client";

import * as React from "react";
import * as SheetPrimitive from "@radix-ui/react-dialog";
import { cva, type VariantProps } from "class-variance-authority";
import { X } from "lucide-react";

import { cn } from "@/lib/utils";

const Sheet = SheetPrimitive.Root;

const SheetTrigger = SheetPrimitive.Trigger;

const SheetClose = SheetPrimitive.Close;

const SheetPortal = SheetPrimitive.Portal;

const SheetOverlay = React.forwardRef<
 React.ElementRef<typeof SheetPrimitive.Overlay>,
 React.ComponentPropsWithoutRef<typeof SheetPrimitive.Overlay>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 154 Maio 2025

>(({ className, ...props }, ref) => (
 <SheetPrimitive.Overlay
 className={cn(
 "fixed inset-0 z-50 bg-black/80 data-[state=open]:animate-in data-[st
ate=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fa
de-in-0",
 className
)}
 {...props}
 ref={ref}
 />
));
SheetOverlay.displayName = SheetPrimitive.Overlay.displayName;

const sheetVariants = cva(
 // change nav-panel duration here
 "fixed z-50 gap-4 bg-background p-6 shadow-lg transition ease-in-out data
-[state=closed]:duration-500 data-[state=open]:duration-500 data-[state=ope
n]:animate-in data-[state=closed]:animate-out bg-background",
 {
 variants: {
 side: {
 top: "inset-x-0 top-0 border-b data-[state=closed]:slide-out-to-top
data-[state=open]:slide-in-from-top",
 bottom:
 "inset-x-0 bottom-0 border-t data-[state=closed]:slide-out-to-bot
tom data-[state=open]:slide-in-from-bottom",
 left: "inset-y-0 left-0 h-full w-3/4 border-r data-[state=closed]:s
lide-out-to-left data-[state=open]:slide-in-from-left sm:max-w-sm",
 right:
 "inset-y-0 right-0 h-full w-3/4 border-l data-[state=closed]:slid
e-out-to-right data-[state=open]:slide-in-from-right sm:max-w-sm",
 },
 },
 defaultVariants: {
 side: "right",
 },
 }
);

interface SheetContentProps
 extends React.ComponentPropsWithoutRef<typeof SheetPrimitive.Content>,
 VariantProps<typeof sheetVariants> {}

const SheetContent = React.forwardRef<
 React.ElementRef<typeof SheetPrimitive.Content>,
 SheetContentProps
>(({ side = "right", className, children, ...props }, ref) => (
 <SheetPortal>
 <SheetOverlay />
 <SheetPrimitive.Content
 ref={ref}
 className={cn(sheetVariants({ side }), className)}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 155 Maio 2025

 {...props}
 >
 <SheetPrimitive.Close className="absolute right-4 top-4 rounded-sm op
acity-70 ring-offset-white transition-opacity hover:opacity-100 focus:outli
ne-none focus:ring-2 focus:ring-slate-950 focus:ring-offset-2 disabled:poin
ter-events-none data-[state=open]:bg-slate-100 dark:ring-offset-slate-950 d
ark:focus:ring-slate-300 dark:data-[state=open]:bg-slate-800">
 <X className="h-4 w-4" />
 Close
 </SheetPrimitive.Close>
 {children}
 </SheetPrimitive.Content>
 </SheetPortal>
));
SheetContent.displayName = SheetPrimitive.Content.displayName;

const SheetHeader = ({
 className,
 ...props
}: React.HTMLAttributes<HTMLDivElement>) => (
 <div
 className={cn(
 "flex flex-col space-y-2 text-center sm:text-left",
 className
)}
 {...props}
 />
);
SheetHeader.displayName = "SheetHeader";

const SheetFooter = ({
 className,
 ...props
}: React.HTMLAttributes<HTMLDivElement>) => (
 <div
 className={cn(
 "flex flex-col-reverse sm:flex-row sm:justify-end sm:space-x-2",
 className
)}
 {...props}
 />
);
SheetFooter.displayName = "SheetFooter";

const SheetTitle = React.forwardRef<
 React.ElementRef<typeof SheetPrimitive.Title>,
 React.ComponentPropsWithoutRef<typeof SheetPrimitive.Title>
>(({ className, ...props }, ref) => (
 <SheetPrimitive.Title
 ref={ref}
 className={cn(
 "text-lg font-semibold text-slate-950 dark:text-slate-50",
 className

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 156 Maio 2025

)}
 {...props}
 />
));
SheetTitle.displayName = SheetPrimitive.Title.displayName;

const SheetDescription = React.forwardRef<
 React.ElementRef<typeof SheetPrimitive.Description>,
 React.ComponentPropsWithoutRef<typeof SheetPrimitive.Description>
>(({ className, ...props }, ref) => (
 <SheetPrimitive.Description
 ref={ref}
 className={cn("text-sm text-muted-foreground ", className)}
 {...props}
 />
));
SheetDescription.displayName = SheetPrimitive.Description.displayName;

export {
 Sheet,
 SheetPortal,
 SheetOverlay,
 SheetTrigger,
 SheetClose,
 SheetContent,
 SheetHeader,
 SheetFooter,
 SheetTitle,
 SheetDescription,
};

/components/ui/scroll-area.tsx

"use client";

import * as React from "react";
import * as ScrollAreaPrimitive from "@radix-ui/react-scroll-area";

import { cn } from "@/lib/utils";

const ScrollArea = React.forwardRef<
 React.ElementRef<typeof ScrollAreaPrimitive.Root>,
 React.ComponentPropsWithoutRef<typeof ScrollAreaPrimitive.Root>
>(({ className, children, ...props }, ref) => (
 <ScrollAreaPrimitive.Root
 ref={ref}
 className={cn("relative overflow-hidden", className)}
 {...props}
 >
 <ScrollAreaPrimitive.Viewport className="h-full w-full rounded-[inherit

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 157 Maio 2025

]" >
 {children}
 </ScrollAreaPrimitive.Viewport>
 <ScrollBar />
 <ScrollAreaPrimitive.Corner />
 </ScrollAreaPrimitive.Root>
));
ScrollArea.displayName = ScrollAreaPrimitive.Root.displayName;

const ScrollBar = React.forwardRef<
 React.ElementRef<typeof ScrollAreaPrimitive.ScrollAreaScrollbar>,
 React.ComponentPropsWithoutRef<typeof ScrollAreaPrimitive.ScrollAreaScrol
lbar>
>(({ className, orientation = "vertical", ...props }, ref) => (
 <ScrollAreaPrimitive.ScrollAreaScrollbar
 ref={ref}
 orientation={orientation}
 className={cn(
 "flex touch-none select-none transition-colors",
 orientation === "vertical" &&
 "h-full w-2.5 border-l border-l-transparent p-[1px]",
 orientation === "horizontal" &&
 "h-2.5 flex-col border-t border-t-transparent p-[1px]",
 className
)}
 {...props}
 >
 <ScrollAreaPrimitive.ScrollAreaThumb className="relative flex-1 rounded
-full bg-border" />
 </ScrollAreaPrimitive.ScrollAreaScrollbar>
));
ScrollBar.displayName = ScrollAreaPrimitive.ScrollAreaScrollbar.displayName
;

export { ScrollArea, ScrollBar };

/components/ui/resizable.tsx

"use client";

import { GripVertical } from "lucide-react";
import * as ResizablePrimitive from "react-resizable-panels";

import { cn } from "@/lib/utils";

const ResizablePanelGroup = ({
 className,
 ...props
}: React.ComponentProps<typeof ResizablePrimitive.PanelGroup>) => (
 <ResizablePrimitive.PanelGroup

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 158 Maio 2025

 className={cn(
 "flex h-full w-full data-[panel-group-direction=vertical]:flex-col",
 className
)}
 {...props}
 />
);

const ResizablePanel = ResizablePrimitive.Panel;

const ResizableHandle = ({
 withHandle,
 className,
 ...props
}: React.ComponentProps<typeof ResizablePrimitive.PanelResizeHandle> & {
 withHandle?: boolean;
}) => (
 <ResizablePrimitive.PanelResizeHandle
 className={cn(
 "relative flex w-px items-center justify-center bg-border after:absol
ute after:inset-y-0 after:left-1/2 after:w-1 after:-translate-x-1/2 focus-v
isible:outline-none focus-visible:ring-1 focus-visible:ring-ring focus-visi
ble:ring-offset-1 data-[panel-group-direction=vertical]:h-px data-[panel-gr
oup-direction=vertical]:w-full data-[panel-group-direction=vertical]:after:
left-0 data-[panel-group-direction=vertical]:after:h-1 data-[panel-group-di
rection=vertical]:after:w-full data-[panel-group-direction=vertical]:after:
-translate-y-1/2 data-[panel-group-direction=vertical]:after:translate-x-0
[&[data-panel-group-direction=vertical]>div]:rotate-90",
 className
)}
 {...props}
 >
 {withHandle && (
 <div className="z-10 flex h-4 w-3 items-center justify-center rounded
-sm border bg-border">
 {" "}
 {/* bg-border or bg-background - both looks good */}
 <GripVertical className="h-2.5 w-2.5 text-accent-foreground" />
 </div>
)}
 </ResizablePrimitive.PanelResizeHandle>
);

export { ResizablePanelGroup, ResizablePanel, ResizableHandle };

/components/ui/label.tsx

"use client"

import * as React from "react"

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 159 Maio 2025

import * as LabelPrimitive from "@radix-ui/react-label"
import { cva, type VariantProps } from "class-variance-authority"

import { cn } from "@/lib/utils"

const labelVariants = cva(
 "text-sm font-medium leading-none peer-disabled:cursor-not-allowed peer-d
isabled:opacity-70"
)

const Label = React.forwardRef<
 React.ElementRef<typeof LabelPrimitive.Root>,
 React.ComponentPropsWithoutRef<typeof LabelPrimitive.Root> &
 VariantProps<typeof labelVariants>
>(({ className, ...props }, ref) => (
 <LabelPrimitive.Root
 ref={ref}
 className={cn(labelVariants(), className)}
 {...props}
 />
))
Label.displayName = LabelPrimitive.Root.displayName

export { Label }

/components/ui/tooltip.tsx

"use client"

import * as React from "react"
import * as TooltipPrimitive from "@radix-ui/react-tooltip"

import { cn } from "@/lib/utils"

const TooltipProvider = TooltipPrimitive.Provider

const Tooltip = TooltipPrimitive.Root

const TooltipTrigger = TooltipPrimitive.Trigger

const TooltipContent = React.forwardRef<
 React.ElementRef<typeof TooltipPrimitive.Content>,
 React.ComponentPropsWithoutRef<typeof TooltipPrimitive.Content>
>(({ className, sideOffset = 4, ...props }, ref) => (
 <TooltipPrimitive.Portal>
 <TooltipPrimitive.Content
 ref={ref}
 sideOffset={sideOffset}
 className={cn(

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 160 Maio 2025

 "z-50 overflow-hidden rounded-md bg-slate-900 px-3 py-1.5 text-xs t
ext-slate-50 animate-in fade-in-0 zoom-in-95 data-[state=closed]:animate-ou
t data-[state=closed]:fade-out-0 data-[state=closed]:zoom-out-95 data-[side
=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[s
ide=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2 dark
:bg-slate-50 dark:text-slate-900",
 className
)}
 {...props}
 />
 </TooltipPrimitive.Portal>
))
TooltipContent.displayName = TooltipPrimitive.Content.displayName

export { Tooltip, TooltipTrigger, TooltipContent, TooltipProvider }

/components/ui/alert.tsx

import * as React from "react";
import { cva, type VariantProps } from "class-variance-authority";

import { cn } from "@/lib/utils";

const alertVariants = cva(
 "relative w-full rounded-lg border px-4 py-3 text-sm [&>svg+div]:translat
e-y-[-3px] [&>svg]:absolute [&>svg]:left-4 [&>svg]:top-4 [&>svg]:text-slate
-950 [&>svg~*]:pl-7 dark:border-slate-800 dark:[&>svg]:text-slate-50",
 {
 variants: {
 variant: {
 default:
 "bg-background text-slate-950 bg-background dark:text-slate-50",
 destructive:
 "border-red-500/50 text-red-500 dark:border-red-500 [&>svg]:text-
red-500 dark:border-red-900/50 dark:text-red-900 dark:dark:border-red-900 d
ark:[&>svg]:text-red-900",
 },
 },
 defaultVariants: {
 variant: "default",
 },
 }
);

const Alert = React.forwardRef<
 HTMLDivElement,
 React.HTMLAttributes<HTMLDivElement> & VariantProps<typeof alertVariants>
>(({ className, variant, ...props }, ref) => (
 <div
 ref={ref}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 161 Maio 2025

 role="alert"
 className={cn(alertVariants({ variant }), className)}
 {...props}
 />
));
Alert.displayName = "Alert";

const AlertTitle = React.forwardRef<
 HTMLParagraphElement,
 React.HTMLAttributes<HTMLHeadingElement>
>(({ className, ...props }, ref) => (
 <h5
 ref={ref}
 className={cn("mb-1 font-medium leading-none tracking-tight", className
)}
 {...props}
 />
));
AlertTitle.displayName = "AlertTitle";

const AlertDescription = React.forwardRef<
 HTMLParagraphElement,
 React.HTMLAttributes<HTMLParagraphElement>
>(({ className, ...props }, ref) => (
 <div
 ref={ref}
 className={cn("text-sm [&_p]:leading-relaxed", className)}
 {...props}
 />
));
AlertDescription.displayName = "AlertDescription";

export { Alert, AlertTitle, AlertDescription };

/components/ui/switch.tsx

"use client";

import * as React from "react";
import * as SwitchPrimitives from "@radix-ui/react-switch";

import { cn } from "@/lib/utils";

const Switch = React.forwardRef<
 React.ElementRef<typeof SwitchPrimitives.Root>,
 React.ComponentPropsWithoutRef<typeof SwitchPrimitives.Root>
>(({ className, ...props }, ref) => (
 <SwitchPrimitives.Root
 className={cn(
 "peer inline-flex h-5 w-9 shrink-0 cursor-pointer items-center rounde

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 162 Maio 2025

d-full border-2 border-transparent shadow-sm transition-colors focus-visibl
e:outline-none focus-visible:ring-2 focus-visible:ring-slate-950 focus-visi
ble:ring-offset-2 focus-visible:ring-offset-white disabled:cursor-not-allow
ed disabled:opacity-50 data-[state=checked]:bg-slate-900 data-[state=unchec
ked]:bg-slate-200 dark:focus-visible:ring-primary dark:focus-visible:ring-o
ffset-slate-950 dark:data-[state=checked]:bg-slate-50 dark:data-[state=unch
ecked]:bg-slate-800",
 className
)}
 {...props}
 ref={ref}
 >
 <SwitchPrimitives.Thumb
 className={cn(
 "pointer-events-none block h-4 w-4 rounded-full bg-background shado
w-lg ring-0 transition-transform data-[state=checked]:translate-x-4 data-[s
tate=unchecked]:translate-x-0 bg-background"
)}
 />
 </SwitchPrimitives.Root>
));
Switch.displayName = SwitchPrimitives.Root.displayName;

export { Switch };

/components/ui/calendar.tsx

"use client";

import * as React from "react";
import { ChevronLeft, ChevronRight } from "lucide-react";
import { DayPicker } from "react-day-picker";

import { cn } from "@/lib/utils";
import { buttonVariants } from "@/components/ui/button";

export type CalendarProps = React.ComponentProps<typeof DayPicker>;

function Calendar({
 className,
 classNames,
 showOutsideDays = true,
 ...props
}: CalendarProps) {
 return (
 <DayPicker
 showOutsideDays={showOutsideDays}
 className={cn("p-3", className)}
 classNames={{
 months: "flex flex-col sm:flex-row space-y-4 sm:space-x-4 sm:space-

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 163 Maio 2025

y-0",
 month: "space-y-4",
 caption: "flex justify-center pt-1 relative items-center",
 caption_label: "text-sm font-medium",
 nav: "space-x-1 flex items-center",
 nav_button: cn(
 buttonVariants({ variant: "outline" }),
 "h-7 w-7 bg-transparent p-0 opacity-50 hover:opacity-100"
),
 nav_button_previous: "absolute left-1",
 nav_button_next: "absolute right-1",
 table: "w-full border-collapse space-y-1",
 head_row: "flex",
 head_cell:
 "text-slate-500 rounded-md w-8 font-normal text-[0.8rem] dark:tex
t-slate-400",
 row: "flex w-full mt-2",
 cell: cn(
 "relative p-0 text-center text-sm focus-within:relative focus-wit
hin:z-20 [&:has([aria-selected])]:bg-slate-100 [&:has([aria-selected].day-o
utside)]:bg-slate-100/50 [&:has([aria-selected].day-range-end)]:rounded-r-m
d dark:[&:has([aria-selected])]:bg-muted dark:[&:has([aria-selected].day-ou
tside)]:bg-muted/50",
 props.mode === "range"
 ? "[&:has(>.day-range-end)]:rounded-r-md [&:has(>.day-range-sta
rt)]:rounded-l-md first:[&:has([aria-selected])]:rounded-l-md last:[&:has([
aria-selected])]:rounded-r-md"
 : "[&:has([aria-selected])]:rounded-md"
),
 day: cn(
 buttonVariants({ variant: "ghost" }),
 "h-8 w-8 p-0 font-normal aria-selected:opacity-100"
),
 day_range_start: "day-range-start",
 day_range_end: "day-range-end",
 day_selected:
 "bg-primary text-primary-foreground hover:bg-primary hover:text-p
rimary-foreground",
 day_today: "border border-muted",
 day_outside:
 "invisible day-outside text-slate-500 aria-selected:bg-slate-100/
50 aria-selected:text-slate-500 dark:text-slate-400 dark:aria-selected:bg-m
uted/50 dark:aria-selected:text-slate-400",
 day_disabled: "text-muted-foreground opacity-50",
 day_range_middle:
 "aria-selected:bg-slate-100 aria-selected:text-slate-900 dark:ari
a-selected:bg-muted dark:aria-selected:text-slate-50",
 day_hidden: "invisible",
 ...classNames,
 }}
 components={{
 IconLeft: ({ ...props }) => <ChevronLeft className="h-4 w-4" />,
 IconRight: ({ ...props }) => <ChevronRight className="h-4 w-4" />,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 164 Maio 2025

 }}
 disabled={{ before: new Date() }}
 {...props}
 />
);
}
Calendar.displayName = "Calendar";

export { Calendar };

/components/ui/radio-group.tsx

"use client";

import * as React from "react";
import * as RadioGroupPrimitive from "@radix-ui/react-radio-group";
import { Circle } from "lucide-react";

import { cn } from "@/lib/utils";

const RadioGroup = React.forwardRef<
 React.ElementRef<typeof RadioGroupPrimitive.Root>,
 React.ComponentPropsWithoutRef<typeof RadioGroupPrimitive.Root>
>(({ className, ...props }, ref) => {
 return (
 <RadioGroupPrimitive.Root
 className={cn("grid gap-2", className)}
 {...props}
 ref={ref}
 />
);
});
RadioGroup.displayName = RadioGroupPrimitive.Root.displayName;

const RadioGroupItem = React.forwardRef<
 React.ElementRef<typeof RadioGroupPrimitive.Item>,
 React.ComponentPropsWithoutRef<typeof RadioGroupPrimitive.Item>
>(({ className, ...props }, ref) => {
 return (
 <RadioGroupPrimitive.Item
 ref={ref}
 className={cn(
 "aspect-square h-4 w-4 rounded-full border border-slate-900 text-sl
ate-900 shadow focus:outline-none focus-visible:ring-1 focus-visible:ring-s
late-950 disabled:cursor-not-allowed disabled:opacity-50 dark:border-slate-
800 dark:border-slate-50 dark:text-slate-50 dark:focus-visible:ring-primary
",
 className
)}
 {...props}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 165 Maio 2025

 >
 <RadioGroupPrimitive.Indicator className="flex items-center justify-c
enter">
 <Circle className="h-3.5 w-3.5 fill-primary" />
 </RadioGroupPrimitive.Indicator>
 </RadioGroupPrimitive.Item>
);
});
RadioGroupItem.displayName = RadioGroupPrimitive.Item.displayName;

export { RadioGroup, RadioGroupItem };

/components/ui/command.tsx

"use client";

import * as React from "react";
import { type DialogProps } from "@radix-ui/react-dialog";
import { Command as CommandPrimitive } from "cmdk";
import { Search } from "lucide-react";

import { cn } from "@/lib/utils";
import { Dialog, DialogContent } from "@/components/ui/dialog";

const Command = React.forwardRef<
 React.ElementRef<typeof CommandPrimitive>,
 React.ComponentPropsWithoutRef<typeof CommandPrimitive>
>(({ className, ...props }, ref) => (
 <CommandPrimitive
 ref={ref}
 className={cn(
 "flex h-full w-full flex-col overflow-hidden rounded-md bg-background
text-slate-950 bg-background dark:text-slate-50",
 className
)}
 {...props}
 />
));
Command.displayName = CommandPrimitive.displayName;

const CommandDialog = ({ children, ...props }: DialogProps) => {
 return (
 <Dialog {...props}>
 <DialogContent className="overflow-hidden p-0">
 <Command className="[&_[cmdk-group-heading]]:px-2 [&_[cmdk-group-he
ading]]:font-medium [&_[cmdk-group-heading]]:text-muted-foreground [&_[cmdk
-group]:not([hidden])_~[cmdk-group]]:pt-0 [&_[cmdk-group]]:px-2 [&_[cmdk-in
put-wrapper]_svg]:h-5 [&_[cmdk-input-wrapper]_svg]:w-5 [&_[cmdk-input]]:h-1
2 [&_[cmdk-item]]:px-2 [&_[cmdk-item]]:py-3 [&_[cmdk-item]_svg]:h-5 [&_[cmd
k-item]_svg]:w-5 dark:[&_[cmdk-group-heading]]:text-muted-foreground">

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 166 Maio 2025

 {children}
 </Command>
 </DialogContent>
 </Dialog>
);
};

const CommandInput = React.forwardRef<
 React.ElementRef<typeof CommandPrimitive.Input>,
 React.ComponentPropsWithoutRef<typeof CommandPrimitive.Input>
>(({ className, ...props }, ref) => (
 <div className="flex items-center border-b px-3" cmdk-input-wrapper="">
 <Search className="mr-2 h-4 w-4 shrink-0 opacity-50" />
 <CommandPrimitive.Input
 ref={ref}
 className={cn(
 "flex h-10 w-full rounded-md bg-transparent py-3 text-sm outline-no
ne placeholder:text-muted-foreground disabled:cursor-not-allowed disabled:o
pacity-50 dark:placeholder:text-muted-foreground",
 className
)}
 {...props}
 />
 </div>
));

CommandInput.displayName = CommandPrimitive.Input.displayName;

const CommandList = React.forwardRef<
 React.ElementRef<typeof CommandPrimitive.List>,
 React.ComponentPropsWithoutRef<typeof CommandPrimitive.List>
>(({ className, ...props }, ref) => (
 <CommandPrimitive.List
 ref={ref}
 className={cn("max-h-[300px] overflow-y-auto overflow-x-hidden", classN
ame)}
 {...props}
 />
));

CommandList.displayName = CommandPrimitive.List.displayName;

const CommandEmpty = React.forwardRef<
 React.ElementRef<typeof CommandPrimitive.Empty>,
 React.ComponentPropsWithoutRef<typeof CommandPrimitive.Empty>
>((props, ref) => (
 <CommandPrimitive.Empty
 ref={ref}
 className="py-6 text-center text-sm"
 {...props}
 />
));

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 167 Maio 2025

CommandEmpty.displayName = CommandPrimitive.Empty.displayName;

const CommandGroup = React.forwardRef<
 React.ElementRef<typeof CommandPrimitive.Group>,
 React.ComponentPropsWithoutRef<typeof CommandPrimitive.Group>
>(({ className, ...props }, ref) => (
 <CommandPrimitive.Group
 ref={ref}
 className={cn(
 "overflow-hidden p-1 text-slate-950 [&_[cmdk-group-heading]]:px-2 [&_
[cmdk-group-heading]]:py-1.5 [&_[cmdk-group-heading]]:text-xs [&_[cmdk-grou
p-heading]]:font-medium [&_[cmdk-group-heading]]:text-muted-foreground dark
:text-slate-50 dark:[&_[cmdk-group-heading]]:text-muted-foreground",
 className
)}
 {...props}
 />
));

CommandGroup.displayName = CommandPrimitive.Group.displayName;

const CommandSeparator = React.forwardRef<
 React.ElementRef<typeof CommandPrimitive.Separator>,
 React.ComponentPropsWithoutRef<typeof CommandPrimitive.Separator>
>(({ className, ...props }, ref) => (
 <CommandPrimitive.Separator
 ref={ref}
 className={cn("-mx-1 h-px bg-slate-200 dark:bg-slate-800", className)}
 {...props}
 />
));
CommandSeparator.displayName = CommandPrimitive.Separator.displayName;

const CommandItem = React.forwardRef<
 React.ElementRef<typeof CommandPrimitive.Item>,
 React.ComponentPropsWithoutRef<typeof CommandPrimitive.Item>
>(({ className, ...props }, ref) => (
 <CommandPrimitive.Item
 ref={ref}
 className={cn(
 "relative flex cursor-default gap-2 select-none items-center rounded-
sm px-2 py-1.5 text-sm outline-none data-[disabled=true]:pointer-events-non
e data-[selected=true]:bg-slate-100 data-[selected=true]:text-slate-900 dat
a-[disabled=true]:opacity-50 [&_svg]:pointer-events-none [&_svg]:size-4 [&_
svg]:shrink-0 dark:data-[selected=true]:bg-slate-800 dark:data-[selected=tr
ue]:text-slate-50",
 className
)}
 {...props}
 />
));

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 168 Maio 2025

CommandItem.displayName = CommandPrimitive.Item.displayName;

const CommandShortcut = ({
 className,
 ...props
}: React.HTMLAttributes<HTMLSpanElement>) => {
 return (
 <span
 className={cn(
 "ml-auto text-xs tracking-widest text-muted-foreground ",
 className
)}
 {...props}
 />
);
};
CommandShortcut.displayName = "CommandShortcut";

export {
 Command,
 CommandDialog,
 CommandInput,
 CommandList,
 CommandEmpty,
 CommandGroup,
 CommandItem,
 CommandShortcut,
 CommandSeparator,
};

/components/ui/avatar.tsx

"use client"

import * as React from "react"
import * as AvatarPrimitive from "@radix-ui/react-avatar"

import { cn } from "@/lib/utils"

const Avatar = React.forwardRef<
 React.ElementRef<typeof AvatarPrimitive.Root>,
 React.ComponentPropsWithoutRef<typeof AvatarPrimitive.Root>
>(({ className, ...props }, ref) => (
 <AvatarPrimitive.Root
 ref={ref}
 className={cn(
 "relative flex h-10 w-10 shrink-0 overflow-hidden rounded-full",
 className
)}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 169 Maio 2025

 {...props}
 />
))
Avatar.displayName = AvatarPrimitive.Root.displayName

const AvatarImage = React.forwardRef<
 React.ElementRef<typeof AvatarPrimitive.Image>,
 React.ComponentPropsWithoutRef<typeof AvatarPrimitive.Image>
>(({ className, ...props }, ref) => (
 <AvatarPrimitive.Image
 ref={ref}
 className={cn("aspect-square h-full w-full", className)}
 {...props}
 />
))
AvatarImage.displayName = AvatarPrimitive.Image.displayName

const AvatarFallback = React.forwardRef<
 React.ElementRef<typeof AvatarPrimitive.Fallback>,
 React.ComponentPropsWithoutRef<typeof AvatarPrimitive.Fallback>
>(({ className, ...props }, ref) => (
 <AvatarPrimitive.Fallback
 ref={ref}
 className={cn(
 "flex h-full w-full items-center justify-center rounded-full bg-slate
-100 dark:bg-slate-800",
 className
)}
 {...props}
 />
))
AvatarFallback.displayName = AvatarPrimitive.Fallback.displayName

export { Avatar, AvatarImage, AvatarFallback }

/components/ui/dialog.tsx

"use client";

import * as React from "react";
import * as DialogPrimitive from "@radix-ui/react-dialog";
import { X } from "lucide-react";

import { cn } from "@/lib/utils";

const Dialog = DialogPrimitive.Root;

const DialogTrigger = DialogPrimitive.Trigger;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 170 Maio 2025

const DialogPortal = DialogPrimitive.Portal;

const DialogClose = DialogPrimitive.Close;

const DialogOverlay = React.forwardRef<
 React.ElementRef<typeof DialogPrimitive.Overlay>,
 React.ComponentPropsWithoutRef<typeof DialogPrimitive.Overlay>
>(({ className, ...props }, ref) => (
 <DialogPrimitive.Overlay
 ref={ref}
 className={cn(
 "fixed inset-0 z-50 bg-black/80 data-[state=open]:animate-in data-[st
ate=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fa
de-in-0",
 className
)}
 {...props}
 />
));
DialogOverlay.displayName = DialogPrimitive.Overlay.displayName;

const DialogContent = React.forwardRef<
 React.ElementRef<typeof DialogPrimitive.Content>,
 React.ComponentPropsWithoutRef<typeof DialogPrimitive.Content>
>(({ className, children, ...props }, ref) => (
 <DialogPortal>
 <DialogOverlay />
 <DialogPrimitive.Content
 ref={ref}
 className={cn(
 "fixed left-[50%] top-[50%] z-50 grid w-full max-w-lg translate-x-[
-50%] translate-y-[-50%] gap-4 border bg-background p-6 shadow-lg duration-
200 data-[state=open]:animate-in data-[state=closed]:animate-out data-[stat
e=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:zoom-o
ut-95 data-[state=open]:zoom-in-95 data-[state=closed]:slide-out-to-left-1/
2 data-[state=closed]:slide-out-to-top-[48%] data-[state=open]:slide-in-fro
m-left-1/2 data-[state=open]:slide-in-from-top-[48%] sm:rounded-lg",
 className
)}
 {...props}
 >
 {children}
 <DialogPrimitive.Close className="absolute right-4 top-4 rounded-sm o
pacity-70 ring-offset-white transition-opacity hover:opacity-100 focus:outl
ine-none focus:ring-2 focus:ring-slate-950 focus:ring-offset-2 disabled:poi
nter-events-none data-[state=open]:bg-slate-100 data-[state=open]:text-mute
d-foreground dark:ring-offset-slate-950 dark:focus:ring-slate-300 dark:data
-[state=open]:bg-slate-800 dark:data-[state=open]:text-muted-foreground">
 <X className="h-4 w-4" />
 Close
 </DialogPrimitive.Close>
 </DialogPrimitive.Content>
 </DialogPortal>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 171 Maio 2025

));
DialogContent.displayName = DialogPrimitive.Content.displayName;

const DialogHeader = ({
 className,
 ...props
}: React.HTMLAttributes<HTMLDivElement>) => (
 <div
 className={cn(
 "flex flex-col space-y-1.5 text-center sm:text-left",
 className
)}
 {...props}
 />
);
DialogHeader.displayName = "DialogHeader";

const DialogFooter = ({
 className,
 ...props
}: React.HTMLAttributes<HTMLDivElement>) => (
 <div
 className={cn(
 "mt-5 flex gap-2 flex-col-reverse sm:flex-row sm:justify-between sm:
space-x-2",
 className
)}
 {...props}
 />
);
DialogFooter.displayName = "DialogFooter";

const DialogTitle = React.forwardRef<
 React.ElementRef<typeof DialogPrimitive.Title>,
 React.ComponentPropsWithoutRef<typeof DialogPrimitive.Title>
>(({ className, ...props }, ref) => (
 <DialogPrimitive.Title
 ref={ref}
 className={cn(
 "text-lg font-semibold leading-none tracking-tight",
 className
)}
 {...props}
 />
));
DialogTitle.displayName = DialogPrimitive.Title.displayName;

const DialogDescription = React.forwardRef<
 React.ElementRef<typeof DialogPrimitive.Description>,
 React.ComponentPropsWithoutRef<typeof DialogPrimitive.Description>
>(({ className, ...props }, ref) => (
 <DialogPrimitive.Description

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 172 Maio 2025

 ref={ref}
 className={cn("text-sm text-muted-foreground", className)}
 {...props}
 />
));
DialogDescription.displayName = DialogPrimitive.Description.displayName;

export {
 Dialog,
 DialogPortal,
 DialogOverlay,
 DialogTrigger,
 DialogClose,
 DialogContent,
 DialogHeader,
 DialogFooter,
 DialogTitle,
 DialogDescription,
};

/components/ui/badge.tsx

import * as React from "react";
import { cva, type VariantProps } from "class-variance-authority";

import { cn } from "@/lib/utils";

const badgeVariants = cva(
 "inline-flex items-center rounded-md border px-2.5 py-0.5 text-xs font-se
mibold transition-colors focus:outline-none focus:ring-2 focus:ring-slate-9
50 focus:ring-offset-2 dark:border-slate-800 dark:focus:ring-slate-300",
 {
 variants: {
 variant: {
 default:
 "border-transparent bg-slate-900 text-slate-50 shadow hover:bg-sl
ate-900/80 dark:bg-slate-50 dark:text-slate-900 dark:hover:bg-slate-50/80",
 secondary:
 "border-transparent bg-slate-100 text-slate-900 hover:bg-muted/80
dark:bg-slate-800 dark:text-slate-50 dark:hover:bg-slate-800/80",
 destructive:
 "border-transparent bg-red-500 text-slate-50 shadow hover:bg-red-
500/80 dark:bg-red-900 dark:text-slate-50 dark:hover:bg-red-900/80",
 outline: "text-slate-950 dark:text-slate-50",
 },
 },
 defaultVariants: {
 variant: "default",
 },
 }

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 173 Maio 2025

);

export interface BadgeProps
 extends React.HTMLAttributes<HTMLDivElement>,
 VariantProps<typeof badgeVariants> {}

function Badge({ className, variant, ...props }: BadgeProps) {
 return (
 <div className={cn(badgeVariants({ variant }), className)} {...props} /
>
);
}

export { Badge, badgeVariants };

/components/ui/table.tsx

import * as React from "react";

import { cn } from "@/lib/utils";

const Table = React.forwardRef<
 HTMLTableElement,
 React.HTMLAttributes<HTMLTableElement>
>(({ className, ...props }, ref) => (
 <div className="relative w-full overflow-auto">
 <table
 ref={ref}
 className={cn("w-full caption-bottom text-sm", className)}
 {...props}
 />
 </div>
));
Table.displayName = "Table";

const TableHeader = React.forwardRef<
 HTMLTableSectionElement,
 React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
 <thead ref={ref} className={cn("[&_tr]:border-b", className)} {...props}
/>
));
TableHeader.displayName = "TableHeader";

const TableBody = React.forwardRef<
 HTMLTableSectionElement,
 React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
 <tbody
 ref={ref}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 174 Maio 2025

 className={cn("[&_tr:last-child]:border-0", className)}
 {...props}
 />
));
TableBody.displayName = "TableBody";

const TableFooter = React.forwardRef<
 HTMLTableSectionElement,
 React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
 <tfoot
 ref={ref}
 className={cn(
 "border-t bg-slate-100/50 font-medium [&>tr]:last:border-b-0 dark:bg-
slate-800/50",
 className
)}
 {...props}
 />
));
TableFooter.displayName = "TableFooter";

const TableRow = React.forwardRef<
 HTMLTableRowElement,
 React.HTMLAttributes<HTMLTableRowElement>
>(({ className, ...props }, ref) => (
 <tr
 ref={ref}
 className={cn(
 "border-b transition-colors hover:bg-muted/50 data-[state=selected]:b
g-slate-100 dark:hover:bg-slate-800/50 dark:data-[state=selected]:bg-slate-
800",
 className
)}
 {...props}
 />
));
TableRow.displayName = "TableRow";

const TableHead = React.forwardRef<
 HTMLTableCellElement,
 React.ThHTMLAttributes<HTMLTableCellElement>
>(({ className, ...props }, ref) => (
 <th
 ref={ref}
 className={cn(
 "h-10 px-2 text-left align-middle font-medium text-muted-foreground [
&:has([role=checkbox])]:pr-0 [&>[role=checkbox]]:translate-y-[2px] ",
 className
)}
 {...props}
 />
));

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 175 Maio 2025

TableHead.displayName = "TableHead";

const TableCell = React.forwardRef<
 HTMLTableCellElement,
 React.TdHTMLAttributes<HTMLTableCellElement>
>(({ className, ...props }, ref) => (
 <td
 ref={ref}
 className={cn(
 "p-2 align-middle [&:has([role=checkbox])]:pr-0 [&>[role=checkbox]]:t
ranslate-y-[2px]",
 className
)}
 {...props}
 />
));
TableCell.displayName = "TableCell";

const TableCaption = React.forwardRef<
 HTMLTableCaptionElement,
 React.HTMLAttributes<HTMLTableCaptionElement>
>(({ className, ...props }, ref) => (
 <caption
 ref={ref}
 className={cn("mt-4 text-sm text-muted-foreground ", className)}
 {...props}
 />
));
TableCaption.displayName = "TableCaption";

export {
 Table,
 TableHeader,
 TableBody,
 TableFooter,
 TableHead,
 TableRow,
 TableCell,
 TableCaption,
};

/components/ui/separator.tsx

"use client";

import * as React from "react";
import * as SeparatorPrimitive from "@radix-ui/react-separator";

import { cn } from "@/lib/utils";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 176 Maio 2025

const Separator = React.forwardRef<
 React.ElementRef<typeof SeparatorPrimitive.Root>,
 React.ComponentPropsWithoutRef<typeof SeparatorPrimitive.Root>
>(
 (
 { className, orientation = "horizontal", decorative = true, ...props },
 ref
) => (
 <SeparatorPrimitive.Root
 ref={ref}
 decorative={decorative}
 orientation={orientation}
 className={cn(
 "shrink-0 bg-border",
 orientation === "horizontal" ? "h-[1px] w-full" : "h-full w-[1px]",
 className
)}
 {...props}
 />
)
);
Separator.displayName = SeparatorPrimitive.Root.displayName;

export { Separator };

/components/ui/button.tsx

import * as React from "react";
import { Slot } from "@radix-ui/react-slot";
import { cva, type VariantProps } from "class-variance-authority";

import { cn } from "@/lib/utils";

const buttonVariants = cva(
 "inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-
md text-sm font-medium transition-colors focus-visible:outline-none focus-v
isible:ring-1 focus-visible:ring-primary disabled:pointer-events-none disab
led:opacity-50 [&_svg]:pointer-events-none [&_svg]:size-4 [&_svg]:shrink-0"
,
 {
 variants: {
 variant: {
 default:
 "bg-primary text-primary-foreground shadow hover:bg-primary/90 fo
cus-visible:ring-white",
 destructive:
 "bg-red-500 text-slate-50 shadow-sm hover:bg-red-500/90 dark:bg-r
ed-900 dark:text-slate-50 dark:hover:bg-red-900/90",
 outline: "border shadow-sm hover:bg-accent",
 secondary: "bg-accent/70 text-foreground shadow-sm hover:bg-accent"

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 177 Maio 2025

,
 ghost:
 "hover:bg-accent hover:text-accent-foreground ring-1 ring-transpa
rent focus-visible:ring-1",
 link: "text-slate-900 underline-offset-4 hover:underline dark:text-
slate-50",
 none: "",
 },
 size: {
 default: "h-9 px-4 py-2",
 sm: "h-8 rounded-md px-3 text-xs",
 lg: "h-10 rounded-md px-8",
 icon: "h-9 w-9",
 },
 },
 defaultVariants: {
 variant: "default",
 size: "default",
 },
 }
);

export interface ButtonProps
 extends React.ButtonHTMLAttributes<HTMLButtonElement>,
 VariantProps<typeof buttonVariants> {
 asChild?: boolean;
}

const Button = React.forwardRef<HTMLButtonElement, ButtonProps>(
 ({ className, variant, size, asChild = false, ...props }, ref) => {
 const Comp = asChild ? Slot : "button";
 return (
 <Comp
 className={cn(buttonVariants({ variant, size, className }))}
 ref={ref}
 {...props}
 />
);
 }
);
Button.displayName = "Button";

export { Button, buttonVariants };

/components/ui/checkbox.tsx

"use client";

import * as React from "react";
import * as CheckboxPrimitive from "@radix-ui/react-checkbox";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 178 Maio 2025

import { Check } from "lucide-react";

import { cn } from "@/lib/utils";

const Checkbox = React.forwardRef<
 React.ElementRef<typeof CheckboxPrimitive.Root>,
 React.ComponentPropsWithoutRef<typeof CheckboxPrimitive.Root>
>(({ className, ...props }, ref) => (
 <CheckboxPrimitive.Root
 ref={ref}
 className={cn(
 "peer h-4 w-4 shrink-0 rounded-sm border border-slate-900 shadow focu
s-visible:outline-none focus-visible:ring-1 focus-visible:ring-slate-950 di
sabled:cursor-not-allowed disabled:opacity-50 data-[state=checked]:bg-slate
-900 data-[state=checked]:text-slate-50 dark:border-slate-800 dark:border-s
late-50 dark:focus-visible:ring-primary dark:data-[state=checked]:bg-slate-
50 dark:data-[state=checked]:text-slate-900",
 className
)}
 {...props}
 >
 <CheckboxPrimitive.Indicator
 className={cn("flex items-center justify-center text-current")}
 >
 <Check className="h-4 w-4" />
 </CheckboxPrimitive.Indicator>
 </CheckboxPrimitive.Root>
));
Checkbox.displayName = CheckboxPrimitive.Root.displayName;

export { Checkbox };

/components/ui/collapsible.tsx

"use client"

import * as CollapsiblePrimitive from "@radix-ui/react-collapsible"

const Collapsible = CollapsiblePrimitive.Root

const CollapsibleTrigger = CollapsiblePrimitive.CollapsibleTrigger

const CollapsibleContent = CollapsiblePrimitive.CollapsibleContent

export { Collapsible, CollapsibleTrigger, CollapsibleContent }

/components/ui/dropdown-menu.tsx

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 179 Maio 2025

"use client";

import * as React from "react";
import * as DropdownMenuPrimitive from "@radix-ui/react-dropdown-menu";
import { Check, ChevronRight, Circle } from "lucide-react";

import { cn } from "@/lib/utils";

const DropdownMenu = DropdownMenuPrimitive.Root;

const DropdownMenuTrigger = DropdownMenuPrimitive.Trigger;

const DropdownMenuGroup = DropdownMenuPrimitive.Group;

const DropdownMenuPortal = DropdownMenuPrimitive.Portal;

const DropdownMenuSub = DropdownMenuPrimitive.Sub;

const DropdownMenuRadioGroup = DropdownMenuPrimitive.RadioGroup;

const DropdownMenuSubTrigger = React.forwardRef<
 React.ElementRef<typeof DropdownMenuPrimitive.SubTrigger>,
 React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.SubTrigger> &
{
 inset?: boolean;
 }
>(({ className, inset, children, ...props }, ref) => (
 <DropdownMenuPrimitive.SubTrigger
 ref={ref}
 className={cn(
 "flex cursor-default gap-2 select-none items-center rounded-sm px-2 p
y-1.5 text-sm outline-none focus:bg-slate-100 data-[state=open]:bg-slate-10
0 [&_svg]:pointer-events-none [&_svg]:size-4 [&_svg]:shrink-0 dark:focus:bg
-slate-800 dark:data-[state=open]:bg-slate-800",
 inset && "pl-8",
 className
)}
 {...props}
 >
 {children}
 <ChevronRight className="ml-auto" />
 </DropdownMenuPrimitive.SubTrigger>
));
DropdownMenuSubTrigger.displayName =
 DropdownMenuPrimitive.SubTrigger.displayName;

const DropdownMenuSubContent = React.forwardRef<
 React.ElementRef<typeof DropdownMenuPrimitive.SubContent>,
 React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.SubContent>
>(({ className, ...props }, ref) => (
 <DropdownMenuPrimitive.SubContent

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 180 Maio 2025

 ref={ref}
 className={cn(
 "z-50 min-w-[8rem] bg-background overflow-hidden rounded-md border p-
1 shadow-lg data-[state=open]:animate-in data-[state=closed]:animate-out da
ta-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed
]:zoom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-in-from
-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-fr
om-left-2 data-[side=top]:slide-in-from-bottom-2",
 className
)}
 {...props}
 />
));
DropdownMenuSubContent.displayName =
 DropdownMenuPrimitive.SubContent.displayName;

const DropdownMenuContent = React.forwardRef<
 React.ElementRef<typeof DropdownMenuPrimitive.Content>,
 React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.Content>
>(({ className, sideOffset = 4, ...props }, ref) => (
 <DropdownMenuPrimitive.Portal>
 <DropdownMenuPrimitive.Content
 ref={ref}
 sideOffset={sideOffset}
 className={cn(
 "z-50 min-w-[8rem] bg-background overflow-hidden rounded-md border
p-1 shadow-md",
 "data-[state=open]:animate-in data-[state=closed]:animate-out data-
[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:z
oom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-in-from-to
p-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-
left-2 data-[side=top]:slide-in-from-bottom-2",
 className
)}
 {...props}
 />
 </DropdownMenuPrimitive.Portal>
));
DropdownMenuContent.displayName = DropdownMenuPrimitive.Content.displayName
;

const DropdownMenuItem = React.forwardRef<
 React.ElementRef<typeof DropdownMenuPrimitive.Item>,
 React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.Item> & {
 inset?: boolean;
 }
>(({ className, inset, ...props }, ref) => (
 <DropdownMenuPrimitive.Item
 ref={ref}
 className={cn(
 "relative flex cursor-default select-none items-center gap-2 rounded-
sm px-2 py-1.5 text-sm outline-none transition-colors hover:bg-accent data-
[disabled]:pointer-events-none data-[disabled]:opacity-50 [&>svg]:size-4 [&

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 181 Maio 2025

>svg]:shrink-0",
 inset && "pl-8",
 className
)}
 {...props}
 />
));
DropdownMenuItem.displayName = DropdownMenuPrimitive.Item.displayName;

const DropdownMenuCheckboxItem = React.forwardRef<
 React.ElementRef<typeof DropdownMenuPrimitive.CheckboxItem>,
 React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.CheckboxItem>
>(({ className, children, checked, ...props }, ref) => (
 <DropdownMenuPrimitive.CheckboxItem
 ref={ref}
 className={cn(
 "relative flex cursor-default select-none items-center rounded-sm py-
1.5 pl-8 pr-2 text-sm outline-none transition-colors hover:bg-accent data-[
disabled]:pointer-events-none data-[disabled]:opacity-50",
 className
)}
 checked={checked}
 {...props}
 >
 <span className="absolute left-2 flex h-3.5 w-3.5 items-center justify-
center">
 <DropdownMenuPrimitive.ItemIndicator>
 <Check className="h-4 w-4" />
 </DropdownMenuPrimitive.ItemIndicator>

 {children}
 </DropdownMenuPrimitive.CheckboxItem>
));
DropdownMenuCheckboxItem.displayName =
 DropdownMenuPrimitive.CheckboxItem.displayName;

const DropdownMenuRadioItem = React.forwardRef<
 React.ElementRef<typeof DropdownMenuPrimitive.RadioItem>,
 React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.RadioItem>
>(({ className, children, ...props }, ref) => (
 <DropdownMenuPrimitive.RadioItem
 ref={ref}
 className={cn(
 "relative flex cursor-default select-none items-center rounded-sm py-
1.5 pl-8 pr-2 text-sm outline-none transition-colors focus:bg-slate-100 foc
us:text-slate-900 data-[disabled]:pointer-events-none data-[disabled]:opaci
ty-50 dark:focus:bg-slate-800 dark:focus:text-slate-50",
 className
)}
 {...props}
 >
 <span className="absolute left-2 flex h-3.5 w-3.5 items-center justify-
center">

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 182 Maio 2025

 <DropdownMenuPrimitive.ItemIndicator>
 <Circle className="h-2 w-2 fill-current" />
 </DropdownMenuPrimitive.ItemIndicator>

 {children}
 </DropdownMenuPrimitive.RadioItem>
));
DropdownMenuRadioItem.displayName = DropdownMenuPrimitive.RadioItem.display
Name;

const DropdownMenuLabel = React.forwardRef<
 React.ElementRef<typeof DropdownMenuPrimitive.Label>,
 React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.Label> & {
 inset?: boolean;
 }
>(({ className, inset, ...props }, ref) => (
 <DropdownMenuPrimitive.Label
 ref={ref}
 className={cn(
 "px-2 py-1.5 text-sm font-semibold",
 inset && "pl-8",
 className
)}
 {...props}
 />
));
DropdownMenuLabel.displayName = DropdownMenuPrimitive.Label.displayName;

const DropdownMenuSeparator = React.forwardRef<
 React.ElementRef<typeof DropdownMenuPrimitive.Separator>,
 React.ComponentPropsWithoutRef<typeof DropdownMenuPrimitive.Separator>
>(({ className, ...props }, ref) => (
 <DropdownMenuPrimitive.Separator
 ref={ref}
 className={cn("-mx-1 my-1 h-px bg-border", className)}
 {...props}
 />
));
DropdownMenuSeparator.displayName = DropdownMenuPrimitive.Separator.display
Name;

const DropdownMenuShortcut = ({
 className,
 ...props
}: React.HTMLAttributes<HTMLSpanElement>) => {
 return (
 <span
 className={cn("ml-auto text-xs tracking-widest opacity-60", className
)}
 {...props}
 />
);
};

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 183 Maio 2025

DropdownMenuShortcut.displayName = "DropdownMenuShortcut";

export {
 DropdownMenu,
 DropdownMenuTrigger,
 DropdownMenuContent,
 DropdownMenuItem,
 DropdownMenuCheckboxItem,
 DropdownMenuRadioItem,
 DropdownMenuLabel,
 DropdownMenuSeparator,
 DropdownMenuShortcut,
 DropdownMenuGroup,
 DropdownMenuPortal,
 DropdownMenuSub,
 DropdownMenuSubContent,
 DropdownMenuSubTrigger,
 DropdownMenuRadioGroup,
};

/components/ui/select.tsx

"use client";

import * as React from "react";
import * as SelectPrimitive from "@radix-ui/react-select";
import { Check, ChevronDown, ChevronUp } from "lucide-react";

import { cn } from "@/lib/utils";

const Select = SelectPrimitive.Root;

const SelectGroup = SelectPrimitive.Group;

const SelectValue = SelectPrimitive.Value;

const SelectTrigger = React.forwardRef<
 React.ElementRef<typeof SelectPrimitive.Trigger>,
 React.ComponentPropsWithoutRef<typeof SelectPrimitive.Trigger>
>(({ className, children, ...props }, ref) => (
 <SelectPrimitive.Trigger
 ref={ref}
 className={cn(
 "flex h-9 items-center justify-between whitespace-nowrap rounded-md b
order bg-transparent px-3 py-2 text-sm shadow-sm ring-offset-white placehol
der:text-muted-foreground focus:outline-none focus:ring-1 focus:ring-slate-
950 disabled:cursor-not-allowed disabled:opacity-50 [&>span]:line-clamp-1",
 className
)}
 {...props}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 184 Maio 2025

 >
 {children}
 <SelectPrimitive.Icon asChild>
 <ChevronDown className="h-4 w-4 opacity-50" />
 </SelectPrimitive.Icon>
 </SelectPrimitive.Trigger>
));
SelectTrigger.displayName = SelectPrimitive.Trigger.displayName;

const SelectScrollUpButton = React.forwardRef<
 React.ElementRef<typeof SelectPrimitive.ScrollUpButton>,
 React.ComponentPropsWithoutRef<typeof SelectPrimitive.ScrollUpButton>
>(({ className, ...props }, ref) => (
 <SelectPrimitive.ScrollUpButton
 ref={ref}
 className={cn(
 "flex cursor-default items-center justify-center py-1",
 className
)}
 {...props}
 >
 <ChevronUp className="h-4 w-4" />
 </SelectPrimitive.ScrollUpButton>
));
SelectScrollUpButton.displayName = SelectPrimitive.ScrollUpButton.displayNa
me;

const SelectScrollDownButton = React.forwardRef<
 React.ElementRef<typeof SelectPrimitive.ScrollDownButton>,
 React.ComponentPropsWithoutRef<typeof SelectPrimitive.ScrollDownButton>
>(({ className, ...props }, ref) => (
 <SelectPrimitive.ScrollDownButton
 ref={ref}
 className={cn(
 "flex cursor-default items-center justify-center py-1",
 className
)}
 {...props}
 >
 <ChevronDown className="h-4 w-4" />
 </SelectPrimitive.ScrollDownButton>
));
SelectScrollDownButton.displayName =
 SelectPrimitive.ScrollDownButton.displayName;

const SelectContent = React.forwardRef<
 React.ElementRef<typeof SelectPrimitive.Content>,
 React.ComponentPropsWithoutRef<typeof SelectPrimitive.Content>
>(({ className, children, position = "popper", ...props }, ref) => (
 <SelectPrimitive.Portal>
 <SelectPrimitive.Content
 ref={ref}
 className={cn(

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 185 Maio 2025

 "relative z-50 max-h-96 min-w-[8rem] overflow-hidden rounded-md bor
der bg-background text-foreground shadow-md data-[state=open]:animate-in da
ta-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=op
en]:fade-in-0 data-[state=closed]:zoom-out-95 data-[state=open]:zoom-in-95
data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right
-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bot
tom-2",
 position === "popper" &&
 "data-[side=bottom]:translate-y-1 data-[side=left]:-translate-x-1
data-[side=right]:translate-x-1 data-[side=top]:-translate-y-1",
 className
)}
 position={position}
 {...props}
 >
 <SelectScrollUpButton />
 <SelectPrimitive.Viewport
 className={cn(
 "p-1",
 position === "popper" &&
 "h-[var(--radix-select-trigger-height)] w-full min-w-[var(--rad
ix-select-trigger-width)]"
)}
 >
 {children}
 </SelectPrimitive.Viewport>
 <SelectScrollDownButton />
 </SelectPrimitive.Content>
 </SelectPrimitive.Portal>
));
SelectContent.displayName = SelectPrimitive.Content.displayName;

const SelectLabel = React.forwardRef<
 React.ElementRef<typeof SelectPrimitive.Label>,
 React.ComponentPropsWithoutRef<typeof SelectPrimitive.Label>
>(({ className, ...props }, ref) => (
 <SelectPrimitive.Label
 ref={ref}
 className={cn("px-2 py-1.5 text-sm font-semibold", className)}
 {...props}
 />
));
SelectLabel.displayName = SelectPrimitive.Label.displayName;

const SelectItem = React.forwardRef<
 React.ElementRef<typeof SelectPrimitive.Item>,
 React.ComponentPropsWithoutRef<typeof SelectPrimitive.Item>
>(({ className, children, ...props }, ref) => (
 <SelectPrimitive.Item
 ref={ref}
 className={cn(
 "relative flex w-full hover:bg-accent cursor-default select-none item
s-center rounded-sm py-1.5 pl-2 pr-8 text-sm outline-none data-[disabled]:p

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 186 Maio 2025

ointer-events-none data-[disabled]:opacity-50 ",
 className
)}
 {...props}
 >
 <span className="absolute right-2 flex h-3.5 w-3.5 items-center justify
-center">
 <SelectPrimitive.ItemIndicator>
 <Check className="h-4 w-4" />
 </SelectPrimitive.ItemIndicator>

 <SelectPrimitive.ItemText>{children}</SelectPrimitive.ItemText>
 </SelectPrimitive.Item>
));
SelectItem.displayName = SelectPrimitive.Item.displayName;

const SelectSeparator = React.forwardRef<
 React.ElementRef<typeof SelectPrimitive.Separator>,
 React.ComponentPropsWithoutRef<typeof SelectPrimitive.Separator>
>(({ className, ...props }, ref) => (
 <SelectPrimitive.Separator
 ref={ref}
 className={cn("-mx-1 my-1 h-px bg-background", className)}
 {...props}
 />
));
SelectSeparator.displayName = SelectPrimitive.Separator.displayName;

export {
 Select,
 SelectGroup,
 SelectValue,
 SelectTrigger,
 SelectContent,
 SelectLabel,
 SelectItem,
 SelectSeparator,
 SelectScrollUpButton,
 SelectScrollDownButton,
};

/components/ui/textarea.tsx

import * as React from "react";

import { cn } from "@/lib/utils";

const Textarea = React.forwardRef<
 HTMLTextAreaElement,
 React.ComponentProps<"textarea">

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 187 Maio 2025

>(({ className, ...props }, ref) => {
 return (
 <textarea
 className={cn(
 "flex min-h-[60px] w-full rounded-md border bg-background px-3 py-2
text-base shadow-sm placeholder:text-muted-foreground focus-visible:outline
-none focus-visible:ring-1 focus-visible:ring-primary disabled:cursor-not-a
llowed disabled:opacity-50 md:text-sm",
 className
)}
 ref={ref}
 {...props}
 />
);
});
Textarea.displayName = "Textarea";

export { Textarea };

/components/ui/input.tsx

import * as React from "react";

import { cn } from "@/lib/utils";

const Input = React.forwardRef<HTMLInputElement, React.ComponentProps<"inpu
t">>(
 ({ className, type, ...props }, ref) => {
 return (
 <input
 type={type}
 className={cn(
 "flex h-9 w-full rounded-md border bg-background px-3 py-1 text-b
ase shadow-sm transition-colors file:border-0 file:bg-transparent file:text
-sm file:font-medium file:text-slate-950 placeholder:text-muted-foreground
focus-visible:outline-none focus-visible:ring-primary focus-visible:ring-1
disabled:cursor-not-allowed disabled:opacity-50 md:text-sm dark:file:text-s
late-50 dark:placeholder:text-muted-foreground",
 className
)}
 ref={ref}
 {...props}
 />
);
 }
);
Input.displayName = "Input";

export { Input };

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 188 Maio 2025

/components/ui/form.tsx

"use client";

import * as React from "react";
import * as LabelPrimitive from "@radix-ui/react-label";
import { Slot } from "@radix-ui/react-slot";
import {
 Controller,
 ControllerProps,
 FieldPath,
 FieldValues,
 FormProvider,
 useFormContext,
} from "react-hook-form";

import { cn } from "@/lib/utils";
import { Label } from "@/components/ui/label";

const Form = FormProvider;

type FormFieldContextValue<
 TFieldValues extends FieldValues = FieldValues,
 TName extends FieldPath<TFieldValues> = FieldPath<TFieldValues>
> = {
 name: TName;
};

const FormFieldContext = React.createContext<FormFieldContextValue>(
 {} as FormFieldContextValue
);

const FormField = <
 TFieldValues extends FieldValues = FieldValues,
 TName extends FieldPath<TFieldValues> = FieldPath<TFieldValues>
>({
 ...props
}: ControllerProps<TFieldValues, TName>) => {
 return (
 <FormFieldContext.Provider value={{ name: props.name }}>
 <Controller {...props} />
 </FormFieldContext.Provider>
);
};

const useFormField = () => {
 const fieldContext = React.useContext(FormFieldContext);
 const itemContext = React.useContext(FormItemContext);
 const { getFieldState, formState } = useFormContext();

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 189 Maio 2025

 const fieldState = getFieldState(fieldContext.name, formState);

 if (!fieldContext) {
 throw new Error("useFormField should be used within <FormField>");
 }

 const { id } = itemContext;

 return {
 id,
 name: fieldContext.name,
 formItemId: `${id}-form-item`,
 formDescriptionId: `${id}-form-item-description`,
 formMessageId: `${id}-form-item-message`,
 ...fieldState,
 };
};

type FormItemContextValue = {
 id: string;
};

const FormItemContext = React.createContext<FormItemContextValue>(
 {} as FormItemContextValue
);

const FormItem = React.forwardRef<
 HTMLDivElement,
 React.HTMLAttributes<HTMLDivElement>
>(({ className, ...props }, ref) => {
 const id = React.useId();

 return (
 <FormItemContext.Provider value={{ id }}>
 <div ref={ref} className={className} {...props} />
 </FormItemContext.Provider>
);
});
FormItem.displayName = "FormItem";

const FormLabel = React.forwardRef<
 React.ElementRef<typeof LabelPrimitive.Root>,
 React.ComponentPropsWithoutRef<typeof LabelPrimitive.Root>
>(({ className, ...props }, ref) => {
 const { error, formItemId } = useFormField();

 return (
 <Label
 ref={ref}
 className={cn(error && "text-red-500 dark:text-red-900", className)}
 htmlFor={formItemId}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 190 Maio 2025

 {...props}
 />
);
});
FormLabel.displayName = "FormLabel";

const FormControl = React.forwardRef<
 React.ElementRef<typeof Slot>,
 React.ComponentPropsWithoutRef<typeof Slot>
>(({ ...props }, ref) => {
 const { error, formItemId, formDescriptionId, formMessageId } =
 useFormField();

 return (
 <Slot
 ref={ref}
 id={formItemId}
 aria-describedby={
 !error
 ? `${formDescriptionId}`
 : `${formDescriptionId} ${formMessageId}`
 }
 aria-invalid={!!error}
 {...props}
 />
);
});
FormControl.displayName = "FormControl";

const FormDescription = React.forwardRef<
 HTMLParagraphElement,
 React.HTMLAttributes<HTMLParagraphElement>
>(({ className, ...props }, ref) => {
 const { formDescriptionId } = useFormField();

 return (
 <p
 ref={ref}
 id={formDescriptionId}
 className={cn("text-[0.8rem] text-muted-foreground ", className)}
 {...props}
 />
);
});
FormDescription.displayName = "FormDescription";

const FormMessage = React.forwardRef<
 HTMLParagraphElement,
 React.HTMLAttributes<HTMLParagraphElement>
>(({ className, children, ...props }, ref) => {
 const { error, formMessageId } = useFormField();
 const body = error ? String(error?.message) : children;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 191 Maio 2025

 if (!body) {
 return null;
 }

 return (
 <p
 ref={ref}
 id={formMessageId}
 className={cn(
 "text-[0.8rem] font-medium text-red-500 dark:text-red-900",
 className
)}
 {...props}
 >
 {body}
 </p>
);
});
FormMessage.displayName = "FormMessage";

export {
 useFormField,
 Form,
 FormItem,
 FormLabel,
 FormControl,
 FormDescription,
 FormMessage,
 FormField,
};

/components/contacts-page-skeleton.tsx

"use client";

import React from "react";
import ChildrenPanel from "./shared/children-panel";
import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { useLayout } from "@/contexts/use-layout";
import { useTranslation } from "react-i18next";

import { cn } from "@/lib/utils";
import { useIsMobile } from "@/hooks/use-mobile";
import { PageHeader } from "./headers";
import Skeleton from "react-loading-skeleton";
import "react-loading-skeleton/dist/skeleton.css";
import { Button } from "./ui/button";
import { ArrowLeft, Edit, Share, Trash2, X } from "lucide-react";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 192 Maio 2025

export default function ContactsPageSkeleton() {
 const { layout, fallbackLayout, amountIndicators } = useLayout();
 const { t } = useTranslation(["contacts-page", "common"]);
 const onMobile = useIsMobile();
 const selected = null;
 const skeletonsAmount: number =
 typeof amountIndicators?.contacts === "number"
 ? amountIndicators?.contacts
 : 4;
 return (
 <>
 <ResizablePanel
 className={cn(onMobile && selected !== null && "hidden")} // If we
are on mobile and a message is selected we only want to show the column con
taining the selected message.
 // Check if the layout is a 3-column middle-bar panel. Use the prev
ious 3-column layout if available; otherwise, render the fallback for diffe
rent or undefined layouts.
 defaultSize={
 Array.isArray(layout) && layout.length === 3
 ? layout[1]
 : fallbackLayout[1]
 }
 minSize={22}
 maxSize={50}
 >
 <PageHeader title={t(`header`)} />

 <div className="rounded-md p-4 h-[68px]">
 <Skeleton className="h-9" style={{ borderRadius: "0.375rem" }} />
 </div>

 <div className="flex flex-col gap-2 p-4 pt-0 mt-2 overflow-hidden">
 {skeletonsAmount > 0 ? (
 // Math.min() makes it so that the maximum will be x, even if t
he variable has a larger number
 Array.from({ length: Math.min(skeletonsAmount, 10) }).map(
 (_, i) => {
 return <ContactSkeleton key={i} />;
 }
)
) : (
 <div className="p-8 text-center text-muted-foreground">
 <Skeleton className="w-full" />
 </div>
)}
 </div>
 </ResizablePanel>
 <ResizableHandle withHandle className={cn(onMobile && "hidden")} />
 <ChildrenPanel
 hasMiddleBar
 className={cn(onMobile && selected === null && "hidden")} // like a
bove we are using reverse logic here. If we are on mobile, and nothing is s

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 193 Maio 2025

elected, this component should not be displayed.
 >
 <ContactDisplaySkeleton />
 </ChildrenPanel>
 </>
);
}

function ContactSkeleton() {
 return (
 <div
 className={cn(
 "flex contacts-start items-center gap-2 rounded-lg border p-3 text-
left text-sm transition-all"
)}
 >
 <Skeleton circle width={48} height={48} />
 <div className="w-1/2 space-y-1">
 <div className="w-1/4 font-semibold">
 <Skeleton />
 </div>
 <div className="w-2/3 text-xs font-medium">
 <Skeleton />
 </div>
 </div>
 </div>
);
}

function ContactDisplaySkeleton() {
 const onMobile = useIsMobile();
 const { t } = useTranslation(["contacts-page"]);

 return (
 <div className={cn("flex h-full flex-col")}>
 <div className="flex items-center p-2 h-[var(--header-height)] border
-b">
 <div className="flex items-center gap-2">
 {onMobile && (
 <Button variant="ghost" size="icon">
 <ArrowLeft className="h-4 w-4" />
 {t("common:go_back")}
 </Button>
)}

 <Button variant="ghost" size="icon" disabled>
 <Trash2 className="h-4 w-4" />
 {t("common:delete_permanently")}</spa
n>
 </Button>

 <Button variant="ghost" size="icon" disabled>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 194 Maio 2025

 <Edit className="h-4 w-4" />
 {t("common:edit")}
 </Button>
 </div>
 <div className="ml-auto flex items-center gap-2">
 <Button variant="ghost" size="icon" disabled>
 <X className="h-4 w-4" />
 {t("common:close")}
 </Button>
 </div>
 </div>

 <div className="p-8 text-center text-muted-foreground">
 {t("none_selected")}
 </div>
 </div>
);
}

/components/recipients-input.tsx

"use client";

import { Input } from "./shared/input";
import React, {
 useState,
 useRef,
 useEffect,
 type KeyboardEvent,
 type ChangeEvent,
} from "react";
import { UserPlus, X } from "lucide-react";

import { Button } from "./ui/button";
import { cn } from "@/lib/utils";
import { useNewMessage } from "@/contexts/use-new-message";
import { useModal } from "@/contexts/use-modal";
import { ScrollArea } from "./ui/scroll-area";
import { NewRecipient } from "@/types/recipient";
import ProfilePic from "./profile-pic";
import { useTranslation } from "react-i18next";
import {
 Tooltip,
 TooltipContent,
 TooltipProvider,
 TooltipTrigger,
} from "./ui/tooltip";

const OFF_FOCUSED_RECIPIENT_AMOUNT = 5;
React.memo(RecipientsInput);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 195 Maio 2025

export default function RecipientsInput({
 error,
 onFocus,
 onBlur,
}: {
 error: boolean;
 onFocus: () => void;
 onBlur: () => void;
}) {
 const container = useRef<HTMLDivElement | null>(null);
 const [isDropdownOpen, setIsDropdownOpen] = useState(false);
 const inputElement = useRef<HTMLInputElement | null>(null);

 const {
 message,
 setMessage,
 recipients,
 addRecipient,
 removeRecipient,
 suggestedRecipients,
 searchRecipients,
 showInfoAbout,
 focusedInput,

 // Which one in the suggested recipients/contacts is currently selected
. You can change the selection with up and down arrow keys.
 selectedPhone,
 updateSelectedPhone,
 } = useNewMessage();
 const { setModal } = useModal();
 const { t } = useTranslation(["new-message-page"]);

 // reset the input's value
 function clearInputValue() {
 setMessage((m) => ({
 ...m,
 recipientInput: {
 ...m.recipientInput,
 value: "",
 },
 }));
 }

 const handleKeyDown = (e: KeyboardEvent<HTMLInputElement>) => {
 setTimeout(() => {
 if (container.current) {
 // automatically scroll to the bottom of the recipients container w
hen user starts typing
 container.current.scrollTop += container.current.scrollHeight;
 }
 }, 0);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 196 Maio 2025

 const trimmedInput = message.recipientInput.value.trim();
 if (e.key === "Enter" || e.key === "Tab") {
 e.preventDefault();
 e.stopPropagation();
 if (selectedPhone) {
 addRecipient(selectedPhone);
 clearInputValue();
 } else if (trimmedInput !== "") {
 addRecipient(trimmedInput);

 clearInputValue();
 }
 } else if (e.key === "ArrowDown" || e.key === "ArrowUp") {
 updateSelectedPhone(e.key);
 }

 if (e.key === "Backspace" && trimmedInput === "" && recipients.length)
{
 const lastRecipientIndex = recipients.length - 1;
 const lastRecipient = recipients[lastRecipientIndex];
 if (lastRecipient && lastRecipient.proneForDeletion) {
 // Remove the last recipient if it is already prone for deletion
 removeRecipient(lastRecipient);
 } else {
 setMessage((prev) => {
 const lastRecipientIndex = prev.recipients.length - 1;

 // Create a new array of recipients with the last recipient marke
d as prone for deletion
 const newRecipients = prev.recipients.map((recipient, index) => {
 if (index === lastRecipientIndex) {
 return { ...recipient, proneForDeletion: true }; // Mark as p
rone for deletion
 }
 return recipient; // Return the other recipients unchanged
 });

 // Return the new state with the last recipient marked as prone f
or deletion
 return { ...prev, recipients: newRecipients };
 });
 }
 }
 };

 const onInputChange = (e: ChangeEvent<HTMLInputElement>) => {
 const value = e.target.value;
 setMessage((m) => ({
 ...m,
 recipientInput: {
 ...m.recipientInput,
 value,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 197 Maio 2025

 },
 }));
 setIsDropdownOpen(true);

 searchRecipients(value);
 };

 const showRecipientInfo = (recipient: NewRecipient) => {
 showInfoAbout(recipient);
 setModal((m) => ({ ...m, contact: { ...m.contact, info: true } }));
 };

 useEffect(() => {
 // automatically collapse the expanded recipients when another input ge
ts selected
 if (focusedInput !== "new-recipient" && typeof focusedInput == "string"
) {
 setMessage((prev) => ({
 ...prev,
 recipientInput: { ...prev.recipientInput, recipientsExpanded: false
},
 }));
 }
 }, [focusedInput]);
 return (
 <div className="flex-1 py-1 relative z--[1000]">
 <div className="max-h-24 overflow-auto" ref={container}>
 <div
 className={cn(
 "w-full min-h-[2.75rem] flex flex-wrap items-center gap-x-1 py-
1 h-full border-b px-5 z-50",
 focusedInput === "new-recipient" && "border-primary",
 error && "border-red-500"
)}
 >
 <span className="my-0.5 mr-0.5 px-0 flex items-center text-sm tex
t-muted-foreground">
 {t("common:to")}

 {/* Recipient chips */}
 {recipients.map((recipient, index) => {
 // Since we have so many recipients, only some should be shown
until the user clicks to see the rest
 if (
 index >= OFF_FOCUSED_RECIPIENT_AMOUNT &&
 message.recipientInput.recipientsExpanded === false
) {
 return;
 }
 // else, we show all of them
 return (
 <div
 key={recipient.phone}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 198 Maio 2025

 // Height of the row/container
 className="flex items-center h-7"
 >
 <div
 // Height of the contact chip itself
 className={cn("h-6")}
 >
 <TooltipProvider delayDuration={1000}>
 <Tooltip>
 <TooltipTrigger asChild>
 <div
 className={cn(
 "bg-background flex items-center text-xs border
rounded-xl hover:bg-muted dark:hover:bg-muted cursor-pointer whitespace-now
rap h-full hover:shadow-none",
 error && "error-border-pulse",
 recipient.proneForDeletion && "border-destructi
ve",
 !recipient.isValid &&
 "bg-red-100/70 dark:bg-red-900/50",
 recipient.error?.type === "warning" &&
 "bg-yellow-50 dark:bg-yellow-400/40"
)}
 >
 <div
 onClick={() => showRecipientInfo(recipient)}
 className="h-full flex items-center rounded-l-x
l pl-1.5"
 >
 {recipient?.contact?.name || recipient.phone}
 </div>

 <Button
 variant="none"
 className="h-full py-0 px-1.5 cursor-pointer cl
oseX rounded-l-none rounded-r-xl"
 onClick={() => removeRecipient(recipient)}
 type="button"
 >
 <X className="h-4 w-4 text-muted-foreground" />
 </Button>
 </div>
 </TooltipTrigger>
 <TooltipContent>
 {t(
 recipient.error?.message
 ? recipient.error?.message
 : ""
) || t("tooltip-more_info")}
 </TooltipContent>
 </Tooltip>
 </TooltipProvider>
 </div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 199 Maio 2025

 </div>
);
 })}

 {/* Button to show all recipients, when it's clicked we also focu
s the input */}
 {message.recipients.length > OFF_FOCUSED_RECIPIENT_AMOUNT &&
 message.recipientInput.recipientsExpanded === false ? (
 <Button
 variant="none"
 className="p-0 ml-2"
 type="button"
 onClick={() => {
 setMessage((prev) => ({
 ...prev,
 recipientInput: {
 ...prev.recipientInput,
 recipientsExpanded: true,
 },
 }));
 setTimeout(() => {
 if (inputElement.current) {
 inputElement.current.focus();
 }
 }, 0);
 }}
 >
 {t("x_more", {
 x: message.recipients.length - OFF_FOCUSED_RECIPIENT_AMOUNT
,
 })}
 </Button>
) : (
 <></>
)}

 <div
 className={cn(
 "h-7 min-w-[200px] flex-1 py-1 ml-3", // my-0
 message.recipients.length > OFF_FOCUSED_RECIPIENT_AMOUNT &&
 message.recipientInput.recipientsExpanded === false &&
 "hidden"
)} /* we are taking advantage of the default positioning of abs
olute elements this common parent div */
 >
 <Input
 ref={inputElement}
 // this name only used for the focus state, not for submittin
g any value
 name="new-recipient"
 className={cn(
 "h-min text-sm w-full p-0 ring-0 focus:ring-0 shadow-none r
ounded-none placeholder:text-muted-foreground" //my-0

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 200 Maio 2025

)}
 placeholder={
 message.recipients.length <= OFF_FOCUSED_RECIPIENT_AMOUNT |
|
 message.recipientInput.recipientsExpanded
 ? t("common:phone_number")
 : ""
 }
 value={message.recipientInput.value}
 onChange={onInputChange}
 onKeyDown={handleKeyDown}
 onFocus={() => {
 setIsDropdownOpen(true);

 searchRecipients(message.recipientInput.value);
 onFocus();
 }}
 onBlur={() => {
 setMessage((m) => ({
 ...m,
 recipients: m.recipients.map((r) => ({
 ...r,
 proneForDeletion: false,
 })),
 }));
 setIsDropdownOpen(false);

 // Create recipient from input value on blur if not empty
 if (message.recipientInput.value.trim() !== "") {
 addRecipient(message.recipientInput.value);
 }

 onBlur();
 }}
 />

 {/* Begin suggested recipients dropdown */}
 {isDropdownOpen && suggestedRecipients.length !== 0 && (
 <div className="absolute top-[85%] bg-background rounded-lg b
order shadow-md dark:shadow-lg-light">
 <ScrollArea className="w-[230px] xs:w-[300px] h-[330px]">
 <div
 className="p-2" /* this is necessary to have a separate
container so that the items scroll all the way up to the end of the contain
er */
 >
 <h3 className="mb-2 px-2 text-sm font-medium">
 {!message.recipientInput.value.length
 ? t("suggestions")
 : t("x_found", { x: suggestedRecipients.length })}
 </h3>
 <div className="flex flex-col gap-1">

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 201 Maio 2025

 {suggestedRecipients.map((recipient) => (
 <button
 key={recipient.phone}
 className={cn(
 "flex items-center w-full gap-2 rounded-lg bord
er p-3 text-left text-sm transition-all hover:bg-accent",
 selectedPhone === recipient.phone &&
 "border-primary"
)}
 type="button"
 onMouseDown={(e) => {
 e.preventDefault();

 addRecipient(recipient.phone);
 }}
 >
 <ProfilePic
 name={recipient.contact?.name || undefined}
 size={10}
 className="border"
 />
 <div className="space-y-1">
 <div className="font-semibold">
 {recipient.contact?.name || recipient.phone}
 </div>
 <div className="text-xs font-medium">
 {recipient.contact?.name ? recipient.phone :
""}
 </div>
 </div>
 </button>
))}
 </div>
 </div>
 </ScrollArea>
 </div>
)}
 </div>
 </div>
 <Button
 className="absolute right-2 bottom-[6px] p-2 aspect-1 top-1/2 -tr
anslate-y-1/2 z-10"
 variant="ghost"
 type="button"
 onClick={() =>
 setModal((m) => ({ ...m, contact: { ...m.contact, insert: true
} }))
 }
 >
 <UserPlus className="h-1 w-1" />
 </Button>
 </div>
 </div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 202 Maio 2025

);
}

/components/contacts-list.tsx

"use client";

import { cn } from "@/lib/utils";
import { ScrollArea } from "@/components/ui/scroll-area";
import ProfilePic from "./profile-pic";
import type { DBContact } from "@/types/contact";
import { useIsMobile } from "@/hooks/use-mobile";
import { Button } from "./ui/button";

type ContactListProps = {
 contacts: DBContact[];
 selectedContactId: string | null;
 setSelected: (contact: DBContact) => void;
};

export default function ContactsList({
 contacts,
 selectedContactId,
 setSelected,
}: ContactListProps) {
 const onMobile = useIsMobile();
 return (
 <ScrollArea
 className={
 onMobile
 ? `h-[calc(100vh-var(--simple-header-height)-68px)]`
 : `h-[calc(100vh-var(--header-height)-68px)]`
 }
 >
 <div className="flex flex-col gap-2 p-4 pt-0">
 {contacts.map((contact) => (
 <Button
 key={contact.id}
 variant="ghost"
 className={cn(
 "h-full flex items-center justify-start gap-2 rounded-lg bord
er p-3 text-left mt-[1px]",
 selectedContactId === contact.id && "bg-accent"
)}
 onClick={() => setSelected(contact)}
 >
 <ProfilePic name={contact.name} size={10} className="border" />
 <div className="space-y-1">
 <div className="font-semibold">{contact.name}</div>
 <div className="text-xs font-medium">{contact.phone}</div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 203 Maio 2025

 </div>
 </Button>
))}
 </div>
 </ScrollArea>
);
}

/components/403.tsx

"use client";

import React from "react";
import ErrorComponent from "./shared/error-component";
import { useTranslation } from "react-i18next";
import Link from "next/link";
import { buttonVariants } from "./ui/button";

export default function UnauthorizedPage() {
 const { t } = useTranslation(["errors", "common"]);
 return (
 <ErrorComponent
 title={t("403_error-header")}
 subtitle={t("403_error-header_caption")}
 >
 <Link href="/sent" className={buttonVariants({ variant: "default" })}
>
 {t("common:go_back")}
 </Link>
 </ErrorComponent>
);
}

/components/new-message-form.tsx

"use client";

import { Separator } from "./ui/separator";
import { Textarea } from "./ui/textarea";
import {
 Check,
 FileCheck,
 Loader2,
 Maximize2,
 Minimize2,
 Save,
 Trash2,
 X,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 204 Maio 2025

} from "lucide-react";
import SendButton from "./send-button";
import { capitalize, cn, toastActionResult } from "@/lib/utils";
import { useTranslation } from "react-i18next";
import { PageHeader } from "./headers";
import { sendMessage } from "@/lib/actions/message.create";
import {
 Tooltip,
 TooltipContent,
 TooltipTrigger,
} from "@/components/ui/tooltip";

// Form
import { Button, buttonVariants } from "@/components/ui/button";
import { Input } from "@/components/ui/input";
import React, {
 ChangeEvent,
 useCallback,
 useEffect,
 useRef,
 useState,
} from "react";

import RecipientsInput from "./recipients-input";
import { useNewMessage } from "@/contexts/use-new-message";
import { usePathname, useRouter, useSearchParams } from "next/navigation";
import {
 Select,
 SelectContent,
 SelectItem,
 SelectTrigger,
 SelectValue,
} from "@/components/ui/select";
import { toast } from "sonner";
import { NewRecipient } from "@/types/recipient";

import { useLayout } from "@/contexts/use-layout";
import type { DBMessage, Message } from "@/types";
import { ActionResponse } from "@/types/action";
import { deleteMessage, saveDraft } from "@/lib/actions/message.actions";
import useDebounce from "@/hooks/use-debounce";
import useIsMounted from "@/hooks/use-mounted";
import { format } from "date-fns";
import { useIsMobile } from "@/hooks/use-mobile";
import { EMPTY_MESSAGE, PT_DATE_FORMAT } from "@/global.config";
import { useModal } from "@/contexts/use-modal";

// apparently, when something gets revalidated or the url gets updated, thi
s component gets re-rendered, while the new-message-context keeps it's stat
e
const NewMessageForm = React.memo(function ({
 message_id,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 205 Maio 2025

}: {
 message_id?: DBMessage;
}) {
 const formRef = useRef<HTMLFormElement>(null);
 const { t } = useTranslation(["new-message-page"]);
 const router = useRouter();
 const {
 recipients,
 setMessage,
 message,
 focusedInput,
 setFocusedInput,
 form,
 setForm,
 draft,
 setDraft,
 } = useNewMessage();
 const { setModal } = useModal();
 const [loading, setLoading] = useState(false);
 const { isFullscreen, setIsFullscreen } = useLayout();
 const pathname = usePathname();
 const onMobile = useIsMobile();

 const isMounted = useIsMounted();
 const debouncedSaveDraft = useDebounce(message, 2000);
 const previousDraftRef = useRef(message);
 const searchParams = useSearchParams();

 // When the controlled inputs value changes, we update the state
 const handleInputChange = (
 e: ChangeEvent<HTMLInputElement | HTMLTextAreaElement>
) => {
 const { name, value } = e.target;
 setMessage((prev) => ({ ...prev, [name]: value }));
 };

 const handleSubmit = async (e: React.FormEvent<HTMLFormElement>) => {
 e.preventDefault();

 // Smaller than (<) means it is in the past, while larger than (>) mean
s in the future
 if (
 message.scheduledDateModified &&
 message.scheduledDateConfirmed === false &&
 message.scheduledDate.getTime() < Date.now()
) {
 // Prevent the rest of the code of getting executed if the invalid da
te has not been confirmed yet.
 return setModal((m) => ({ ...m, scheduleAlert: true }));
 }

 setLoading(true);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 206 Maio 2025

 setMessage((m) => ({ ...m, scheduledDateConfirmed: false }));

 const formData = new FormData(e.currentTarget);
 const result = await sendMessage(draft.id, {
 sender: /*formData.get("sender") as string */ "ETPZP",
 recipients: recipients as NewRecipient[],
 subject: formData.get("subject") as string,
 body: formData.get("body") as string,
 secondsUntilSend:
 message.scheduledDate.getTime() > new Date().getTime()
 ? (Math.floor(
 (message.scheduledDate.getTime() - Date.now()) / 1000
) as number)
 : undefined,
 });

 setLoading(false);

 // Update the message context with the result errors, so that they can
be persisted between draft re-renders
 setMessage((m) => ({
 ...m,
 serverStateErrors: result.errors,
 invalidRecipients: result.invalidRecipients,
 }));

 if (result.success) {
 // Message got sent successfully
 if (result.sendDate) {
 toast.success(
 `${t(result.message[0])} ${format(result.sendDate, PT_DATE_FORMAT
)}`
);
 } else {
 toastActionResult(result, t);
 }
 } else {
 // Unable to send message due to an error:
 // 1. Display input specific error messages
 const zodErrors = result.errors || {};
 let waitTime = 0;
 const inBetweenTime = 300;
 Object.entries(zodErrors).forEach(
 ([input, errorArray], index) =>
 setTimeout(() => {
 toast.error(capitalize(input), {
 description: errorArray.map((error) => t(error)).join(", "),
 });
 waitTime += index * inBetweenTime;
 }, index * inBetweenTime) // Increase delay by 50ms for each erro
r
);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 207 Maio 2025

 // 2. Display general error message
 setTimeout(() => {
 if (result.invalidRecipients) {
 toast.error(
 `${t(result.message)} ${result.invalidRecipients
 .map((r) => r.phone)
 .join(", ")}`
);
 } else {
 toastActionResult(result, t);
 }
 }, Object.entries(zodErrors).length * inBetweenTime);
 }

 if (result.clearForm === true) {
 // 3. Reset the form
 setMessage(EMPTY_MESSAGE); // technically this isn't even needed
 router.push("/new-message");
 }
 };

 // When the user pressed discard at the bottom
 const discardDraft = async () => {
 if (draft.id) {
 // Drafts should also be discarded (deleted) immediately
 const result: ActionResponse<null> = await deleteMessage(draft.id);
 toastActionResult(result, t);
 }

 // The navigation already re-fetches the amount indicators
 router.push("/sent");
 };

 function messageIsEmpty() {
 return (
 !message.body &&
 !message.subject &&
 !message.recipients.length &&
 message.sender === "ETPZP"
);
 }

 // Draft saving logic
 const handleSaveDraft = () => {
 const save = async () => {
 if (
 JSON.stringify(debouncedSaveDraft) !==
 JSON.stringify(previousDraftRef.current)
) {
 setDraft((prev) => ({ ...prev, pending: true }));
 const { draftId } = await saveDraft(draft.id || undefined, message)

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 208 Maio 2025

;
 setDraft((prev) => ({ ...prev, pending: false }));

 if (draftId) {
 setDraft((prev) => ({
 ...prev,
 id: draftId || null,
 lastSaveSuccessful: true,
 }));
 // Updating the URL revalidates the server (including fetching am
ount indicators) and re-renders the component.
 const params = new URLSearchParams(searchParams.toString());
 params.set("message_id", draftId);
 router.replace(pathname + "?" + params.toString());
 } else {
 setDraft((prev) => ({ ...prev, lastSaveSuccessful: false }));
 }
 }
 };

 // Empty drafts should be deleted from db
 const discard = async () => {
 if (draft.id) {
 await deleteMessage(draft.id);

 // Updating the URL revalidates the server (including fetching amou
nt indicators) and re-renders the component.
 const params = new URLSearchParams(searchParams.toString());
 params.delete("message_id");
 router.replace(pathname + "?" + params.toString());
 }
 };

 if (messageIsEmpty()) {
 // Delete the old draft
 discard();
 } else {
 save();
 }
 };
 useEffect(() => {
 if (!isMounted) return;
 handleSaveDraft();
 }, [debouncedSaveDraft]);
 useEffect(() => {
 // Reapply input focus state - sender focusing logic not needed as it i
s a <Select>.
 if (focusedInput) {
 const inputElement = document.querySelector(
 `[name="${focusedInput}"]`
) as HTMLElement;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 209 Maio 2025

 // Move cursor to end of textarea to prevent default behavior of plac
ing it at the beginning.
 if (inputElement) {
 if (
 focusedInput === "body" &&
 inputElement instanceof HTMLTextAreaElement
) {
 // For textarea, set cursor at the end
 inputElement.focus();
 inputElement.setSelectionRange(
 inputElement.value.length,
 inputElement.value.length
);
 } else {
 inputElement.focus();
 }
 }
 }
 }, [focusedInput]);

 useEffect(() => {
 if (formRef.current) {
 setForm(formRef.current);
 }
 }, [formRef]);
 useEffect(() => {
 if (isMounted) {
 setMessage((m) => ({ ...m, draft: { id: message_id?.id || null } }));
 }
 }, [isMounted]);
 return (
 <>
 <PageHeader
 title={
 message.subject
 ? message.subject.length > (onMobile ? 22 : 60)
 ? message.subject.substring(0, (onMobile ? 22 : 60) - 3) + ".
.."
 : message.subject
 : t("header")
 }
 >
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 type="button"
 onClick={() => {
 // We only disable it if the message is empty so we need mo
re checks here to prevent the user from clicking the button over and over
 if (draft.pending || messageIsEmpty()) return; // not empty
and not pending means it is saved

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 210 Maio 2025

 handleSaveDraft();
 }}
 // disabled={messageIsEmpty()}
 >
 {draft.pending ? (
 <Loader2 className="animate-spin" />
) : messageIsEmpty() || !draft.lastSaveSuccessful ? (
 // draft is pending either it is saved or not
 // this comes first because we don't want to show the resul
t if message is empty
 <Save className="w-4 h-4" />
) : (
 <FileCheck className="h-4 w-4" />
)}
 </Button>
 </TooltipTrigger>
 <TooltipContent>
 {draft.pending
 ? t("draft_btn-saving")
 : messageIsEmpty() || !draft.lastSaveSuccessful
 ? // draft is pending either it is saved or not
 // this comes first because we don't want to show the resul
t if message is empty
 t("draft_btn-save")
 : t("draft_btn-saved")}
 </TooltipContent>
 </Tooltip>
 {!onMobile && (
 <>
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 onClick={() =>
 setIsFullscreen((prevFullscreen) => !prevFullscreen)
 }
 >
 {isFullscreen ? (
 <Minimize2 className="h-4 w-4" />
) : (
 <Maximize2 className="h-4 w-4" />
)}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("toggle_fullscreen")}</TooltipContent>
 </Tooltip>

 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 className={cn(

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 211 Maio 2025

 buttonVariants({ variant: "ghost" }),
 "aspect-1 p-0"
)}
 onClick={() => {
 setIsFullscreen(false);
 router.push("/sent");
 }}
 >
 <X className="h-4 w-4" />
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("common:close")}</TooltipContent>
 </Tooltip>
 </>
)}
 </PageHeader>
 <form
 ref={formRef}
 onSubmit={handleSubmit}
 className="h-screen flex flex-col"
 >
 <div
 className={cn(
 "flex flex-col",
 isFullscreen || onMobile
 ? "h-[calc(100vh-var(--simple-header-height))]"
 : "h-[calc(100vh-var(--header-height))]"
)}
 >
 <div className="flex flex-col px-4 mt-2">
 <div
 className={cn(
 "border-b focus-within:border-primary",
 message.serverStateErrors?.sender && "border-red-500"
)}
 >
 <Select
 name="sender"
 defaultValue={/**message_id?.sender || */ "ETPZP"}
 onValueChange={(value) => {
 setMessage((prev) => ({ ...prev, sender: value }));
 }}
 disabled
 >
 {/** It defaults to the first SelectItem */}
 <SelectTrigger className="w-full rounded-none border-none s
hadow-none focus:ring-0 px-5 py-1 h-11">
 <SelectValue placeholder="ETPZP" />
 </SelectTrigger>
 <SelectContent>
 <SelectItem value="ETPZP">ETPZP</SelectItem>
 <SelectItem value="Test">Test</SelectItem>
 </SelectContent>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 212 Maio 2025

 </Select>
 </div>

 <RecipientsInput
 // Instead of a Zod error, we receive an invalid recipients a
rray for recipient errors.
 error={!!message.invalidRecipients?.length}
 onFocus={() => setFocusedInput("new-recipient")}
 onBlur={() => setFocusedInput(null)}
 />

 <Input
 name="subject"
 placeholder={t("subject_placeholder")}
 className={cn(
 "new-message-input focus-visible:ring-0 placeholder:text-mu
ted-foreground border-b focus:border-primary"
)}
 onChange={handleInputChange}
 value={message?.subject || EMPTY_MESSAGE.subject}
 onFocus={() => setFocusedInput("subject")}
 onBlur={() => setFocusedInput(null)}
 />
 </div>
 <div className="px-4 flex-grow mt-[1.25rem] mb-2">
 <Textarea
 name="body"
 className={cn(
 "border-none rounded-none h-full p-0 focus-visible:ring-0 s
hadow-none resize-none placeholder:text-muted-foreground",
 message.serverStateErrors?.body &&
 "ring-red-500 placeholder:text-red-400 dark:placeholder:t
ext-red-400"
)}
 placeholder={
 message.serverStateErrors?.body
 ? t(message.serverStateErrors?.body[0])
 : t("body_placeholder")
 }
 onChange={handleInputChange}
 value={message?.body || EMPTY_MESSAGE.body}
 onFocus={() => setFocusedInput("body")}
 onBlur={() => setFocusedInput(null)}
 />
 </div>

 <Separator />
 <div className="flex px-4 py-2 justify-end gap-2">
 <Button
 variant="secondary"
 type="button"
 className="w-max"
 onClick={discardDraft}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 213 Maio 2025

 >
 <Trash2 className="h-4 w-4" />
 {t("discard")}
 </Button>

 <SendButton loading={loading} />
 </div>
 </div>
 </form>
 {/* <UnloadListener /> */}
 </>
);
});

export default NewMessageForm;

/components/headers.tsx

"use client";

import { Separator } from "@/components/ui/separator";
import { useIsMobile } from "@/hooks/use-mobile";
import { ArrowLeft, Menu } from "lucide-react";
import { Button, buttonVariants } from "./ui/button";
import { useLayout } from "@/contexts/use-layout";
import Link from "next/link";
import Skeleton from "react-loading-skeleton";
import { cn } from "@/lib/utils";
import Account from "./shared/account";
import { usePathname } from "next/navigation";
import { useTranslation } from "react-i18next";

type PageHeaderProps = {
 title?: string;
 skeleton?: boolean;
 marginRight?: boolean;
 className?: string;
 children?: React.ReactNode;
};

export function PageHeader({
 title,
 skeleton,
 marginRight = true,
 className,
 children,
}: PageHeaderProps) {
 const onMobile = useIsMobile();
 const pathname = usePathname();

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 214 Maio 2025

 return (
 <>
 <div
 className={cn(
 "flex items-center gap-2 px-4 h-[var(--simple-header-height)]",
 title && "border-b",
 className
)}
 >
 <div className="shrink flex items-center min-w-min whitespace-nowra
p">
 {onMobile &&
 (pathname.includes("/dashboard") ? (
 <Link
 href="/"
 className={buttonVariants({ variant: "ghost", size: "icon"
})}
 >
 <ArrowLeft className="w-4 h-4" />
 </Link>
) : (
 <MobileHamburgerButton className="mr-2" />
))}
 {skeleton ? (
 <Skeleton
 // Consider to set this to 158 later which is the width of `N
ew Message` title
 width=""
 height={28}
 containerClassName="mr-auto w-[30%]"
 />
) : (
 <h2 className={marginRight ? "mr-auto" : ""}>{title}</h2>
)}
 </div>
 <div className="grow flex items-center gap-2 justify-end">
 {children}
 {onMobile && <Account profilePicPosition="RIGHT" hideNameRole />}
 </div>
 </div>
 </>
);
}

type SectionHeaderProps = {
 title: string;
 subtitle: string;
 children?: React.ReactNode;
 anchorName: string;
};
export function SectionHeader({
 title,
 subtitle,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 215 Maio 2025

 children,
 anchorName,
}: SectionHeaderProps) {
 return (
 <div>
 <Link href={`#${anchorName}`} className="mr-auto">
 <h3 id={anchorName}>{title}</h3>
 </Link>
 <p className="subtitle">{subtitle}</p>
 <Separator className="mt-5 mb-3 lg:max-w-2xl" />
 <div className="space-y-5 px-5">{children}</div>
 </div>
);
}

export function MobileHamburgerButton({ className }: { className: string })
{
 const { setMobileNavPanel } = useLayout();
 return (
 <Button
 variant="ghost"
 size="icon"
 className={cn("md:hidden", className)}
 type="button"
 onClick={() => setMobileNavPanel(true)}
 >
 <Menu className="h-5 w-5" />
 Toggle mobile menu
 </Button>
);
}

/components/messages-page.tsx

"use client";

import { DBMessage, CategoryEnums } from "@/types";
import React, { useEffect, useState } from "react";
import ChildrenPanel from "./shared/children-panel";
import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { useLayout } from "@/contexts/use-layout";
import { PageHeader } from "./headers";
import { useTranslation } from "react-i18next";
import { MessageList } from "./messages-list";

import { cn, searchMessages } from "@/lib/utils";
import MessageDisplay from "./message-display";
import { useIsMobile } from "@/hooks/use-mobile";
import Search from "./shared/search";
import { useSearchParams } from "next/navigation";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 216 Maio 2025

import useIsMounted from "@/hooks/use-mounted";
import { ModalProvider } from "@/contexts/use-modal";

export default function MessagesPage({
 messages,
 error,
 category,
}: Readonly<{
 messages: DBMessage[];
 error: boolean;
 category: CategoryEnums;
}>) {
 const { layout, fallbackLayout } = useLayout();
 const { t } = useTranslation(["messages-page", "common"]); // and more
 const [filteredMessages, setFilteredMessages] = useState(messages);
 const [selected, setSelected] = useState<DBMessage | null>(
 filteredMessages[0] || null
);
 const isMounted = useIsMounted();
 const [isLarge, setIsLarge] = useState({
 bool: window.matchMedia("(min-width: 1024px)").matches,
 breakpoint: window.matchMedia("(min-width: 1024px)").matches ? 29 : 44,
 });
 const onMobile = useIsMobile();
 const searchParams = useSearchParams();
 const query = searchParams.get("query") || "";
 const currentPage = Number(searchParams.get("page")) || 1;

 // Update ui based on search term
 const onSearch = (searchTerm: string) => {
 setFilteredMessages(searchMessages(messages, searchTerm, currentPage));
 };

 useEffect(() => {
 // Filter the messages with URLsearchParams on page load
 setFilteredMessages(searchMessages(messages, query, currentPage));
 if (selected && messages.some((msg) => msg.id === selected.id)) {
 // Keep the current selection
 setSelected(selected);
 } else {
 // If the selected message is not in the new messages, set it to null
or handle accordingly
 setSelected(messages[0] || null);
 }
 }, [messages]);

 useEffect(() => {
 if (isMounted && onMobile) {
 // On mobile, it should show the list by default without having the f
irst one selected like on desktop.
 setSelected(null);
 }

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 217 Maio 2025

 }, [isMounted]);

 return (
 <>
 <ResizablePanel
 className={cn(onMobile && selected !== null && "hidden")} // If we
are on mobile and a message is selected we only want to show the column con
taining the selected message.
 // Check if the layout is a 3-column middle-bar panel. Use the prev
ious 3-column layout if available; otherwise, render the fallback for diffe
rent or undefined layouts.
 defaultSize={
 Array.isArray(layout) && layout.length === 3
 ? layout[1]
 : fallbackLayout[1]
 }
 minSize={22}
 maxSize={50}
 >
 <PageHeader title={t(`header_${category.toLowerCase()}`)} />
 <Search
 onSearch={onSearch}
 placeholder={t(`search_${category.toLowerCase()}`)}
 className="pl-8 placeholder:text-muted-foreground border"
 />

 {filteredMessages.length > 0 ? (
 <MessageList
 messages={filteredMessages}
 selectedMessageId={selected?.id || null}
 setSelected={setSelected}
 />
) : (
 <div className="p-8 text-center text-muted-foreground">
 {error || t("none_found")}
 </div>
)}
 </ResizablePanel>
 <ResizableHandle withHandle className={cn(onMobile && "hidden")} />

 <ChildrenPanel
 hasMiddleBar
 // reverse logic like above: on mobile and with nothing selected, t
his component should be hidden.
 className={cn(onMobile && selected === null && "hidden")}
 >
 {/* If you need other modals somewhere else, move the provider up t
he component tree. And don't forget to update the skeleton too! */}
 <ModalProvider>
 <MessageDisplay
 message={selected}
 reset={() => setSelected(null)}
 category={category}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 218 Maio 2025

 />
 </ModalProvider>
 </ChildrenPanel>
 </>
);
}

/components/nav-links.tsx

"use client";

import Link from "next/link";
import { LucideIcon } from "lucide-react";
import { cn } from "@/lib/utils";
import { Button, buttonVariants } from "@/components/ui/button";
import {
 Tooltip,
 TooltipContent,
 TooltipTrigger,
} from "@/components/ui/tooltip";
import { usePathname } from "next/navigation";
import { useSettings } from "@/contexts/use-settings";
import { useTranslation } from "react-i18next";

type NavLink = {
 title: string;
 label?: string;
 icon: LucideIcon;
 href?: string;
 action?: () => void;
 variant: "default" | "ghost";
 size?: "sm" | "md" | "xl";
 hidden?: boolean;
 isNewButton?: boolean;
};
type NavProps = {
 isCollapsed: boolean;
 links: NavLink[];
 onMobile?: boolean;
};

export default function NavLinks({ links, isCollapsed, onMobile }: NavProps
) {
 const pathname = usePathname();
 const { i18n } = useTranslation();
 const { normalizePath } = useSettings();

 const activeStyles =
 "bg-accent text-primary-accent hover:bg-accent hover:text-accent-foregr
ound";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 219 Maio 2025

 // isActive takes Link, compares it to the current url, and returns wheth
er it is the same link we are on or not.
 const isActive = (href: string, isNewButton: boolean | undefined) => {
 return !isNewButton && normalizePath(href) === normalizePath(pathname);
 };
 return (
 <div
 data-collapsed={isCollapsed}
 className={cn(
 `group flex flex-col gap-4 py-2 data-[collapsed=true]:py-2`,
 onMobile && "w-[250px]"
)}
 >
 <nav className="grid gap-1 px-2 group-[data-collapsed=true](data-coll
apsed=true):justify-center group-data-collapsed=true
:px-2">
 {links.map((link, index) => {
 const desktopItemClassName = cn(
 buttonVariants({
 variant: link.variant,
 size: link.isNewButton ? "lg" : "sm",
 }),
 "w-full justify-start",
 link.href && isActive(link.href, link.isNewButton) && activeSty
les,
 link.isNewButton && "justify-center",
 link.hidden === true && "hidden"
);

 return isCollapsed ? (// NavPanel is collapsed = render with too
ltips
 <Tooltip key={index} delayDuration={0}>
 <TooltipTrigger
 className={cn(
 buttonVariants({ variant: link.variant, size: "icon" }),
 link.isNewButton && "mb-3",
 "h-9 w-9",
 link.href &&
 isActive(link.href, link.isNewButton) &&
 activeStyles,
 link.hidden === true && "hidden"
)}
 asChild
 >
 {link.href ? (
 <Link href={link.href}>
 <link.icon className="h-4 w-4" />
 {link.title}
 </Link>
) : (
 <Button onClick={link.action} variant="none">
 <link.icon className="h-4 w-4" />

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 220 Maio 2025

 {link.title}
 </Button>
)}
 </TooltipTrigger>
 <TooltipContent side="right" className="flex items-center gap
-4">
 {link.title}
 {link.label && (

 {link.label}

)}
 </TooltipContent>
 </Tooltip>
) : (
 // NavPanel is not collapsed = render links normally without to
oltips
 <div key={index}>
 {link.href ? (
 <Link href={link.href} className={desktopItemClassName}>
 {!link.isNewButton && <link.icon className="mr-2 h-4 w-4"
/>}
 {link.title}
 {link.label && (
 <span
 className={cn(
 "ml-auto",
 link.variant === "default" &&
 "text-background dark:text-white"
)}
 >
 {link.label}

)}
 </Link>
) : (
 <Button
 onClick={link.action}
 variant="none"
 className={desktopItemClassName}
 >
 {!link.isNewButton && <link.icon className="mr-2 h-4 w-4"
/>}
 {link.title}
 {link.label && (
 <span
 className={cn(
 "ml-auto",
 link.variant === "default" &&
 "text-background dark:text-white"
)}
 >
 {link.label}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 221 Maio 2025

)}
 </Button>
)}
 </div>
);
 })}
 </nav>
 </div>
);
}

/components/example-client.tsx

"use client";
import { useTranslation } from "react-i18next"; // the client side function
for translations from `react`

export default function Greeting() {
 const { t } = useTranslation(["Common"]);

 // in this case I used username variable interpolation, so pass that as w
ell
 const name = "Peter Fox";
 return <div>{t("welcome", { name })}
 <h2>test: {t("admin_dashboard")}
 </h2></div>;
}

/components/message-display.tsx

"use client";

import styles from "@/app/scattered-profiles.module.css";
import { format } from "date-fns/format";
import {
 AlertTriangle,
 ArchiveRestore,
 ArrowLeft,
 ChevronDown,
 Edit,
 MessageCircleX,
 Send,
 Trash2,
 X,
} from "lucide-react";
import { Button } from "@/components/ui/button";
import { Separator } from "@/components/ui/separator";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 222 Maio 2025

import {
 Tooltip,
 TooltipContent,
 TooltipTrigger,
} from "@/components/ui/tooltip";
import { CategoryEnums, DBMessage } from "@/types";
import { useIsMobile } from "@/hooks/use-mobile";
import { cn, shuffleArray, toastActionResult } from "@/lib/utils";
import {
 cancelCurrentlyScheduled,
 deleteMessage,
 saveDraft,
 toggleTrash,
} from "@/lib/actions/message.actions";
import { toast } from "sonner";
import { ActionResponse } from "@/types/action";
import { usePathname, useRouter } from "next/navigation";
import ProfilePic from "./profile-pic";
import { DBRecipient, NewRecipient } from "@/types/recipient";
import { useTranslation } from "react-i18next";
import { PT_DATE_FORMAT } from "@/global.config";
import { useContacts } from "@/contexts/use-contacts";
import { PROFILE_COLOR_CSS_NAMES } from "@/lib/theme.colors";
import React, { useEffect, useMemo, useState } from "react";
import { useModal } from "@/contexts/use-modal";
import RecipientInfoModal from "./modals/recipient-info";
import { ScrollArea } from "./ui/scroll-area";

function MessageDisplay({
 message,
 category,
 reset,
}: {
 message: DBMessage | null;
 category?: CategoryEnums;
 reset: () => void;
}) {
 const today = new Date();
 const onMobile = useIsMobile();
 const router = useRouter();
 const { t } = useTranslation(["messages-page"]);
 const pathname = usePathname();
 const [moreInfoRecipient, setMoreInfoRecipient] =
 useState<NewRecipient | null>(null);
 const { setModal } = useModal();

 const [recipientsExpanded, setRecipientsExpanded] = useState(false);
 const { contacts, contactFetchError } = useContacts();
 // State to store random colors for each item
 const [profileColors, setProfileColors] = useState<string[]>([]);
 const showInfoAbout = (recipient: NewRecipient) => {
 setMoreInfoRecipient(recipient);
 setModal((m) => ({ ...m, contact: { ...m.contact, info: true } }));

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 223 Maio 2025

 };

 const handleTrashButtonClick = async () => {
 if (message) {
 let result: ActionResponse<null>;

 // Drafts should also be discarded (deleted) immediately
 if (message.in_trash || message.status === "DRAFTED") {
 result = await deleteMessage(message.id, pathname);
 } else {
 result = await toggleTrash(message.id, true);
 }

 toastActionResult(result, t);
 }
 };

 const resend = async () => {
 if (message) {
 const newDraft = await saveDraft(undefined, {
 sender: message.sender,
 subject: message.subject || undefined,
 body: message.body,
 // convert DBRecipient to NewRecipient
 recipients: message.recipients.map((r) => ({
 phone: r.phone,
 // This is a temporary solution. Maybe change the type later to n
ot be NewRecipient[]
 isValid: true,
 proneForDeletion: false,
 })),
 });

 if (newDraft.draftId) {
 router.push(`/new-message?message_id=${newDraft.draftId}`);
 }
 }
 };
 const retry = () => {
 if (message) {
 router.push(`/new-message?message_id=${message.id}`);
 }
 };

 const putBack = async () => {
 if (message) {
 const result = await toggleTrash(message.id, false);

 toastActionResult(result, t);
 }
 };

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 224 Maio 2025

 const cancelSend = async () => {
 if (message) {
 const smsReferenceId = parseInt(message.sms_reference_id);

 if (smsReferenceId && !isNaN(smsReferenceId)) {
 const result = await cancelCurrentlyScheduled(smsReferenceId);

 toastActionResult(result, t);
 } else {
 toast.error(t("messages-page:server-cancel_scheduled_invalid_id"));
 }
 }
 };

 const initialColors = PROFILE_COLOR_CSS_NAMES;
 let colors = [...initialColors]; // Create a copy of the array by spreadi
ng it.
 useEffect(() => {
 if (message) {
 shuffleArray(colors);

 setProfileColors(
 message.recipients.map((recipient, index) => {
 // Create a stable color for each item by using the index or item
(in case the order doesn't change)
 if (colors.length === 0) {
 // All items have been used
 // Reset the array using the initial array and reshuffle
 colors = [...initialColors]; // Reset array to original values
 shuffleArray(colors); // Shuffle the reset array
 }

 // Pick and remove the first item from the shuffled colors
 return colors.pop() as string;
 })
);
 }
 }, [message]);

 return (
 <div className={cn("flex h-full flex-col")}>
 {moreInfoRecipient && (
 <RecipientInfoModal
 recipient={moreInfoRecipient}
 allowContactCreation={false}
 />
)}
 {/* Begin top bar with action buttons */}
 <div className="flex items-center p-2 h-[var(--simple-header-height)]
border-b">
 <div className="flex items-center gap-2">
 {onMobile && (

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 225 Maio 2025

 <Tooltip>
 <TooltipTrigger asChild>
 <Button variant="ghost" size="icon" onClick={() => reset()}
>
 <ArrowLeft className="h-4 w-4" />
 {t("common:go_back")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("common:go_back")}</TooltipContent>
 </Tooltip>
)}

 {/* Move message to trash or delete it */}
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 disabled={!message}
 onClick={handleTrashButtonClick}
 >
 <Trash2 className="h-4 w-4" />

 {message?.in_trash || message?.status === "DRAFTED"
 ? t("common:delete_permanently")
 : t("common:move_to_trash")}

 </Button>
 </TooltipTrigger>
 <TooltipContent>
 {message?.in_trash || message?.status === "DRAFTED"
 ? t("common:delete_permanently")
 : t("common:move_to_trash")}
 </TooltipContent>
 </Tooltip>

 {/* Cancel the sending of a scheduled message */}
 {category === "SCHEDULED" && (
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 disabled={!message}
 onClick={cancelSend}
 >
 <MessageCircleX className="w-4 h-4" />
 {t("btn-cancel_scheduled")}</sp
an>
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("btn-cancel_scheduled")}</TooltipContent>
 </Tooltip>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 226 Maio 2025

)}

 {/* Put back / restore trashed message */}
 {category === "TRASH" && (
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 disabled={!message}
 onClick={putBack}
 >
 <ArchiveRestore className="w-4 h-4" />
 {t("btn-restore")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("btn-restore")}</TooltipContent>
 </Tooltip>
)}

 {/* Reply to all recipients in the message */}
 {category !== "DRAFTS" && category !== "FAILED" && (
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 onClick={resend}
 disabled={!message}
 >
 <Send className="h-4 w-4" />
 {t("btn-resend")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("btn-resend")}</TooltipContent>
 </Tooltip>
)}
 {/* On Failed page we want a retry button */}
 {category === "FAILED" && (
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 onClick={retry}
 disabled={!message}
 >
 <Send className="h-4 w-4" />
 {t("btn-retry")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("btn-retry")}</TooltipContent>
 </Tooltip>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 227 Maio 2025

)}

 {/* Reply to all recipients in the message */}
 {category === "DRAFTS" && (
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 onClick={() =>
 message
 ? router.push(`/new-message?message_id=${message.id}`
)
 : ""
 }
 disabled={!message}
 >
 <Edit className="h-4 w-4" />
 {t("btn-continue_draft")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("btn-continue_draft")}</TooltipContent>
 </Tooltip>
)}
 </div>
 <div className="ml-auto flex items-center gap-2">
 {/* Close (deselect) the selected message */}
 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 onClick={() => reset()}
 disabled={!message}
 >
 <X className="h-4 w-4" />
 {t("common:close")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("common:close")}</TooltipContent>
 </Tooltip>
 </div>
 </div>
 {/* End top bar */}
 {/* <Separator /> */}
 {/* Begin message content */}
 <ScrollArea>
 <div
 className={
 onMobile
 ? `h-[calc(100vh-var(--simple-header-height))]`
 : `h-[calc(100vh-var(--header-height))]`

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 228 Maio 2025

 }
 >
 <div className="flex flex-col h-full">
 {message ? (
 <div className="grow flex flex-col">
 <div className="flex justify-between p-4">
 <div className="flex gap-4 text-sm w-full">
 <div className="flex relative min-w-[50px] min-h-[50px]
h-[50px]">
 {message.recipients.map(
 (recipient: DBRecipient, index) => {
 if (index >= 5) return; // Max recipients reached
; remaining will be shown as a single picture with count

 let foundContactName: string | undefined = undefi
ned;

 foundContactName = contacts.find(
 (contact) => contact.phone === recipient.phone
)?.name;

 if (index == 4) {
 // the fifth recipient should be the number of
missing recipients
 const missingRecipients =
 message.recipients.length - index;
 if (missingRecipients > 1) {
 // if there are many missing recipients,
 foundContactName = `+ ${missingRecipients}`;
 }
 }

 return (
 <ProfilePic
 key={index}
 // size={10}
 name={foundContactName}
 className={cn(
 styles["profile-absolute"],
 index === 0 &&
 cn("center-absolute", styles["profile-big
"]),
 index === 1 && styles["profile-top-left"],
 index === 2 && styles["profile-bottom-left"
],
 index === 3 && styles["profile-top-right"],
 index === 4 && styles["profile-bottom-right
"]
)}
 // The dynamically generated class `bg-${chos
enColor}` won't work because Tailwind purges unused classes in production,
and it doesn't recognize dynamically created class names.

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 229 Maio 2025

 style={{
 // Only show color for saved contacts
 backgroundColor: foundContactName
 ? profileColors[index]
 : "",
 }}
 />
);
 }
)}
 </div>
 <div className="flex flex-col gap-1 grow overflow-hidde
n">
 <div className="flex justify-between items-center rel
ative">

 {message.subject || t("no_subject")}

 {message.send_time && (
 <span
 className="text-xs text-muted-foreground relati
ve whitespace-nowrap"
 style={{ top: "1px" }}
 >
 {format(
 new Date(message.send_time),
 PT_DATE_FORMAT
)}

)}
 <Button
 onClick={() =>
 setRecipientsExpanded(
 (prevExpanded) => !prevExpanded
)
 }
 variant="none"
 className="p-0 pl-1 h-min absolute right-0 bottom
-[-20px] bg-background z-10 rounded-none"
 >
 <ChevronDown
 className={cn(
 "duration-200",
 !recipientsExpanded && "rotate-90"
)}
 />
 </Button>
 </div>
 <div className={cn("flex text-xs gap-1 relative")}>
 {!recipientsExpanded && (
 <div
 // Have a div cover the recipients so that the
user has to expand the recipients first to be able to view more info

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 230 Maio 2025

 className="container-overlay"
 onClick={() => setRecipientsExpanded(true)}
 />
)}
 <div
 className={cn(
 "flex gap-1",
 recipientsExpanded ? "flex-wrap mr-5" : ""
)}
 >
 <div className="font-medium">{t("common:to")}:</d
iv>

 {message.recipients.map(
 (recipientWithoutContact, index) => {
 const recipient: NewRecipient = {
 ...recipientWithoutContact,
 contact: contacts.find(
 (contact) =>
 contact.phone ===
 recipientWithoutContact.phone
),
 // This is a temporary solution. Maybe chan
ge the type later to not be NewRecipient[]
 isValid: true,
 proneForDeletion: false,
 };
 return (
 <div key={recipient.phone} className="flex"
>
 <Button
 variant="none"
 onClick={() => showInfoAbout(recipient)
}
 className="whitespace-nowrap p-0 text-x
s h-min hover:bg-muted px-[2px]"
 >
 {recipient.contact?.name || recipient.p
hone}
 </Button>
 {index < message.recipients.length - 1 &&
 ", "}
 </div>
);
 }
)}
 </div>
 </div>
 </div>
 </div>
 </div>

 <Separator />

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 231 Maio 2025

 <div className="flex-1 whitespace-pre-wrap p-4 text-sm">
 {message.body}
 </div>
 </div>
) : (
 <div className="p-8 text-center text-muted-foreground">
 {t("none_selected")}
 </div>
)}

 {message && message.status === "FAILED" && (
 <>
 <Separator className="" />

 <div className="flex w-full p-4 gap-2">
 <AlertTriangle className="relative top-2 text-destructive
min-w-6 min-h-6" />
 <div className="flex flex-col gap-2">
 <p className="text-destructive text-sm font-semibold ">
 {t(`api_error_${message.api_error_code}`)}
 </p>
 <pre className="max-w-max whitespace-pre-wrap break-wor
ds bg-muted border p-2 rounded-lg text-xs">
 {message.api_error_details_json
 ? JSON.stringify(
 JSON.parse(message.api_error_details_json),
 null,
 2
)
 : t("no_json_available")}
 </pre>
 </div>
 </div>

 {/* <p className="text-muted-foreground text-sm mb-4">
 {t("api_error_caption")}
 </p> */}
 </>
)}

 {/* You can remove the message check if you want to, I like it
better that this bottom bar only shows up on selection */}
 {message && message.status === "DRAFTED" ? (
 <>
 <Separator className="mt-auto" />
 <div className="flex px-4 py-2 justify-end gap-2">
 <Button
 variant="default"
 type="button"
 className="w-max"
 disabled={!message}
 onClick={() =>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 232 Maio 2025

 message
 ? router.push(`/new-message?message_id=${message.id
}`)
 : ""
 }
 >
 <Edit className="h-4 w-4" />
 {t("btn-continue_draft")}
 </Button>
 </div>
 </>
) : (
 ""
)}
 </div>
 </div>
 </ScrollArea>
 </div>
);
}
export default React.memo(MessageDisplay);

/components/settings-item.tsx

"use client";

import { Input } from "@/components/ui/input";
import { updateSetting } from "@/lib/actions/user.actions";
import { cn } from "@/lib/utils";
import React, { SetStateAction } from "react";
import {
 useState,
 useTransition,
 type FormEvent,
 type InputHTMLAttributes,
 useEffect,
} from "react";
import type { UpdateSettingResponse } from "@/types/action";
import { useSettings } from "@/contexts/use-settings";

export type RenderInputArgs = {
 value: string;
 onChange: (newValue: string) => void;
 onBlur: (e?: FormEvent<Element>, submittedValue?: string) => void;
 id: string;
 initialValue?: string;
 className?: string;
 isPending: boolean;
 setServerState?: React.Dispatch<SetStateAction<UpdateSettingResponse>>;
};

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 233 Maio 2025

type SettingsItemProps = InputHTMLAttributes<HTMLInputElement> & {
 name: string;
 initialValue?: string;
 label?: string;
 caption?: string;
 inputType?: string;
 renderInput?: (props: RenderInputArgs) => React.ReactNode;
 onUpdate?: (newValue: string) => void;
};

const initialState: UpdateSettingResponse = {
 success: false,
 input: "",
};

export function SettingsItem({
 name,
 initialValue = "",
 label,
 caption,
 inputType = "text",
 renderInput,
 onUpdate,
 ...inputProps
}: SettingsItemProps) {
 const [value, setValue] = useState<string>(initialValue);
 const [isPending, setIsPending] = useState<boolean>(false);
 const [serverState, setServerState] = useState(initialState);
 const { setSettings } = useSettings();

 async function handleSubmit(e?: FormEvent, submittedValue?: string) {
 if (e) e.preventDefault();
 setIsPending(true);

 const formData = new FormData();
 formData.append("name", name);
 formData.append("value", submittedValue || value);

 const result = await updateSetting(formData);
 setServerState(result);
 if (onUpdate) onUpdate(value);

 // these are currently the settings that we store in localstorage as we
ll as state
 const stateSettingNames = [
 "display_name",
 "profile_color_id",
 "appearance_layout",
];
 if (stateSettingNames.includes(name)) {
 // 1. Update localstorage itself

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 234 Maio 2025

 localStorage.setItem(name, result.data || initialValue);

 // 2. Update state since localStorage changes don't trigger re-render
s.
 setSettings((prev) => ({
 displayName: name === "display_name" ? result.data : prev.displayNa
me,
 profileColorId:
 name === "profile_color_id" ? result.data : prev.profileColorId,
 layout: name === "appearance_layout" ? result.data : prev.layout,
 }));
 }
 setIsPending(false);
 }

 const handleChange = (newValue: string) => {
 setValue(newValue);
 };

 const defaultInput = (
 <Input
 id={name}
 type={inputType}
 value={value}
 onChange={(e) => handleChange(e.target.value)}
 onBlur={(e?: any, v?: any) => handleSubmit(e, v)}
 className="w-max"
 disabled={isPending}
 {...inputProps}
 />
);

 const inputElement = renderInput
 ? renderInput({
 value,
 onChange: handleChange,
 onBlur: (e, submittedValue) => handleSubmit(e, submittedValue),
 id: name,
 initialValue,
 isPending,
 setServerState,
 })
 : defaultInput;

 return (
 <form
 onSubmit={handleSubmit}
 style={{ marginBottom: "1rem" }}
 className="space-y-2 flex flex-col"
 >
 <label
 className="text-sm font-medium leading-none peer-disabled:cursor-no

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 235 Maio 2025

t-allowed peer-disabled:opacity-70"
 htmlFor={name}
 >
 {(isPending && "Saving...") || label || name}
 </label>
 {inputElement}
 <p
 className={cn(
 "text-[0.8rem] order-1",
 serverState.error ? "text-destructive" : "text-muted-foreground"
)}
 >
 {serverState.error || caption}
 </p>
 </form>
);
}

export default SettingsItem;

/components/nav-panel.tsx

"use client";

import { useCallback, useEffect, useState } from "react";
import {
 Sheet,
 SheetContent,
 SheetTitle,
 SheetTrigger,
} from "@/components/ui/sheet";
import { Button, buttonVariants } from "@/components/ui/button";
import {
 AlertTriangle,
 Calendar,
 LogOut,
 Menu,
 UserRoundPen,
} from "lucide-react";
import {
 MonitorCog,
 Settings,
 Trash2,
 Contact2,
 Pencil,
 MailCheck,
 FileText,
} from "lucide-react";
import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { cn } from "@/lib/utils";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 236 Maio 2025

import { Separator } from "./ui/separator";
import NavLinks from "./nav-links";
import { useTranslation } from "react-i18next";
import { useLayout } from "@/contexts/use-layout";
import { ScrollArea } from "./ui/scroll-area";
import { useIsMobile } from "@/hooks/use-mobile";
import { usePathname, useRouter } from "next/navigation";
import { useSession } from "@/hooks/use-session";
import { logout } from "@/lib/auth";
import {
 AlertDialog,
 AlertDialogAction,
 AlertDialogCancel,
 AlertDialogContent,
 AlertDialogDescription,
 AlertDialogFooter,
 AlertDialogHeader,
 AlertDialogTitle,
 AlertDialogTrigger,
} from "@/components/ui/alert-dialog";
import { useSettings } from "@/contexts/use-settings";
import Account from "./shared/account";
import AppLogo from "./logo";

export default function NavPanel() {
 const { layout, isCollapsed, setIsCollapsed, fallbackLayout, isFullscreen
} =
 useLayout();
 // In case we need to check for large screens
 let isExtraLargeScreen = window.innerWidth >= 1200;
 // the nav panel is a bit bigger than that, but the elements inside keep
it at its minimum size
 const COLLAPSED_SIZE = 2;

 const hidePanelClassName =
 ((isFullscreen || useIsMobile()) && "hidden") || undefined;
 return (
 <>
 <ResizablePanel
 className={cn(
 isCollapsed && "min-w-[50px] transition-all duration-300 ease-in-
out",
 hidePanelClassName
)}
 defaultSize={layout ? layout[0] : fallbackLayout[0]}
 collapsedSize={COLLAPSED_SIZE}
 collapsible={true}
 minSize={13}
 maxSize={35}
 onCollapse={() => {
 setIsCollapsed(true);
 const cookieValue = JSON.stringify(true);
 const cookiePath = "/";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 237 Maio 2025

 document.cookie = `react-resizable-panels:collapsed=${cookieValue
}; path=${cookiePath};`;
 }}
 onResize={() => {
 setIsCollapsed(false);
 const cookieValue = JSON.stringify(false);
 const cookiePath = "/";
 document.cookie = `react-resizable-panels:collapsed=${cookieValue
}; path=${cookiePath};`;
 }}
 >
 <NavPanelContent isCollapsed={isCollapsed} />
 </ResizablePanel>
 <ResizableHandle withHandle className={hidePanelClassName} />
 </>
);
}

export function MobileNavPanel() {
 const { mobileNavPanel, setMobileNavPanel } = useLayout();
 const router = useRouter();
 const { t } = useTranslation(["navigation"]);

 useEffect(() => {
 setMobileNavPanel(false);
 }, [router]);

 // add a click event listener to the nav element
 const handleNavClick = useCallback((event: React.MouseEvent<HTMLElement>)
=> {
 const target = event.target as HTMLElement;
 // when user clicks inside of this NavPanel, we check if the element cl
icked is a <Link> and close the NavPanel. This is so that we can have the n
ice closing animation
 if (target.tagName === "A" || target.closest("a")) {
 setMobileNavPanel(false);
 }
 }, []);

 return (
 <Sheet
 open={mobileNavPanel}
 onOpenChange={setMobileNavPanel}
 /* You can change the animation duration inside the shadCn component
(easiest way) */
 >
 <SheetContent side="left" className="w-[300px] p-0">
 <SheetTitle className="sr-only">{t("sr_only-nav_menu")}</SheetTitle
>
 <nav onClick={handleNavClick}>
 <NavPanelContent
 isCollapsed={false} // on mobile it will never be collapsed

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 238 Maio 2025

 />
 </nav>
 </SheetContent>
 </Sheet>
);
}

// We have to data sources for the user's profile:
// 1. Sensitive information is extracted from the encrypted session
// 2. Stuff that can be changed in the settings is encrypted from localstor
age
function NavPanelContent({ isCollapsed }: { isCollapsed: boolean }) {
 const { t, i18n } = useTranslation(["navigation", "modals", "common"]);
 const { amountIndicators } = useLayout();
 const router = useRouter();
 const { session, loading } = useSession();
 const { settings, resetLocalSettings } = useSettings();
 const onMobile = useIsMobile();

 const [confirmLogoutOpen, setConfirmLogoutOpen] = useState(false);
 const showAlertDialog = () => {
 // show the alert dialog
 setConfirmLogoutOpen(true);
 };

 const handleLogout = async () => {
 const { success } = await logout();
 if (success) {
 resetLocalSettings();
 router.push("/login");
 }
 };

 return (
 <>
 {(onMobile || settings.layout === "SIMPLE") && (
 <div
 className={cn(
 "h-[var(--simple-header-height)] border-b flex items-center gap
-2",
 !isCollapsed && "px-2",
 isCollapsed && "justify-center"
)}
 >
 <AppLogo isCollapsed={isCollapsed} />
 </div>
)}

 {/* <Separator /> */}
 <NavLinks
 isCollapsed={isCollapsed}
 links={[

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 239 Maio 2025

 {
 title: t("new_message"),
 icon: Pencil,
 variant: "default",
 size: "xl",
 isNewButton: true,
 action: () => {
 // We need to manually refresh so all the inputs actually get
refreshed
 router.push("/new-message");
 router.refresh();
 },
 },
]}
 />

 {/* Maybe we need a fixed height here, but if everything works, all g
ood. Use div instead of ScrollArea, because otherwise it the Sheet componen
t glitches out */}
 <div className="overflow-auto">
 <div
 className="flex flex-col"
 // In tailwind, this doesn't work, and I don't know why
 style={{
 // 56 is the new-message button
 height: `calc(100vh - var(--simple-header-height) - 56px${
 isCollapsed ? " - 8px" : ""
 })`,
 width: "100%",
 }}
 >
 <div className="grow">
 <NavLinks
 isCollapsed={isCollapsed}
 links={[
 {
 title: t("sent"),
 label:
 amountIndicators?.sent == 0
 ? ""
 : amountIndicators?.sent.toString(),
 icon: MailCheck,
 variant: "ghost",
 href: "/sent",
 },
 {
 title: t("scheduled"),
 label:
 amountIndicators?.scheduled == 0
 ? ""
 : amountIndicators?.scheduled.toString(),
 icon: Calendar,
 variant: "ghost",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 240 Maio 2025

 href: "/scheduled",
 },
 {
 title: t("failed"),
 label:
 amountIndicators?.failed == 0
 ? ""
 : amountIndicators?.failed.toString(),
 icon: AlertTriangle,
 variant: "ghost",
 href: "/failed",
 },
 {
 title: t("drafts"),
 label:
 amountIndicators?.drafts == 0
 ? ""
 : amountIndicators?.drafts.toString(),
 icon: FileText,
 variant: "ghost",
 href: "/drafts",
 },
 {
 title: t("trash"),
 label:
 amountIndicators?.trash == 0
 ? ""
 : amountIndicators?.trash.toString(),
 icon: Trash2,
 variant: "ghost",
 href: "/trash",
 },
]}
 />

 <Separator />
 <NavLinks
 isCollapsed={isCollapsed}
 links={[
 {
 title: t("settings"),
 label: "",
 icon: Settings,
 variant: "ghost",
 href: "/settings",
 },
 {
 title: t("contacts"),
 label:
 amountIndicators?.contacts == 0
 ? ""
 : amountIndicators?.contacts.toString(),
 icon: Contact2,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 241 Maio 2025

 variant: "ghost",
 href: "/contacts",
 },
 {
 title: t("dashboard"),
 label: "",
 icon: MonitorCog,
 variant: "ghost",
 href: "/dashboard",
 hidden: !session?.isAdmin,
 },
]}
 />
 </div>

 <Separator />
 <div className="shrink h-[var(--simple-header-height)] flex flex-
col justify-center">
 {/* Also show logout button in the mobile sheet, regardless of
the current layout */}
 {!onMobile && settings.layout === "SIMPLE" ? (
 <Account hideNameRole={isCollapsed} className="px-2" />
) : (
 <>
 <NavLinks
 isCollapsed={isCollapsed}
 links={[
 {
 title: t("log_out"),
 label: "",
 icon: LogOut,
 variant: "ghost",
 action: showAlertDialog,
 },
]}
 />

 {/* "Confirm Logout" dialog */}
 <AlertDialog
 open={confirmLogoutOpen}
 onOpenChange={setConfirmLogoutOpen}
 >
 <AlertDialogContent>
 <AlertDialogHeader>
 <AlertDialogTitle>
 {t("modals:logout-header")}
 </AlertDialogTitle>
 <AlertDialogDescription>
 {t("modals:logout-header_caption")}
 </AlertDialogDescription>
 </AlertDialogHeader>
 <AlertDialogFooter>
 <AlertDialogCancel>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 242 Maio 2025

 {t("common:cancel")}
 </AlertDialogCancel>
 <AlertDialogAction onClick={handleLogout}>
 {t("common:continue")}
 </AlertDialogAction>
 </AlertDialogFooter>
 </AlertDialogContent>
 </AlertDialog>
 </>
)}
 </div>
 </div>
 </div>
 </>
);
}

/components/admin-dashboard/index.tsx

"use client";

import MessagePieChart from "@/components/admin-dashboard/message-pie-chart
";
import MessageAreaChart from "@/components/admin-dashboard/message-area-cha
rt";
import UserRankingTable from "@/components/admin-dashboard/user-table";
import { PageHeader } from "@/components/headers";
import Account from "@/components/shared/account";
import { Button, buttonVariants } from "@/components/ui/button";
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/c
ard";
import { useSettings } from "@/contexts/use-settings";
import { cn, extractFirstWord, getPercentageChange } from "@/lib/utils";
import { DBUser } from "@/types/user";
import Link from "next/link";
import { useTranslation } from "react-i18next";
import { CountryStat } from "../../app/[locale]/dashboard/page";
import { LightDBMessage } from "@/types/dashboard";
import { ScrollArea } from "../ui/scroll-area";
import { useIsMobile } from "@/hooks/use-mobile";
import { ArrowLeft } from "lucide-react";

export type TimeRange = {
 from: Date;
 to: Date;
};

export default function AdminDashboard({
 messages,
 users,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 243 Maio 2025

 countryStats,
}: {
 messages: LightDBMessage[];
 users: DBUser[];
 countryStats: CountryStat[] | undefined;
}) {
 const { t } = useTranslation(["dashboard-page", "errors", "common"]);
 const messageCounts = countMessages(messages);
 const { settings } = useSettings();
 const onMobile = useIsMobile();
 const onBigScreen = false;

 return (
 <div className="flex flex-col">
 <PageHeader
 title={
 onBigScreen
 ? t("header_long", {
 first_name: settings.displayName
 ? extractFirstWord(settings.displayName)
 : "User",
 })
 : t("header")
 }
 marginRight={onMobile}
 >
 {!onMobile && (
 <>
 <Link
 href="/"
 className={cn(buttonVariants({ variant: "link" }), "mx-2")}
 >
 <ArrowLeft className="h-4 w-4" />
 {t("back_to_app")}
 </Link>

 <Account className="ml-auto" profilePicPosition="RIGHT" />
 </>
)}
 </PageHeader>

 <ScrollArea
 /** We always want simple header height here due to only having 1 s
imple nav-panel, regardless of any layout*/
 className="h-[calc(100vh-var(--simple-header-height))]"
 >
 <div
 className="p-4" /* Inside looks better with rimless bottom on scr
oll */
 >
 <div className="flex flex-col md:grid grid-cols-3 gap-4">
 <TextCard
 label={t("text_card_1-title")}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 244 Maio 2025

 value={messageCounts.today}
 caption={
 getPercentageChange(
 messageCounts.today,
 messageCounts.todayBefore
) < 0
 ? // Negative change (lower than before)
 t("text_card_1-caption_lower", {
 percentage: `${
 getPercentageChange(
 messageCounts.today,
 messageCounts.todayBefore
) * -1
 }%`,
 })
 : // Positive change (higher than before)
 t("text_card_1-caption_higher", {
 percentage: `${getPercentageChange(
 messageCounts.today,
 messageCounts.todayBefore
)}%`,
 })
 }
 />
 <TextCard
 label={t("text_card_2-title")}
 value={messageCounts.last7Days}
 caption={
 getPercentageChange(
 messageCounts.last7Days,
 messageCounts.last7DaysBefore
) < 0
 ? // Negative change (lower than before)
 t("text_card_2-caption_lower", {
 percentage: `${
 getPercentageChange(
 messageCounts.last7Days,
 messageCounts.last7DaysBefore
) * -1
 }%`,
 })
 : // Positive change (higher than before)
 t("text_card_2-caption_higher", {
 percentage: `${getPercentageChange(
 messageCounts.last7Days,
 messageCounts.last7DaysBefore
)}%`,
 })
 }
 />
 <TextCard
 label={t("text_card_3-title")}
 value={messageCounts.lastMonth}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 245 Maio 2025

 caption={
 getPercentageChange(
 messageCounts.lastMonth,
 messageCounts.lastMonthBefore
) < 0
 ? // Negative change (lower than before)
 t("text_card_3-caption_lower", {
 percentage: `${
 getPercentageChange(
 messageCounts.lastMonth,
 messageCounts.lastMonthBefore
) * -1
 }%`,
 })
 : // Positive change (higher than before)
 t("text_card_3-caption_higher", {
 percentage: `${getPercentageChange(
 messageCounts.lastMonth,
 messageCounts.lastMonthBefore
)}%`,
 })
 }
 />
 {/* <Card>
 <CardHeader>
 <CardTitle>Sent This week</CardTitle>
 </CardHeader>
 <CardContent>{messageCounts.last7Days}</CardContent>
 </Card>
 <Card>
 <CardHeader>
 <CardTitle>Sent This Month</CardTitle>
 </CardHeader>
 <CardContent>{messageCounts.last3Months}</CardContent>
 </Card> */}
 <div className="col-span-3">
 <div className="h-min">
 <MessageAreaChart messages={messages || []} />
 </div>
 </div>
 <div className={cn("col-span-2", onMobile && "order-6")}>
 <UserRankingTable users={users || []} messages={messages || [
]} />
 </div>
 <MessagePieChart data={countryStats} />
 </div>
 </div>
 </ScrollArea>
 </div>
);
}

function TextCard({

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 246 Maio 2025

 label,
 value,
 caption,
}: {
 label: string;
 value: string | number;
 caption: string;
}) {
 return (
 <Card className="min-h-min">
 <CardContent className="p-6 flex flex-col gap">
 <p className="text-sm font-semibold text-foreground">{label}</p>
 <h1 className="leading-tight">{value}</h1>
 <p className="text-sm text-muted-foreground">{caption}</p>
 </CardContent>
 </Card>
);
}

function countMessages(messages: LightDBMessage[]) {
 const now = new Date();
 const todayStart = new Date(now.getFullYear(), now.getMonth(), now.getDat
e());
 const yesterdayStart = new Date(todayStart);
 yesterdayStart.setDate(todayStart.getDate() - 1);
 const yesterdayEnd = new Date(todayStart);
 yesterdayEnd.setDate(todayStart.getDate() - 1);
 yesterdayEnd.setHours(23, 59, 59, 999); // End of yesterday

 const sevenDaysAgo = new Date(now);
 sevenDaysAgo.setDate(now.getDate() - 7);
 const weekBeforeStart = new Date(sevenDaysAgo);
 weekBeforeStart.setDate(sevenDaysAgo.getDate() - 7); // Start of the week
before last 7 days

 const oneMonthAgo = new Date(now);
 oneMonthAgo.setMonth(now.getMonth() - 1);
 const oneMonthBeforeStart = new Date(oneMonthAgo);
 oneMonthBeforeStart.setMonth(oneMonthAgo.getMonth() - 1); // Start of the
3 months before last 3 months

 const counts = {
 today: 0,
 todayBefore: 0,
 last7Days: 0,
 last7DaysBefore: 0, // New property for the week before last 7 days
 lastMonth: 0,
 lastMonthBefore: 0, // New property for the 3 months before last 3 mont
hs
 };

 messages.forEach((message) => {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 247 Maio 2025

 const sentAt = new Date(message.send_time);

 // Count messages sent today
 if (sentAt >= todayStart) {
 counts.today++;
 }
 // Count messages sent yesterday
 if (sentAt >= yesterdayStart && sentAt <= yesterdayEnd) {
 counts.todayBefore++;
 }

 // Count messages sent in the last 7 days
 if (sentAt >= sevenDaysAgo) {
 counts.last7Days++;
 }
 // Count messages sent in the week before the last 7 days
 if (sentAt >= weekBeforeStart && sentAt < sevenDaysAgo) {
 counts.last7DaysBefore++;
 }

 // Count messages sent in the last 3 months
 if (sentAt >= oneMonthAgo) {
 counts.lastMonth++;
 }
 // Count messages sent in the 3 months before the last 3 months
 if (sentAt >= oneMonthBeforeStart && sentAt < oneMonthAgo) {
 counts.lastMonthBefore++;
 }
 });

 return counts;
}

/components/admin-dashboard/message-pie-chart.tsx

"use client";

import { useState, useEffect, useMemo } from "react";
import { TrendingUp } from "lucide-react";
import { Cell, Pie, PieChart, ResponsiveContainer, Tooltip } from "recharts
";

import {
 Card,
 CardContent,
 CardDescription,
 CardFooter,
 CardHeader,
 CardTitle,
} from "@/components/ui/card";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 248 Maio 2025

import { useTranslation } from "react-i18next";
import { capitalize, cn, shuffleArray } from "@/lib/utils";
import { CountryStat } from "@/app/[locale]/dashboard/page";
import { themesArray } from "@/lib/theme.colors";
import { useTheme as useNextTheme } from "next-themes";
import { ThemeMode } from "@/types/theme";
import { useThemeContext } from "@/contexts/theme-data-provider";

export default function MessagePieChart({
 data,
}: {
 data: CountryStat[] | undefined;
}) {
 const { theme } = useNextTheme();
 const { themeColor } = useThemeContext();
 const userLikesZinc = themeColor === 1;
 const slicedArray = [
 ...themesArray.slice(
 userLikesZinc ? 0 : 1, // remove Zinc color if the user doesn't like
it, because it looks bad with the other colors. If he does, leave it in
 themesArray.length
),
];

 const [pieChartColors, setPieChartColors] = useState<string[]>([]);

 const totalMessages = useMemo(() => {
 return data?.reduce((acc, curr) => acc + curr.amount, 0);
 }, [data]);
 const { t } = useTranslation();

 const totalCost = useMemo(() => {
 return data?.reduce((acc, curr) => acc + curr.cost, 0).toFixed(2);
 }, [data]);

 // Find the country with the most messages
 const topCountry = useMemo(() => {
 if (data?.length === 0) return null;
 return data?.reduce((max, curr) => (max.amount > curr.amount ? max : cu
rr));
 }, [data]);

 // Custom center label renderer
 const renderCustomLabel = ({ cx, cy }: any) => {
 return (
 <g>
 <text
 x={cx}
 y={cy}
 fill="hsl(var(--foreground))"
 textAnchor="middle"
 dominantBaseline="central"

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 249 Maio 2025

 className="text-3xl font-bold"
 >
 {totalMessages}
 </text>
 <text
 x={cx}
 y={cy + 24}
 fill="hsl(var(--foreground))"
 textAnchor="middle"
 dominantBaseline="central"
 className="text-sm text-muted-foreground opacity-75"
 >
 {t("messages_amount")}
 </text>
 </g>
);
 };

 useEffect(() => {
 // Randomize colors on component mount only, so that when user changes
the input the colors don't change
 shuffleArray(slicedArray);
 setPieChartColors(
 slicedArray.map(
 (themeColor) =>
 `hsl(${themeColor.value[(theme as ThemeMode) || "light"].primary}
)`
)
);
 }, []);

 return (
 <Card className="flex flex-col min-h-[400px]">
 <CardHeader className="items-center md:items-start pb-0">
 <CardTitle>{t("pie_chart-title")}</CardTitle>
 <CardDescription>{t("pie_chart-title_caption")}</CardDescription>
 </CardHeader>

 {/* Error case */}
 {!data || !data.length ? (
 <CardContent className="h-full">
 {data === undefined ? (
 <p className="h-full centered text-destructive">
 {t("pie_chart-error")}
 </p>
) : (
 data?.length === 0 && (
 <p className="h-full centered">
 {/* No data case */}
 {t("pie_chart-no_data")}
 </p>
)
)}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 250 Maio 2025

 </CardContent>
) : (
 <>
 {/* Content gets rendered in all other conditions */}
 <CardContent className="flex-1 pb-0 h-[300px]">
 <div className="mx-auto aspect-square h-full max-w-[300px] flex
justify-center">
 <ResponsiveContainer
 /* Docs say percentages, but numerical values work better *
/
 width={250}
 aspect={1}
 >
 <PieChart className="">
 <Tooltip content={<CustomTooltip />} />

 <Pie
 data={data}
 cx="50%"
 cy="50%"
 labelLine={false}
 label={renderCustomLabel}
 innerRadius={60}
 outerRadius={105}
 // strokeWidth={3}
 dataKey="amount"
 nameKey="country"
 >
 {data.map((entry, index) => (
 <Cell
 key={`cell-${index}`}
 fill={pieChartColors[index % pieChartColors.length]
}
 // Adjust these values
 strokeWidth={0.5}
 stroke="hsl(var(--background))"
 // strokeOpacity={0.3}
 />
))}
 </Pie>
 </PieChart>
 </ResponsiveContainer>
 {/* </ChartContainer> */}
 </div>
 </CardContent>
 <CardFooter className="flex-col gap-2 text-sm pt-4">
 <div className="flex items-center gap-2 font-medium leading-non
e">
 {topCountry && (
 <>
 {t("pie_chart-leading_country", {
 country: topCountry.country,
 amount: topCountry.amount,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 251 Maio 2025

 })}
 <TrendingUp className="h-4 w-4" />
 </>
)}
 </div>
 <div className="leading-none text-muted-foreground">
 {t("pie_chart-total_cost")} ${totalCost}
 </div>
 </CardFooter>
 </>
)}
 </Card>
);
}

function CustomTooltip({ active, payload }: any) {
 const { t } = useTranslation();
 if (active && payload && payload.length) {
 return (
 <div
 className={cn(
 "grid min-w-[8rem] items-start gap-1.5 rounded-lg border border-s
late-200/50 bg-background px-2.5 py-1.5 text-xs shadow-xl dark:border-slate
-800 dark:border-slate-800/50"
)}
 >
 <div className="grid gap-1.5">
 {payload.map((item: any, index: number) => {
 const key = item.name || item.dataKey || "value";
 // const itemConfig = getPayloadConfigFromPayload(
 // config,
 // item,
 // key
 //);
 const indicatorColor = item.payload.fill || item.color;

 return (
 <div
 key={item.dataKey}
 className={cn("flex w-full flex-col items-stretch gap-2 ")}
//[&>svg]:h-2.5 [&>svg]:w-2.5 [&>svg]:text-muted-foreground dark:[&>svg]:te
xt-muted-foreground
 >
 <div className="flex items-center gap-1">
 <div
 style={{
 width: 10,
 height: 10,
 borderRadius: 2,
 backgroundColor: indicatorColor,
 }}
 />
 <div className="font-medium">{item.name}</div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 252 Maio 2025

 </div>

 {/* Key value pairs */}
 <KeyValueInTooltip name={t("cost")} value={item.payload.cos
t} />
 <KeyValueInTooltip
 name={t("messages_amount")}
 value={item.payload.amount}
 />
 </div>
);
 })}
 </div>
 </div>
);
 }

 return null;
}

function KeyValueInTooltip({
 name,
 value,
}: {
 name: string;
 value?: string | number;
}) {
 return (
 <div className={cn("flex flex-1 justify-between leading-none")}>
 <div className="grid gap-1.5">
 {name}
 </div>
 {value && (
 <span className="font-mono font-medium tabular-nums text-slate-950
dark:text-slate-50">
 {value}

)}
 </div>
);
}

/components/admin-dashboard/user-table.tsx

"use client";

import {
 Card,
 CardContent,
 CardDescription,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 253 Maio 2025

 CardHeader,
 CardTitle,
} from "@/components/ui/card";
import { DBUser } from "@/types/user";
import ProfilePic from "../profile-pic";
import { useTranslation } from "react-i18next";
import { useMemo } from "react";
import { LightDBMessage } from "@/types/dashboard";

export default function UserRankingTable({
 users,
 messages,
}: {
 users: DBUser[];
 messages: LightDBMessage[];
}) {
 const { t } = useTranslation();
 const usersWithMessageCounts = useMemo(() => {
 return users
 .map((user) => ({
 ...user,
 messageCount: messages.filter((m) => m.user_id === user.id).length,
 }))
 .sort((a, b) => b.messageCount - a.messageCount);
 }, [users, messages]);

 return (
 <Card className="h-full">
 <CardHeader>
 <CardTitle>{t("users_table-title")}</CardTitle>
 <CardDescription>{t("users_table-title_caption")}</CardDescription>
 </CardHeader>
 <CardContent className="">
 <div className="max-h-[300px] overflow-auto">
 <table className="w-full">
 <tbody>
 {usersWithMessageCounts.map((user, index) => (
 <tr key={user.id || index} className="text-left">
 <td className="w-1/12 p-2">
 {/* First column for index */}
 <p>{index + 1}.</p>
 </td>
 <td className="w-1/12 p-2">
 {/* Second column for profile picture */}
 <ProfilePic name={user.name} className="border" />
 </td>
 <td className="p-2">
 {/* Last column for user details */}
 <div className="flex flex-col">
 <p className="text-sm font-medium leading-none">
 {user.name}
 </p>
 <p className="text-sm text-muted-foreground">

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 254 Maio 2025

 {user.email}
 </p>
 </div>
 </td>
 <td className="w-1/12 p-2 text-sm font-semibold">
 {messages.filter((m) => m.user_id == user.id).length}
 </td>
 </tr>
))}
 </tbody>
 </table>
 </div>
 </CardContent>
 </Card>
);
}

/**

<Popover>
 <PopoverTrigger asChild>
 <Button variant="outline" size="sm" className="ml-auto">
 Owner <ChevronDown className="text-muted-foreground" />
 </Button>
 </PopoverTrigger>
 <PopoverContent className="p-0" align="end">
 <Command>
 <CommandInput placeholder="Select new role..." />
 <CommandList>
 <CommandEmpty>No roles found.</CommandEmpty>
 <CommandGroup>
 <CommandItem className="teamaspace-y-1 flex flex-col it
ems-start px-4 py-2">
 <p>Viewer</p>
 <p className="text-sm text-muted-foreground">
 Can view and comment.
 </p>
 </CommandItem>
 <CommandItem className="teamaspace-y-1 flex flex-col it
ems-start px-4 py-2">
 <p>Developer</p>
 <p className="text-sm text-muted-foreground">
 Can view, comment and edit.
 </p>
 </CommandItem>
 <CommandItem className="teamaspace-y-1 flex flex-col it
ems-start px-4 py-2">
 <p>Billing</p>
 <p className="text-sm text-muted-foreground">

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 255 Maio 2025

 Can view, comment and manage billing.
 </p>
 </CommandItem>
 <CommandItem className="teamaspace-y-1 flex flex-col it
ems-start px-4 py-2">
 <p>Owner</p>
 <p className="text-sm text-muted-foreground">
 Admin-level access to all resources.
 </p>
 </CommandItem>
 </CommandGroup>
 </CommandList>
 </Command>
 </PopoverContent>
 </Popover>
 */

/components/admin-dashboard/message-area-chart.tsx

"use client";

import { useEffect, useMemo, useState } from "react";
import { Area, AreaChart, CartesianGrid, XAxis } from "recharts";

import {
 Card,
 CardContent,
 CardDescription,
 CardHeader,
 CardTitle,
} from "@/components/ui/card";
import {
 ChartConfig,
 ChartContainer,
 ChartLegend,
 ChartLegendContent,
 ChartTooltip,
 ChartTooltipContent,
} from "@/components/ui/chart";
import {
 Select,
 SelectContent,
 SelectItem,
 SelectTrigger,
 SelectValue,
} from "@/components/ui/select";
import { format, parseISO, subDays } from "date-fns";
import { capitalize, cn, getDateFnsLocale } from "@/lib/utils";
import { useTranslation } from "react-i18next";
import { usePathname, useRouter, useSearchParams } from "next/navigation";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 256 Maio 2025

import {
 DEFAULT_START_DATE,
 ISO8601_DATE_FORMAT,
 PT_DATE_FORMAT_NO_TIME,
} from "@/global.config";
import { LightDBMessage } from "@/types/dashboard";
import { zodISODate } from "@/lib/form.schemas";
import { buttonVariants } from "../ui/button";
import { useIsMobile } from "@/hooks/use-mobile";
import { getThemeByIndex } from "@/lib/theme.colors";
import { useSettings } from "@/contexts/use-settings";
import { useTheme as useNextTheme } from "next-themes";
import { ThemeMode } from "@/types/theme";

export default function MessageAreaChart({
 messages,
}: {
 messages: LightDBMessage[];
}) {
 const now = new Date();
 const { i18n, t } = useTranslation(["dashboard-page"]);
 const data = toChartData(messages);
 const router = useRouter();
 const pathname = usePathname();
 const onMobile = useIsMobile();
 const searchParams = useSearchParams();
 const { settings } = useSettings();
 const { theme } = useNextTheme();
 const areaChartColors = [
 `hsl(${
 getThemeByIndex(settings.profileColorId || 1, theme as ThemeMode)?.pr
imary
 })`, // Current profile theme color-props
 "hsl(var(--primary))", // Current appearance theme color-props
];

 // This should get updated by re-renders, if not, turn it into a useState
that gets set by a useEffect
 const selectedStartDate = {
 ISO_date: searchParams.get("start_date"),
 isValid: zodISODate.safeParse(searchParams.get("start_date")).success,
 };

 function toISO(date: Date) {
 return format(date, ISO8601_DATE_FORMAT);
 }
 const selectItems = [
 {
 label: t("area_chart-week"),
 date: subDays(now, 7), // Subtract 7 days
 },
 {
 label: t("area_chart-month"),

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 257 Maio 2025

 date: subDays(now, 30), // Subtract 30 days (assuming a 30-day month)
 },
 {
 label: t("area_chart-3_months"),
 date: subDays(now, 90), // Subtract 90 days (assuming a 30-day months
)
 },
 {
 label: t("area_chart-all_time"),
 date: new Date(DEFAULT_START_DATE),
 },
];

 const chartConfig = {
 amount: {
 label: t("messages_amount"),
 },
 price: {
 label: t("cost"),
 },
 } satisfies ChartConfig;

 return (
 <Card>
 <CardHeader className="flex items-center gap-2 space-y-0 border-b py-
5 sm:flex-row">
 <div className="grid flex-1 gap-1 text-center sm:text-left">
 <CardTitle>
 {t("area_chart-title")} ({data.length})
 </CardTitle>
 <CardDescription>{t("area_chart-title_caption")}</CardDescription
>
 </div>
 <Select
 defaultValue={searchParams.get("start_date") || DEFAULT_START_DAT
E}
 onValueChange={(value) => {
 const params = new URLSearchParams(searchParams);

 if (value) {
 params.set("start_date", value);
 } else {
 params.delete("start_date");
 }
 if (params.has("end_date")) params.delete("end_date");
 router.replace(`${pathname}?${params.toString()}`, {
 scroll: false, // persist current scroll for better ux
 });
 }}
 >
 <SelectTrigger
 className={cn(
 buttonVariants({ variant: "outline" }),

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 258 Maio 2025

 "w-min appearance-none font-normal justify-between"
)}
 // className="w-[160px] rounded-lg sm:ml-auto"
 aria-label={t("common:aria_label-select")}
 >
 <SelectValue placeholder={t("area_chart-3_months")} />
 </SelectTrigger>
 <SelectContent align={onMobile ? "center" : "end"}>
 {selectItems.map((item) => (
 <SelectItem key={item.date.getTime()} value={toISO(item.date)
}>
 {item.label}
 </SelectItem>
))}
 {selectedStartDate.ISO_date &&
 !selectItems.some(
 (item) => toISO(item.date) === selectedStartDate.ISO_date
) && (
 <SelectItem value={selectedStartDate.ISO_date} disabled>
 {selectedStartDate.isValid
 ? format(
 new Date(selectedStartDate.ISO_date),
 PT_DATE_FORMAT_NO_TIME
)
 : selectedStartDate.ISO_date}
 </SelectItem>
)}
 </SelectContent>
 </Select>
 </CardHeader>

 <CardContent className="px-2 pt-4 sm:px-6 sm:pt-6">
 <ChartContainer
 config={chartConfig}
 className="aspect-auto h-[250px] w-full"
 >
 <AreaChart data={data}>
 <defs>
 {/* Gradient of the chart waves */}
 <linearGradient id="fillPrice" x1="0" y1="0" x2="0" y2="1">
 <stop
 offset="5%"
 stopColor={areaChartColors[0]}
 stopOpacity={0.8}
 />
 <stop
 offset="95%"
 stopColor={areaChartColors[0]}
 stopOpacity={0.1}
 />
 </linearGradient>
 <linearGradient id="fillAmount" x1="0" y1="0" x2="0" y2="1">
 <stop

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 259 Maio 2025

 offset="5%"
 stopColor={areaChartColors[1]}
 stopOpacity={0.8}
 />
 <stop
 offset="95%"
 stopColor={areaChartColors[1]}
 stopOpacity={0.1}
 />
 </linearGradient>
 </defs>
 <CartesianGrid vertical={false} />
 <XAxis
 dataKey="date"
 tickLine={false}
 axisLine={false}
 tickMargin={8}
 minTickGap={32}
 tickFormatter={(value) => {
 return format(new Date(value), "MMM d, yyyy", {
 locale: getDateFnsLocale(i18n.language),
 });
 }}
 />
 <ChartTooltip
 cursor={false}
 wrapperClassName="z-80"
 content={
 <ChartTooltipContent
 className="z-80"
 labelFormatter={(dateString: string) => {
 // The error we were having is that between state updat
es and re-renders, sometimes the label date was not a valid date, so we nee
d to handle the date formatting gracefully to prevent a thrown error from f
ormat
 const parsedDate = parseISO(dateString);
 return isNaN(parsedDate.getTime()) // check if the date
is valid before trying to format it
 ? t("invalid_date")
 : format(parsedDate, "MMM d, yyyy", {
 locale: getDateFnsLocale(i18n.language),
 });
 }}
 indicator="dot"
 />
 }
 />
 {/* Line at the top of the chart waves */}
 <Area
 dataKey="price"
 type="natural"
 fill="url(#fillPrice)"
 stroke={areaChartColors[0]}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 260 Maio 2025

 stackId="a"
 />
 <Area
 dataKey="amount"
 type="natural"
 fill="url(#fillAmount)"
 stroke={areaChartColors[1]}
 stackId="a"
 />
 <ChartLegend content={<ChartLegendContent />} />
 </AreaChart>
 </ChartContainer>
 </CardContent>
 </Card>
);
}

const toChartData = (
 messages: LightDBMessage[]
): { date: string; price: number; amount: number }[] => {
 const chartDataMap: {
 [key: string]: { totalCost: number; messageCount: number };
 } = {};

 messages.forEach((message) => {
 // Format the date to YYYY-MM-DD
 const date = message.send_time.toISOString().split("T")[0];

 // Initialize the entry for the date if it doesn't exist
 if (!chartDataMap[date]) {
 chartDataMap[date] = { totalCost: 0, messageCount: 0 };
 }

 // Increment the message count
 chartDataMap[date].messageCount += 1;

 // Add to the total cost if the cost is not null
 if (message.cost) {
 // Ensure cost is treated as a number
 const costValue =
 typeof message.cost === "string"
 ? parseFloat(message.cost)
 : message.cost;
 chartDataMap[date].totalCost += costValue;
 }
 });

 // Convert the map to an array
 return Object.entries(chartDataMap).map(([date, counts]) => ({
 date,
 price: counts.totalCost,
 amount: counts.messageCount,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 261 Maio 2025

 }));
};

/components/modals/schedule-modals.tsx

"use client";

import React, { ChangeEvent, useEffect, useState } from "react";
import {
 Dialog,
 DialogContent,
 DialogTrigger,
 DialogTitle,
 DialogFooter,
 DialogDescription,
 DialogHeader,
} from "../ui/dialog";
import {
 AlertDialog,
 AlertDialogAction,
 AlertDialogCancel,
 AlertDialogContent,
 AlertDialogDescription,
 AlertDialogFooter,
 AlertDialogHeader,
 AlertDialogTitle,
 AlertDialogTrigger,
} from "@/components/ui/alert-dialog";
import { Calendar } from "../ui/calendar";
import { Input } from "../ui/input";
import { Label } from "../ui/label";
import { Button, buttonVariants } from "../ui/button";
import { useTranslation } from "react-i18next";
import { useModal } from "@/contexts/use-modal";
import { useNewMessage } from "@/contexts/use-new-message";

export default function ScheduleMessageModal() {
 const now = new Date();
 const { t } = useTranslation();
 const { modal, setModal } = useModal();
 const { message, setMessage } = useNewMessage();
 const [selectedDate, setSelectedDate] = useState(message.scheduledDate);

 const handleCancelButtonClick = () => {
 if (selectedDate > new Date()) {
 // date is in the future - so reset it to now
 setSelectedDate(now);
 } else {
 setModal((m) => ({ ...m, schedule: false }));
 }

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 262 Maio 2025

 };

 const applySelectedDate = () => {
 setMessage((m) => ({
 ...m,
 scheduledDate: selectedDate,
 scheduledDateModified: true,
 }));

 setModal((m) => ({ ...m, schedule: false }));
 };

 const handleKeyPress = (event: KeyboardEvent) => {
 if (modal.schedule === true && event.key === "Enter") {
 applySelectedDate();
 }
 };

 useEffect(() => {
 // Add event listener for keydown
 document.addEventListener("keydown", handleKeyPress);

 // Cleanup the event listener on component unmount
 return () => {
 document.removeEventListener("keydown", handleKeyPress);
 };
 }, [modal.schedule]);

 return (
 <Dialog
 open={modal.schedule}
 onOpenChange={() => setModal((m) => ({ ...m, schedule: false }))}
 >
 <DialogContent className="p-6 overflow-y-auto">
 <DialogHeader className="mb-5">
 <DialogTitle>{t("modals:schedule_message-header")}</DialogTitle>
 <DialogDescription>
 {t("modals:schedule_message-header_caption")}
 </DialogDescription>
 </DialogHeader>
 <div
 className="flex flex-col gap-4 items-center xs:items-start xs:fle
x-row h-[325px] max-w-[250px] xs:max-w-full mx-auto xs:mx-0 p-0" /** This i
s the exact maximum height of the calendar */
 >
 <Calendar
 mode="single"
 selected={selectedDate}
 onSelect={(date: Date | undefined) => {
 setSelectedDate((prev) => (date ? date : prev));
 }}
 className="rounded-md border"

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 263 Maio 2025

 />
 <div className="flex flex-col justify-between h-full w-full pb-6
xs:pb-0">
 <div /** className="flex flex-col h-full justify-center" */>
 <div className="flex flex-col gap-2 mb-3">
 <Label htmlFor="hour">
 {t("modals:schedule_message-hour_label")}
 </Label>
 <TimeInput
 id="hour"
 min={0}
 max={23}
 value={selectedDate.getHours()}
 onChange={(value) => {
 setSelectedDate((prev) => new Date(prev.setHours(value)
));
 }}
 />
 </div>
 <div className="flex flex-col gap-2 mb-3">
 <Label htmlFor="minute">
 {t("modals:schedule_message-minute_label")}
 </Label>
 <TimeInput
 id="minute"
 min={0}
 max={59}
 value={selectedDate.getMinutes()}
 onChange={(value) =>
 setSelectedDate((prev) => new Date(prev.setMinutes(valu
e)))
 }
 />
 </div>
 </div>
 <div className="flex flex-wrap gap-2 justify-end">
 <Button
 variant="outline"
 onClick={handleCancelButtonClick}
 className="flex-1"
 >
 {selectedDate > now
 ? t("modals:schedule_message-reset")
 : t("common:cancel")}
 </Button>
 <Button onClick={applySelectedDate} className="flex-1">
 {selectedDate > now
 ? t("modals:schedule_message-submit")
 : t("modals:schedule_message-submit_now")}
 </Button>
 </div>
 </div>
 </div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 264 Maio 2025

 </DialogContent>
 </Dialog>
);
}

export function ScheduleAlertModal() {
 const [shouldSubmit, setShouldSubmit] = useState(false);
 const { modal, setModal } = useModal();
 const { form } = useNewMessage();
 const { t } = useTranslation();
 const { setMessage } = useNewMessage();

 useEffect(() => {
 if (shouldSubmit) {
 // Check if the form ref is set and then call requestSubmit
 form?.requestSubmit();
 setShouldSubmit(false); // Reset the flag after submission
 }
 }, [shouldSubmit]); // This effect runs when shouldSubmit changes
 return (
 <>
 {/* "Confirm Invalid Date" dialog */}
 <AlertDialog
 open={modal.scheduleAlert}
 onOpenChange={(value) =>
 setModal((m) => ({ ...m, scheduleAlert: value }))
 }
 >
 <AlertDialogContent>
 <AlertDialogHeader>
 <AlertDialogTitle>
 {t("modals:schedule_alert-header")}
 </AlertDialogTitle>
 <AlertDialogDescription>
 {t("modals:schedule_alert-header_caption")}
 </AlertDialogDescription>
 </AlertDialogHeader>
 <AlertDialogFooter>
 <AlertDialogCancel>{t("common:cancel")}</AlertDialogCancel>
 <AlertDialogAction
 onClick={() => {
 setMessage((m) => ({ ...m, scheduledDateConfirmed: true }))
;
 // Can't submit directly from here, because we need to wait
for the scheduleDateConfirmed flag to be set
 setShouldSubmit(true);
 }}
 >
 {t("common:continue")}
 </AlertDialogAction>
 </AlertDialogFooter>
 </AlertDialogContent>
 </AlertDialog>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 265 Maio 2025

 </>
);
}

// Define the props type for the TimeInput component
type TimeInputProps = {
 id: string;
 value: number;
 onChange: (value: number) => void;
 min: number;
 max: number;
};

// TimeInput component
function TimeInput({ id, value, onChange, min, max }: TimeInputProps) {
 const [displayValue, setDisplayValue] = useState<string>(
 value < 10 ? `0${value}` : value.toString()
);
 const [isFocused, setIsFocused] = useState(false);

 const handleChange = (e: React.ChangeEvent<HTMLInputElement>) => {
 const inputValue = e.target.value;
 setDisplayValue(inputValue);

 const numericValue = Number(inputValue);
 if (numericValue >= min && numericValue <= max) {
 onChange(numericValue);
 }
 };

 const handleBlur = () => {
 setIsFocused(false);
 const numericValue = Number(displayValue);
 if (numericValue >= min && numericValue <= max) {
 setDisplayValue(
 numericValue < 10 ? `0${numericValue}` : numericValue.toString()
);
 }
 };

 useEffect(() => {
 // reflect the current date object in the inputs whenever they change
 if (isFocused === false) {
 setDisplayValue(value < 10 ? `0${value}` : value.toString());
 }
 }, [value]);

 return (
 <Input
 id={id}
 type="number"
 min={min}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 266 Maio 2025

 max={max}
 value={displayValue}
 onChange={handleChange}
 onBlur={handleBlur} // Add onBlur event handler
 onFocus={() => setIsFocused(true)}
 />
);
}

/components/modals/recipient-info.tsx

"use client";

import {
 Dialog,
 DialogContent,
 DialogDescription,
 DialogHeader,
 DialogTitle,
 DialogFooter,
} from "../ui/dialog";
import { DialogClose } from "@/components/ui/dialog";
import { useModal } from "@/contexts/use-modal";
import { Separator } from "../ui/separator";
import { CopyButton } from "../shared/copy-button";
import { Button } from "../ui/button";
import { NewRecipient } from "@/types/recipient";
import { useTranslation } from "react-i18next";
import ProfilePic from "../profile-pic";
import { useEffect, useState } from "react";

export default function RecipientInfoModal({
 recipient,
 allowContactCreation = true,
}: {
 recipient: NewRecipient;
 allowContactCreation: boolean;
}) {
 const { modal, setModal } = useModal();
 const { t } = useTranslation(["modals"]);
 const [watchCreateModalClose, setWatchCreateModalClose] = useState(false)
;

 const showCreateModal = () => {
 setModal((m) => ({ ...m, contact: { ...m.contact, info: false } }));
 setModal((m) => ({ ...m, contact: { ...m.contact, create: true } }));
 setWatchCreateModalClose(true);
 };
 useEffect(() => {
 if (watchCreateModalClose && modal.contact.create === false) {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 267 Maio 2025

 setWatchCreateModalClose(false);
 setModal((m) => ({ ...m, contact: { ...m.contact, info: true } }));
 }
 }, [modal.contact]);
 return (
 <Dialog
 /* We do need these shits unfortunately */
 open={modal.contact.info}
 onOpenChange={(value: boolean) =>
 setModal((m) => ({ ...m, contact: { ...m.contact, info: value } }))
 }
 >
 <DialogContent>
 <DialogHeader>
 <DialogTitle>
 {/* make it so we can interpolate a one of these translations u
sing {{name}} into the actual one */}
 {recipient.contact
 ? t("info-header_contact")
 : t("info-header_recipient")}
 </DialogTitle>
 <DialogDescription>
 {recipient.contact
 ? t("info-header_caption_contact")
 : t("info-header_caption_recipient")}
 </DialogDescription>
 </DialogHeader>
 <div className="flex flex-1 flex-col">
 <div className="flex items-start p-4">
 <div className="flex items-center gap-4 text-sm">
 <ProfilePic name={recipient.contact?.name} className="border"
/>
 <h2>{recipient.contact?.name || t("info-name_fallback")}</h2>
 </div>
 </div>
 <Separator />
 <div className="flex gap-4 justify-between items-center p-4 text-
sm">
 <div>{t("common:phone_number")}</div>
 <CopyButton text={recipient.phone} variant="none" className="pr
-0">
 {recipient.phone}
 </CopyButton>
 </div>
 {recipient.contact && (// Contact description information
 <>
 <Separator />
 <div className="flex gap-4 justify-between p-4 text-sm">
 <p>{t("common:description")}</p>

 {recipient.contact?.description?.trim() ? (
 <p className="text-right">{recipient.contact?.description
}</p>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 268 Maio 2025

) : (
 <p className="italic text-right">
 {t("common:no_description")}
 </p>
)}
 </div>
 </>
)}
 </div>
 {allowContactCreation && (
 <DialogFooter>
 <DialogClose asChild>
 <Button variant="outline">{t("common:close")}</Button>
 </DialogClose>
 {!recipient.contact?.id && (
 <Button onClick={showCreateModal}>
 {t("info-button_create_contact")}
 </Button>
)}
 </DialogFooter>
)}
 </DialogContent>
 </Dialog>
);
}

/components/modals/edit-contact.tsx

"use client";

import React, { useEffect, useState } from "react";
import { useActionState } from "react";
import {
 Dialog,
 DialogContent,
 DialogDescription,
 DialogHeader,
 DialogTitle,
 DialogTrigger,
 DialogFooter,
} from "../ui/dialog";
import { Button, buttonVariants } from "../ui/button";
import { Input } from "@/components/ui/input";
import { Label } from "../ui/label";
import { updateContact } from "@/lib/actions/contact.actions";
import { DBContact } from "@/types/contact";
import { ContactSchema } from "@/lib/form.schemas";
import { CircleAlert, Loader2 } from "lucide-react";
import { DialogClose } from "@/components/ui/dialog";
import { cn, toastActionResult } from "@/lib/utils";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 269 Maio 2025

import { Textarea } from "../ui/textarea";
import { Alert, AlertDescription } from "../ui/alert";
import { useModal } from "@/contexts/use-modal";
import { ActionResponse } from "@/types/action";
import { useTranslation } from "react-i18next";
import { useContacts } from "@/contexts/use-contacts";

const initialState: ActionResponse<undefined> = {
 success: false,
 message: [],
};

export default function EditContactModal({ contact }: { contact: DBContact
}) {
 const { modal, setModal } = useModal();
 const [serverState, action, pending] = useActionState(
 updateContact.bind(null, contact.id),
 initialState
);
 const { refetchContacts } = useContacts();
 const { t } = useTranslation(["modals"]);

 useEffect(() => {
 if (serverState.success) {
 toastActionResult(serverState, t);
 handleOpenChange(false);
 // Refetch contacts context after mutation.
 refetchContacts();
 }
 }, [serverState]);

 const handleOpenChange = (value: boolean) => {
 setModal((m) => ({ ...m, contact: { ...m.contact, edit: value } }));
 clearInputs();
 };
 const clearInputs = () => {
 // This is unfortunately the easiest way to reset this shit
 serverState.errors = undefined;
 serverState.message = [];
 serverState.inputs = {};
 };
 return (
 <Dialog
 /* We do need these shits unfortunately */
 open={modal.contact.edit}
 onOpenChange={handleOpenChange}
 >
 <DialogContent>
 <DialogHeader>
 <DialogTitle>{t("edit_contact-header")}</DialogTitle>
 <DialogDescription>
 {t("edit_contact-header_caption")}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 270 Maio 2025

 </DialogDescription>
 </DialogHeader>
 <form action={action} className="space-y-6">
 <div className="space-y-2">
 <Label htmlFor="name">{t("common:name")}</Label>
 <Input
 name="name"
 id="name"
 placeholder={t("name_placeholder")}
 defaultValue={serverState.inputs?.name || contact.name}
 // required
 // minLength={5}
 // maxLength={100}
 aria-describedby="name-error"
 className={serverState.errors?.name ? "border-red-500" : ""}
 />
 {serverState.errors?.name && (
 <p id="name-error" className="text-sm text-red-500">
 {t(serverState.errors.name[0])}
 </p>
)}
 </div>

 <div className="space-y-2">
 <Label htmlFor="phone">{t("common:phone_number")}</Label>
 <Input
 name="phone"
 id="phone"
 placeholder={t("phone_placeholder")}
 defaultValue={serverState.inputs?.phone || contact.phone}
 // required
 // minLength={5}
 // maxLength={100}
 aria-describedby="phone-error"
 className={serverState.errors?.phone ? "border-red-500" : ""}
 />
 {serverState.errors?.phone && (
 <p id="phone-error" className="text-sm text-red-500">
 {t(serverState.errors.phone[0])}
 </p>
)}
 </div>

 <div className="space-y-2">
 <Label htmlFor="description">{t("common:description")}</Label>
 <Textarea
 name="description"
 id="description"
 placeholder={t("description_placeholder")}
 defaultValue={
 serverState.inputs?.description || contact.description
 }
 // required

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 271 Maio 2025

 // minLength={5}
 // maxLength={100}
 aria-describedby="description-error"
 className={
 serverState.errors?.description ? "border-red-500" : ""
 }
 />
 {serverState.errors?.description && (
 <p id="description-error" className="text-sm text-red-500">
 {t(serverState.errors.description[0])}
 </p>
)}
 </div>

 {serverState.message.length > 0 && (
 <Alert variant={serverState.success ? "default" : "destructive"
}>
 {!serverState.success && <CircleAlert className="w-4 h-4" />}
 <AlertDescription className="relative top-1">
 {t(serverState.message)}
 </AlertDescription>
 </Alert>
)}

 <DialogFooter>
 <DialogClose
 type="button"
 className={cn(buttonVariants({ variant: "outline" }))}
 >
 {t("common:cancel")}
 </DialogClose>
 <Button type="submit" disabled={pending}>
 {pending && <Loader2 className="h-4 w-4 animate-spin" />}{" "
}
 {t("common:update")}
 </Button>
 </DialogFooter>
 </form>
 </DialogContent>
 </Dialog>
);
}

/components/modals/insert-contact.tsx

"use client";

import { useEffect, useState } from "react";
import {
 Dialog,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 272 Maio 2025

 DialogContent,
 DialogDescription,
 DialogHeader,
 DialogTitle,
 DialogTrigger,
 DialogFooter,
 DialogPortal,
 DialogClose,
} from "../ui/dialog";
import { Button, buttonVariants } from "../ui/button";
import { cn } from "@/lib/utils";
import {
 Table,
 TableBody,
 TableCaption,
 TableCell,
 TableHead,
 TableHeader,
 TableRow,
} from "@/components/ui/table";
import { Checkbox } from "../ui/checkbox";
import { useNewMessage } from "@/contexts/use-new-message";
import { useModal } from "@/contexts/use-modal";
import { DBContact } from "@/types/contact";
import { useTranslation } from "react-i18next";
import { useContacts } from "@/contexts/use-contacts";

export default function InsertContactModal() {
 const { contacts } = useContacts();
 const { modal, setModal } = useModal();
 const { addRecipient, showInfoAbout, message, removeRecipient } =
 useNewMessage();
 const initialSelected: DBContact[] = [];
 message.recipients.forEach((r) => {
 const contactInMessage = contacts.find((c) => c.phone === r.phone);
 if (contactInMessage) initialSelected.push(contactInMessage);
 });

 const [selected, setSelected] = useState<DBContact[]>(initialSelected);
 const { t } = useTranslation(["modals", "common"]);
 const [watchCreateModalClose, setWatchCreateModalClose] = useState(false)
;

 // Only those contacts that are selected here should be inside the messag
e object
 const onInsert = () => {
 // 1. Remove the ones from the message that were deselected here
 const deselectedContacts = contacts.filter(
 (contact) =>
 !selected.some((selectedContact) => selectedContact === contact)
);
 message.recipients.map((recipient) => {
 if (deselectedContacts.find((c) => c.phone === recipient.phone)) {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 273 Maio 2025

 removeRecipient(recipient);
 }
 });

 // 2. Add the ones that don't exist yet.
 const contactsNotInMessage = contacts.filter(
 (contact) =>
 !message.recipients.some(
 (messageContact) => messageContact.phone === contact.phone
)
);

 selected.forEach((selectedContact: DBContact) => {
 // pass add each selected selectedContact to the recipients context
 if (
 contactsNotInMessage.find(
 (notContact) => notContact.phone === selectedContact.phone
)
) {
 addRecipient(selectedContact.phone);
 }
 });

 // close the modal
 setInsertModal(false);
 };

 const onSelectOne = (contact: DBContact) => {
 const isSelected = !!selected.find((item) => item.id === contact.id);
 isSelected
 ? // it is already checked, so uncheck it:
 setSelected((prevSelected) =>
 prevSelected.filter((s) => s.id !== contact.id)
)
 : // it is not checked yet, so add it to the selectedArr
 setSelected((prevSelected) => [...prevSelected, contact]);
 };
 const onSelectAll = () => {
 selected.length === contacts.length
 ? setSelected([])
 : setSelected(contacts);
 };
 const showCreateModal = () => {
 showInfoAbout(null);
 setInsertModal(false);
 setModal((m) => ({ ...m, contact: { ...m.contact, create: true } }));
 setWatchCreateModalClose(true);
 };
 const setInsertModal = (value: boolean) => {
 setModal((m) => ({ ...m, contact: { ...m.contact, insert: value } }));
 };

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 274 Maio 2025

 useEffect(() => {
 if (watchCreateModalClose && modal.contact.create === false) {
 setWatchCreateModalClose(false);
 setInsertModal(true);
 }
 if (modal.contact.insert) setSelected(initialSelected);
 }, [modal.contact]);
 return (
 <>
 <Dialog open={modal.contact.insert} onOpenChange={setInsertModal}>
 <DialogContent>
 <DialogHeader>
 <DialogTitle>{t("insert_contact-header")}</DialogTitle>
 <DialogDescription>
 {t("insert_contact-header_caption")}
 </DialogDescription>
 </DialogHeader>
 {contacts.length ? (
 <div className="max-h-[400px] overflow-auto">
 <Table>
 {/* <TableCaption>A list of your contacts.</TableCaption> *
/}
 <TableHeader>
 <TableRow className="cursor-pointer" onClick={onSelectAll
}>
 <TableHead className="flex items-center">
 <Checkbox
 className="w-6 h-6 rounded-md"
 checked={selected.length === contacts.length}
 onClick={onSelectAll}
 />
 </TableHead>
 <TableHead>{t("common:name")}</TableHead>
 <TableHead>{t("common:phone_number")}</TableHead>
 </TableRow>
 </TableHeader>
 <TableBody>
 {contacts.map((contact) => {
 const isSelected = !!selected.find(
 (item) => item.id === contact.id
);
 return (
 <TableRow
 key={contact.id}
 className="cursor-pointer"
 onClick={() => onSelectOne(contact)}
 >
 <TableCell
 // This fixes the layout shifting
 className="flex items-center h-[36.5px] font-medi
um"
 >
 <Checkbox

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 275 Maio 2025

 className="h-6 w-6 rounded-md mb-1"
 style={{
 height: "24px !important",
 width: "24px !important",
 }}
 checked={isSelected}
 onClick={() => onSelectOne(contact)}
 />
 </TableCell>
 <TableCell>{contact.name}</TableCell>
 <TableCell>{contact.phone}</TableCell>
 </TableRow>
);
 })}
 </TableBody>
 </Table>
 </div>
) : (
 <div className="flex flex-col items-center gap-4 py-4">
 <DialogDescription className="self-start sm:self-center text-
center text-red-400">
 {t("insert_contact-no_contacts")}
 </DialogDescription>
 <Button
 className="w-min"
 onClick={() => {
 setInsertModal(false);
 showCreateModal();
 }}
 >
 {t("insert_contact-button_create_new")}
 </Button>
 </div>
)}
 <DialogFooter>
 <DialogClose
 className={cn(
 "w-full sm:w-min",
 buttonVariants({ variant: "outline" })
)}
 >
 {t("common:cancel")}
 </DialogClose>
 {contacts.length !== 0 && (
 <Button
 onClick={onInsert}
 /* uncomment this if you prefer
 disabled={!selected.length} */
 >
 {selected.length === 1
 ? t("insert_contact-button_insert_one")
 : t("insert_contact-button_insert_x", {
 amount: selected.length,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 276 Maio 2025

 })}
 </Button>
)}
 </DialogFooter>
 </DialogContent>
 </Dialog>
 </>
);
}

/components/modals/create-contact.tsx

"use client";

import React, { useEffect, useState } from "react";
import { useActionState } from "react";
import {
 Dialog,
 DialogContent,
 DialogDescription,
 DialogHeader,
 DialogTitle,
 DialogTrigger,
 DialogFooter,
} from "../ui/dialog";
import { Button, buttonVariants } from "../ui/button";
import { Input } from "@/components/ui/input";
import { Label } from "../ui/label";
import { createContact } from "@/lib/actions/contact.actions";
import { CircleAlert, Loader2 } from "lucide-react";
import { DialogClose } from "@/components/ui/dialog";
import { cn, toastActionResult } from "@/lib/utils";
import { Textarea } from "../ui/textarea";
import { Alert, AlertDescription } from "../ui/alert";
import { useModal } from "@/contexts/use-modal";
import { CreateContactResponse } from "@/types/action";
import { useTranslation } from "react-i18next";
import { DBContact } from "@/types/contact";
import { useContacts } from "@/contexts/use-contacts";

const initialState: CreateContactResponse = {
 success: false,
 message: [],
};

export default function CreateContactModal({
 defaultPhone,
 onCreateSuccess,
}: {
 defaultPhone?: string;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 277 Maio 2025

 onCreateSuccess?: (contact: DBContact) => void;
}) {
 const { modal, setModal } = useModal();
 const [serverState, action, pending] = useActionState(
 createContact,
 initialState
);
 const { refetchContacts } = useContacts();
 const { t } = useTranslation(["modals"]);

 useEffect(() => {
 if (serverState.success) {
 toastActionResult(serverState, t);
 // Refetch contacts context after creation.
 refetchContacts();
 handleOpenChange(false);
 if (onCreateSuccess && serverState.data)
 onCreateSuccess(serverState.data);
 }
 }, [serverState]);

 const handleOpenChange = (value: boolean) => {
 setModal((m) => ({ ...m, contact: { ...m.contact, create: value } }));
 clearInputs();
 };
 const clearInputs = () => {
 // This is unfortunately the easiest way to reset this shit
 serverState.errors = undefined;
 serverState.message = [];
 serverState.inputs = {};
 };
 return (
 <Dialog
 /* We do need these shits unfortunately */
 open={modal.contact.create}
 onOpenChange={handleOpenChange}
 >
 <DialogContent>
 <DialogHeader>
 <DialogTitle>{t("create_contact-header")}</DialogTitle>
 <DialogDescription>
 {t("create_contact-header_caption")}
 </DialogDescription>
 </DialogHeader>
 <form action={action} className="space-y-6">
 <div className="space-y-2">
 <Label htmlFor="name">{t("common:name")}</Label>
 <Input
 name="name"
 id="name"
 placeholder={t("name_placeholder")}
 defaultValue={serverState.inputs?.name}
 // required

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 278 Maio 2025

 // minLength={5}
 // maxLength={100}
 aria-describedby="name-error"
 className={serverState.errors?.name ? "border-red-500" : ""}
 />
 {serverState.errors?.name && (
 <p id="name-error" className="text-sm text-red-500">
 {t(serverState.errors.name[0])}
 </p>
)}
 </div>

 <div className="space-y-2">
 <Label htmlFor="phone">{t("common:phone_number")}</Label>
 <Input
 name="phone"
 id="phone"
 placeholder={t("phone_placeholder")}
 defaultValue={serverState.inputs?.phone || defaultPhone}
 // required
 // minLength={5}
 // maxLength={100}
 aria-describedby="phone-error"
 className={serverState.errors?.phone ? "border-red-500" : ""}
 />
 {serverState.errors?.phone && (
 <p id="phone-error" className="text-sm text-red-500">
 {t(serverState.errors.phone[0])}
 </p>
)}
 </div>

 <div className="space-y-2">
 <Label htmlFor="description">{t("common:description")}</Label>
 <Textarea
 name="description"
 id="description"
 placeholder={t("description_placeholder")}
 defaultValue={serverState.inputs?.description}
 // required
 // minLength={5}
 // maxLength={100}
 aria-describedby="description-error"
 className={
 serverState.errors?.description ? "border-red-500" : ""
 }
 />
 {serverState.errors?.description && (
 <p id="description-error" className="text-sm text-red-500">
 {t(serverState.errors.description[0])}
 </p>
)}
 </div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 279 Maio 2025

 {serverState.message.length > 0 && (
 <Alert variant={serverState.success ? "default" : "destructive"
}>
 {!serverState.success && <CircleAlert className="w-4 h-4" />}
 <AlertDescription className="relative top-1">
 {t(serverState.message.join(", "))}
 </AlertDescription>
 </Alert>
)}

 <DialogFooter>
 <DialogClose
 type="button"
 className={cn(buttonVariants({ variant: "outline" }))}
 >
 {t("common:cancel")}
 </DialogClose>
 <Button type="submit" disabled={pending}>
 {pending && <Loader2 className="h-4 w-4 animate-spin" />}{" "
}
 {t("common:create")}
 </Button>
 </DialogFooter>
 </form>
 </DialogContent>
 </Dialog>
);
}

/components/messages-page-skeleton.tsx

"use client";

import ChildrenPanel from "./shared/children-panel";
import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { useLayout } from "@/contexts/use-layout";
import { useTranslation } from "react-i18next";

import { cn } from "@/lib/utils";
import MessageDisplay from "./message-display";
import { useIsMobile } from "@/hooks/use-mobile";
import { PageHeader } from "./headers";
import Skeleton from "react-loading-skeleton";
import "react-loading-skeleton/dist/skeleton.css";
import { AmountIndicators, CategoryEnums } from "@/types";
import { ModalProvider } from "@/contexts/use-modal";

export default function MessagesPageSkeleton({
 category,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 280 Maio 2025

}: {
 category: CategoryEnums;
}) {
 const { layout, fallbackLayout, amountIndicators } = useLayout();
 const { t } = useTranslation(["messages-page", "common"]);
 const onMobile = useIsMobile();
 const selected = null;
 const skeletonsAmount: number = amountIndicators
 ? amountIndicators[category.toLowerCase() as keyof AmountIndicators]
 : 4;
 return (
 <>
 <ResizablePanel
 className={cn(onMobile && selected !== null && "hidden")} // If we
are on mobile and a message is selected we only want to show the column con
taining the selected message.
 // Check if the layout is a 3-column middle-bar panel. Use the prev
ious 3-column layout if available; otherwise, render the fallback for diffe
rent or undefined layouts.
 defaultSize={
 Array.isArray(layout) && layout.length === 3
 ? layout[1]
 : fallbackLayout[1]
 }
 minSize={22}
 maxSize={50}
 >
 <PageHeader title={t(`header_${category.toLowerCase()}`)} />

 <div className="rounded-md p-4 h-[68px]">
 <Skeleton className="h-9" style={{ borderRadius: "0.375rem" }} />
 </div>

 <div className="flex flex-col gap-2 p-4 pt-0 mt-2 overflow-hidden">
 {skeletonsAmount > 0 ? (
 // Math.min() makes it so that the maximum will be x, even if t
he variable has a larger number
 Array.from({ length: Math.min(skeletonsAmount, 10) }).map(
 (_, i) => {
 return <MessageSkeleton key={i} />;
 }
)
) : (
 <div className="p-8 text-center text-muted-foreground">
 <Skeleton className="w-full" />
 </div>
)}
 </div>
 </ResizablePanel>
 <ResizableHandle withHandle className={cn(onMobile && "hidden")} />
 <ChildrenPanel
 hasMiddleBar
 className={cn(onMobile && selected === null && "hidden")} // like a

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 281 Maio 2025

bove we are using reverse logic here. If we are on mobile, and nothing is s
elected, this component should not be displayed.
 >
 {/* If you need other modals somewhere else, move the provider up t
he component tree. And don't forget to update the skeleton too! */}
 <ModalProvider>
 <MessageDisplay message={null} reset={() => {}} category={categor
y} />
 </ModalProvider>
 </ChildrenPanel>
 </>
);
}

function MessageSkeleton() {
 return (
 <div className="flex flex-col items-start gap-2 rounded-lg border p-3 t
ext-left text-sm">
 <div className="flex w-full flex-col gap-1">
 <div className="flex items-center h-[20px] w-full">
 <h2 className="flex-1 mr-20">
 <Skeleton />
 </h2>
 <p className="w-[15%] self-center">
 <Skeleton height={16} />
 </p>
 </div>
 <div className="text-xs font-medium w-[40%] ">
 <Skeleton />
 </div>
 </div>
 <div className="line-clamp-2 text-xs text-muted-foreground w-full">
 <Skeleton count={2} />
 </div>
 </div>
);
}

/components/shared/copy-button.tsx

"use client";

import React, { useState, useEffect, useRef, MouseEvent } from "react";
import { Copy, Check } from "lucide-react";
import { Button } from "@/components/ui/button";
import { cn } from "@/lib/utils";
import { toast } from "sonner";
import { useTranslation } from "react-i18next";

interface CopyButtonProps {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 282 Maio 2025

 children?: React.ReactNode;
 text: string;
 className?: string;
 variant?: "outline" | "none" | "ghost" | "link";
 size?: "sm" | "lg";
}

export function CopyButton({
 children,
 text,
 className = "",
 variant,
 size,
}: CopyButtonProps) {
 const [copied, setCopied] = useState(false);
 const timerRef = useRef<NodeJS.Timeout | null>(null);
 const { t } = useTranslation(["common"]);
 const successMessage = t("copy_btn-success");

 // We need this complex logic or it won't work in some browsers
 const handleCopy = async (e: MouseEvent<HTMLButtonElement>) => {
 if (!copied) {
 try {
 // Check if the Clipboard API is supported
 if (navigator.clipboard) {
 await navigator.clipboard.writeText(text);
 setCopied(true);
 toast.success(successMessage); // Notify success
 } else {
 // Fallback for browsers that do not support the Clipboard API
 const textarea = document.createElement("textarea");
 textarea.value = text;
 textarea.style.position = "fixed"; // Prevent scrolling to bottom
of page in MS Edge.
 textarea.style.opacity = "0"; // Make it invisible
 textarea.setAttribute("readonly", ""); // Make it read-only
 document.body.appendChild(textarea);
 textarea.select();
 const successful = document.execCommand("copy");
 document.body.removeChild(textarea);

 if (successful) {
 setCopied(true);
 toast.success(successMessage); // Notify success
 } else {
 throw new Error("Copy command was unsuccessful.");
 }
 }

 if (timerRef.current) clearTimeout(timerRef.current);
 timerRef.current = setTimeout(() => setCopied(false), 2000);
 } catch (error) {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 283 Maio 2025

 // Handle any errors that occur during the copy process
 toast.error("copy_btn-error");
 }
 }
 };

 return (
 <Button
 variant={variant}
 size={size}
 className={cn(className, "flex items-center")}
 onClick={handleCopy}
 >
 {copied ? (
 <Check style={{ width: ".8rem", height: ".8rem" }} />
) : (
 <Copy style={{ width: ".8rem", height: ".8rem" }} />
)}{" "}
 {children}
 </Button>
);
}

/components/shared/account.tsx

"use client";
import React, { useState } from "react";
import ProfilePic from "../profile-pic";
import { useSession } from "@/hooks/use-session";
import { cn } from "@/lib/utils";
import { useTranslation } from "react-i18next";
import {
 DropdownMenu,
 DropdownMenuContent,
 DropdownMenuGroup,
 DropdownMenuItem,
 DropdownMenuLabel,
 DropdownMenuSeparator,
 DropdownMenuTrigger,
} from "@/components/ui/dropdown-menu";
import Link from "next/link";
import { LogOut, MonitorCog, Settings, UserRoundPen } from "lucide-react";
import { useSettings } from "@/contexts/use-settings";
import { logout } from "@/lib/auth";
import { usePathname, useRouter } from "next/navigation";
import { getThemeByIndex, themes } from "@/lib/theme.colors";
import { useTheme as useNextTheme } from "next-themes";
import { ThemeMode } from "@/types/theme";

export default function Account({

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 284 Maio 2025

 hideNameRole = false,
 hideNameRoleOnXS,
 profilePicPosition = "LEFT",
 className,
}: {
 hideNameRole?: boolean;
 hideNameRoleOnXS?: boolean;
 profilePicPosition?: "LEFT" | "RIGHT";
 className?: string;
}) {
 const { t } = useTranslation(["common"]);
 const { session, loading } = useSession();
 const { theme } = useNextTheme();

 const pathname = usePathname();
 const router = useRouter();
 const { settings, resetLocalSettings } = useSettings();

 const handleLogout = async () => {
 const { success } = await logout();
 if (success) {
 resetLocalSettings();
 router.push("/login");
 }
 };

 return (
 <div
 // className={className}
 className={cn(
 "flex h-[var(--header-header-height)] items-center justify-center",
// border-b
 className
)}
 >
 <DropdownMenu>
 <DropdownMenuTrigger
 className={cn(
 "flex gap-3 items-center justify-start w-full focus-primary-rin
g",
 hideNameRole && "w-9 h-9"
)}
 >
 <ProfilePic
 size={9}
 name={settings.displayName}
 colorObj={getThemeByIndex(
 settings.profileColorId || 1,
 theme as ThemeMode
)}
 loading={loading}
 className={cn(profilePicPosition === "RIGHT" && "order-2")}
 />

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 285 Maio 2025

 <div
 className={cn(
 "flex flex-col",
 profilePicPosition === "RIGHT" && "items-end", // align the t
ext to the right depending on layout
 (hideNameRole || loading) && "hidden",
 hideNameRoleOnXS && "hidden xs:flex"
)}
 >
 <p className="font-semibold mb-[-3px]">
 {settings.displayName || t("common:account-no_name")}
 </p>
 <p className="text-xs text-muted-foreground text-start">
 {session?.isAdmin ? t("common:admin") : t("common:user")}
 </p>
 </div>
 </DropdownMenuTrigger>
 <DropdownMenuContent
 align={profilePicPosition === "LEFT" ? "start" : "end"}
 className="z-10"
 >
 <DropdownMenuGroup>
 <Link href="/settings#profile">
 <DropdownMenuItem>
 <UserRoundPen />
 {t("common:account-edit_profile")}
 </DropdownMenuItem>
 </Link>
 <Link href="/settings">
 <DropdownMenuItem>
 <Settings />
 {t("common:account-settings")}
 </DropdownMenuItem>
 </Link>
 {session?.isAdmin && (
 <Link href={pathname.includes("/dashboard") ? "/" : "/dashboa
rd"}>
 <DropdownMenuItem>
 <MonitorCog />
 {pathname.includes("/dashboard")
 ? t("common:account-dashboard_leave")
 : t("common:account-dashboard_enter")}
 </DropdownMenuItem>
 </Link>
)}
 </DropdownMenuGroup>
 <DropdownMenuSeparator />
 <DropdownMenuItem onClick={handleLogout}>
 <LogOut />
 {t("common:account-log_out")}
 </DropdownMenuItem>
 </DropdownMenuContent>
 </DropdownMenu>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 286 Maio 2025

 </div>
);
}

/components/shared/search.tsx

"use client";

import { Input } from "@/components/ui/input";
import { Search as SearchIcon } from "lucide-react";

type SearchProps = React.InputHTMLAttributes<HTMLInputElement> & {
 onSearch: (term: string) => void;
};

export default function Search({ onSearch, ...props }: SearchProps) {
 const url = new URL(window.location.href);
 const params = new URLSearchParams(url.search);
 const handleSearch = (term: string) => {
 // update data by calling parent function
 onSearch(term);

 // Use vanilla javascript to update the url.
 // According to the Next.js docs we should use useSearchParams, usePath
name, and useRouter, but that causes the component to re-render and re-fetc
h data.
 // For optimization purposes, we just fetch once for each page, and the
n filter that data using client-side javascript.

 // Update the search parameter or delete it if search bar is empty
 if (term) {
 params.set("query", term);
 } else {
 params.delete("query");
 }

 // Update the URL quietly without reloading the page
 url.search = params.toString();
 window.history.pushState({}, "", url);
 };
 return (
 <div className="p-4">
 <div className="relative">
 <SearchIcon className="absolute left-2 top-2.5 h-4 w-4 text-muted-f
oreground" />
 <Input /** this input is not part of a form, we are just using the
input element as it has handy event listeners */
 onChange={(e) => {
 handleSearch(e.target.value);
 }}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 287 Maio 2025

 className="focus-visible:ring-1 focus-visible:ring-primary"
 defaultValue={params.get("query")?.toString()}
 {...props}
 />
 </div>
 </div>
);
}

/components/shared/children-panel.tsx

"use client";

import { ResizablePanel } from "../ui/resizable";
import { useLayout } from "@/contexts/use-layout";

export default function ChildrenPanel({
 children,
 hasMiddleBar,
 className,
}: {
 children: Readonly<React.ReactNode>;
 hasMiddleBar?: boolean;
 className?: string;
}) {
 const { layout, fallbackLayout } = useLayout();
 const middleBarWidth =
 Array.isArray(layout) && layout.length === 3 ? layout[2] : undefined;

 const fallbackWidth = Array.isArray(layout)
 ? 100 - layout[0]
 : fallbackLayout[0];

 return (
 <ResizablePanel
 // width at null means don't specify any width, if it has a value use
that, else use fallback
 defaultSize={hasMiddleBar ? middleBarWidth : fallbackWidth}
 className={className}
 >
 {children}
 </ResizablePanel>
);
}

/components/shared/error-component.tsx

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 288 Maio 2025

"use client";
import { Frown } from "lucide-react";

type ErrorComponentProps = {
 children?: React.ReactNode;
 title: string;
 subtitle: string;
};
export default function ErrorComponent({
 children,
 title,
 subtitle,
}: ErrorComponentProps) {
 return (
 <div className="h-full flex flex-col items-center justify-center gap-3"
>
 <div className="flex flex-col items-center gap-1">
 <Frown className="text-muted-foreground h-10 w-10 stroke-[1.2px]" /
>
 <div className="flex flex-col items-center">
 <h2>{title}</h2>
 <p className="text-sm">{subtitle}</p>
 </div>
 </div>
 {children}
 </div>
);
}

/components/shared/submit-button.tsx

import React from "react";
import { Button } from "../ui/button";
import { Loader2 } from "lucide-react";
import { useFormStatus } from "react-dom";

export default function SubmitButton({
 children,
 ...props
}: React.ButtonHTMLAttributes<HTMLButtonElement>) {
 const { pending } = useFormStatus();
 return (
 <Button disabled={pending} {...props}>
 {pending && <Loader2 className="w-4 h-4 animate-spin" />}
 {children}
 </Button>
);
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 289 Maio 2025

/components/shared/unload-listener.tsx

"use client";
import React, { useEffect } from "react";

export default function UnloadListener() {
 useEffect(() => {
 const handleBeforeUnload = (event: Event) => {
 const message =
 "You have unsaved changes. Are you sure you want to leave this page
?";
 event.preventDefault();
 event.returnValue = !!message; // For most browsers
 return message; // For some older browsers
 };

 window.addEventListener("beforeunload", handleBeforeUnload);

 // Cleanup function to remove the event listener
 return () => {
 window.removeEventListener("beforeunload", handleBeforeUnload);
 };
 }, []);
 return <></>;
}

/components/shared/input.tsx

import * as React from "react";

import { cn } from "@/lib/utils";

const Input = React.forwardRef<HTMLInputElement, React.ComponentProps<"inpu
t">>(
 ({ className, type, ...props }, ref) => {
 return (
 <input
 type={type}
 className={cn(
 "focus-visible:ring-b-1 focus-visible:ring-ring flex h-9 w-full r
ounded-md bg-transparent px-3 py-1 text-base shadow-sm transition-colors fi
le:border-0 file:bg-transparent file:text-sm file:font-medium file:text-acc
ent-foreground placeholder:text-muted-foreground focus-visible:outline-none
disabled:cursor-not-allowed disabled:opacity-50 md:text-sm",
 className
)}
 ref={ref}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 290 Maio 2025

 {...props}
 />
);
 }
);
Input.displayName = "Input";

export { Input };

/components/clock-icon.tsx

import React, { JSX } from "react";
import {
 Clock1,
 Clock2,
 Clock3,
 Clock4,
 Clock5,
 Clock6,
 Clock7,
 Clock8,
 Clock9,
 Clock10,
 Clock11,
 Clock12,
} from "lucide-react";

function ClockIcon({ hour }: { hour: number }) {
 // Ensure the hour is between 1 and 12
 const validHour = Math.max(1, Math.min(12, hour));

 // Map the hour to the corresponding icon
 const icons: { [key: number]: JSX.Element } = {
 1: <Clock1 />,
 2: <Clock2 />,
 3: <Clock3 />,
 4: <Clock4 />,
 5: <Clock5 />,
 6: <Clock6 />,
 7: <Clock7 />,
 8: <Clock8 />,
 9: <Clock9 />,
 10: <Clock10 />,
 11: <Clock11 />,
 12: <Clock12 />,
 };

 return <div className="flex-centered h-4 w-4">{icons[validHour]}</div>;
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 291 Maio 2025

export default ClockIcon;

/components/resizable-panel-wrapper.tsx

"use client";

import { ResizablePanelGroup } from "@/components/ui/resizable";
import { useLayout } from "@/contexts/use-layout";

export default function ResizablePanelWrapper({
 children,
}: Readonly<{ children: React.ReactNode }>) {
 const { setLayout } = useLayout();

 return (
 <ResizablePanelGroup
 direction="horizontal"
 onLayout={(sizes: number[]) => {
 setLayout(sizes);
 const cookieValue = JSON.stringify(sizes);
 const cookiePath = "/"; // Specify a url path. The layout should be
the same, no matter where it got saved.
 document.cookie = `react-resizable-panels:layout:app=${cookieValue}
; path=${cookiePath};`;
 }}
 className="h-full items-stretch"
 >
 {children}
 </ResizablePanelGroup>
);
}

/components/messages-list.tsx

"use client";

import { cn, getDateFnsLocale } from "@/lib/utils";
import { ScrollArea } from "@/components/ui/scroll-area";
import { ComponentProps } from "react";
import { formatDistanceToNow } from "date-fns/formatDistanceToNow";
import { Badge } from "@/components/ui/badge";
import type { DBMessage } from "@/types";
import { useTranslation } from "react-i18next";
import ClockIcon from "./clock-icon";
import { useIsMobile } from "@/hooks/use-mobile";
import { Button } from "./ui/button";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 292 Maio 2025

type MessageListProps = {
 messages: DBMessage[];
 selectedMessageId: string | null;
 setSelected: (message: DBMessage) => void;
};

export function MessageList({
 messages,
 selectedMessageId,
 setSelected,
}: MessageListProps) {
 const { t, i18n } = useTranslation(["messages-page"]);
 const onMobile = useIsMobile();

 return (
 <ScrollArea
 className={
 onMobile
 ? `h-[calc(100vh-var(--simple-header-height)-68px)]`
 : `h-[calc(100vh-var(--header-height)-68px)]`
 }
 >
 <div className="flex flex-col gap-2 p-4 pt-0">
 {messages.map((message) => {
 const sendInFuture = message.send_time.getTime() > Date.now();
 const statusTranslationString = (
 message.status !== "SCHEDULED"
 ? message.status
 : sendInFuture
 ? "SCHEDULED"
 : "SENT"
).toLowerCase();
 return (
 <Button
 key={message.id}
 variant="ghost"
 className={cn(
 "h-full flex flex-col items-start gap-2 rounded-lg border p
-3 text-left mt-[1px]",
 selectedMessageId === message.id && "bg-accent"
)}
 onClick={() => setSelected(message)}
 >
 <div className="flex w-full flex-col">
 <div className="flex items-center gap-1">
 <div className="flex items-center gap-2">
 <div className="font-semibold">
 {message.subject
 ? message.subject
 : t("common:no_subject")}
 </div>
 {sendInFuture && message.status === "SCHEDULED" && (

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 293 Maio 2025

 <ClockIcon
 hour={
 Math.round(message.send_time.getHours() % 12) ||
12
 }
 />
)}
 {message.status === "FAILED" && (
 <div className="flex items-center gap-1 text-destruct
ive text-xs">
 <div className="flex h-2 w-2 rounded-full bg-destru
ctive" />
 {message.api_error_code}
 </div>
)}
 </div>
 <div
 className={cn(
 "ml-auto text-xs",
 selectedMessageId === message.id
 ? "text-foreground"
 : "text-muted-foreground"
)}
 >
 {formatDistanceToNow(new Date(message.send_time), {
 addSuffix: true,
 locale: getDateFnsLocale(i18n.language),
 })}
 </div>
 </div>
 </div>
 <div className="line-clamp-2 text-xs text-muted-foreground">
 {message.body.substring(0, 300)}
 </div>

 {/* If we are on the trash page, render a badge to show what
the message was before it got moved to the trash */}
 {message.in_trash == true && (
 <Badge
 variant="outline"
 className="tracking-widest text-xs text-muted-foreground"
 style={{ letterSpacing: "1px" }}
 >
 {/* Play around with the styles */}
 {t(`status_${statusTranslationString}`).toUpperCase()}
 </Badge>
)}
 </Button>
);
 })}
 </div>
 </ScrollArea>
);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 294 Maio 2025

}

function getBadgeVariantFromLabel(
 label: string
): ComponentProps<typeof Badge>["variant"] {
 // if (["success"].includes(label.toLowerCase())) {
 // return "positive";
 // }

 if (["FAILED"].includes(label.toLowerCase())) {
 return "destructive";
 }

 if (["SCHEDULED"].includes(label.toLowerCase())) {
 return "outline";
 }

 return "secondary";
}

/components/cards.tsx

import React from "react";
import { Card, CardHeader, CardTitle } from "./ui/card";
import Link from "next/link";

type LinkCardProps = {
 href: string;
 title: string;
 heroValue: string | number;
 Icon: any;
};
export default function LinkCard({
 href,
 title,
 heroValue,
 Icon,
}: LinkCardProps) {
 return (
 <Link
 href={href}
 className="flex-1 max-w-[350px] focus-primary-ring rounded-xl"
 >
 <Card className="shadow-none hover:bg-muted dark:hover:bg-muted relat
ive overflow-hidden ">
 <CardHeader>
 <div className="flex justify-between items-center gap-8">
 <div>
 <CardTitle>{title}</CardTitle>
 <h1 className="font-medium leading-tight">{heroValue}</h1>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 295 Maio 2025

 </div>
 <div className="">
 <Icon
 fill="hsl(var(--primary))"
 height={65}
 width={65}
 className="absolute rotate-[-15deg] bottom-[-3px] right-[25
px] opacity-25"
 />
 {/* you may change the order of these to see what works best
*/}
 <Icon
 fill="hsl(var(--primary))"
 height={70}
 width={70}
 className="absolute rotate-[-7deg] bottom-[-2px] right-[-5p
x] opacity-80"
 />
 </div>
 </div>
 </CardHeader>
 </Card>
 </Link>
);
}

/components/contacts-page.tsx

"use client";

import React, { useEffect, useState } from "react";
import ChildrenPanel from "./shared/children-panel";
import { ResizableHandle, ResizablePanel } from "./ui/resizable";
import { useLayout } from "@/contexts/use-layout";
import { PageHeader } from "./headers";
import { useTranslation } from "react-i18next";
import ContactsList from "./contacts-list";

import { cn, searchContacts } from "@/lib/utils";
import ContactDisplay from "./contact-display";
import { useIsMobile } from "@/hooks/use-mobile";
import Search from "./shared/search";
import { useRouter, useSearchParams } from "next/navigation";
import { CirclePlus, Plus } from "lucide-react";
import { Button } from "./ui/button";
import { useModal } from "@/contexts/use-modal";
import { DBContact } from "@/types/contact";
import CreateContactModal from "./modals/create-contact";
import useIsMounted from "@/hooks/use-mounted";
import { useContacts } from "@/contexts/use-contacts";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 296 Maio 2025

export default function ContactsPage() {
 const { layout, fallbackLayout } = useLayout();
 const { t } = useTranslation(["contacts-page"]);
 const { contacts, contactFetchError } = useContacts();
 const [filteredContacts, setFilteredContacts] = useState(contacts);
 const onMobile = useIsMobile();
 const isMounted = useIsMounted();
 const { modal, setModal } = useModal();

 const [selected, setSelected] = useState<DBContact | null>(
 filteredContacts[0] || null
);

 const searchParams = useSearchParams();

 const onSearch = (searchTerm: string) => {
 setFilteredContacts(searchContacts(contacts, searchTerm));
 };
 const showCreateModal = () => {
 setModal((m) => ({
 ...m,
 contact: { ...m.contact, create: true },
 }));
 };

 useEffect(() => {
 const oldSelected = contacts.find((c) => c.id === selected?.id);
 setFilteredContacts(searchContacts(contacts, searchParams.get("query"))
);
 if (oldSelected) {
 // Keep the current selection
 setSelected(oldSelected);
 }
 }, [contacts]);

 useEffect(() => {
 if (isMounted && onMobile) {
 // On mobile, it should show the list by default without having the f
irst one selected like on desktop.
 setSelected(null);
 }
 }, [isMounted]);

 return (
 <>
 <CreateContactModal
 onCreateSuccess={(contact: DBContact) => setSelected(contact)}
 />
 <ResizablePanel
 className={cn("relative", onMobile && selected !== null && "hidden"
)} // If we are on mobile and a contact is selected we only want to show th

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 297 Maio 2025

e column containing the selected contact.
 // Check if the layout is a 3-column middle-bar panel. Use the prev
ious 3-column layout if available; otherwise, render the fallback for diffe
rent or undefined layouts.
 defaultSize={
 Array.isArray(layout) && layout.length === 3
 ? layout[1]
 : fallbackLayout[1]
 }
 minSize={22}
 maxSize={50}
 >
 <PageHeader title={t("header")}>
 {!onMobile && (
 <Button size="sm" onClick={showCreateModal}>
 <CirclePlus />
 {t("new")}
 </Button>
)}
 </PageHeader>
 <Search
 onSearch={onSearch}
 placeholder={t("search_contacts")}
 className="pl-8 placeholder:text-muted-foreground border"
 />
 {filteredContacts.length > 0 ? (
 <ContactsList
 contacts={filteredContacts}
 selectedContactId={selected?.id || null}
 setSelected={setSelected}
 />
) : (
 <div className="p-8 text-center text-muted-foreground">
 {contactFetchError || t("none_found")}
 </div>
)}
 {onMobile && (
 <Button
 className="absolute w-11 h-11 bg-primary bottom-0 right-0 m-8 r
ounded-full"
 onClick={() => {
 setModal((m) => ({
 ...m,
 contact: { ...m.contact, create: true },
 }));
 }}
 >
 <Plus />
 </Button>
)}
 </ResizablePanel>
 <ResizableHandle withHandle className={cn(onMobile && "hidden")} />

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 298 Maio 2025

 <ChildrenPanel
 hasMiddleBar
 // reverse logic like above: on mobile and with nothing selected, t
his component should be hidden.
 className={cn(onMobile && selected === null && "hidden")} // like a
bove we are using reverse logic here. If we are on mobile, and nothing is s
elected, this component should not be displayed.
 >
 <ContactDisplay contact={selected} reset={() => setSelected(null)}
/>
 </ChildrenPanel>
 </>
);
}

/components/logo.tsx

import Image from "next/image";
import Link from "next/link";
import React from "react";

export default function AppLogo({ isCollapsed }: { isCollapsed: boolean })
{
 return (
 <>
 <Link
 href="/"
 className="flex items-center gap-2 user-select-none focus-primary-r
ing"
 >
 <Image
 src="/etpzp_sms-logo.png"
 alt="Application logo"
 width={48}
 height={48}
 className="user-select-none relative bottom-[2px]"
 />
 {!isCollapsed && (
 <span
 className="font-bold user-select-none tracking-tight text-xl fo
nt-disket-mono-regular" // or text-2xl
 >
 ETPZP-SMS

)}
 </Link>
 </>
);
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 299 Maio 2025

/components/form-input.tsx

"use client";
import React from "react";
import {
 FormControl,
 FormField,
 FormItem,
 FormLabel,
 FormMessage,
} from "./ui/form";
import { Input as ShadcnInput } from "./shared/input";
import { Control, FieldPath, FieldValues } from "react-hook-form";
import { cn } from "@/lib/utils";

interface InputProps<T extends FieldValues>
 extends React.InputHTMLAttributes<HTMLInputElement> {
 name: FieldPath<T>;
 control: Control<T>;
 label?: string;
 error?: boolean;
}

export function Input<T extends FieldValues>({
 name,
 control,
 label,
 error,
 ...props
}: InputProps<T>) {
 return (
 <FormField
 control={control}
 name={name}
 render={({ field }) => (
 <FormItem>
 {label && (
 <FormLabel
 className={cn("text-foreground", error && "text-destructive")
}
 >
 {label}
 </FormLabel>
)}
 <FormControl>
 <ShadcnInput {...field} {...props} />
 </FormControl>
 <FormMessage />
 </FormItem>
)}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 300 Maio 2025

 />
);
}

/components/login-form.tsx

"use client";

import {
 Card,
 CardContent,
 CardDescription,
 CardHeader,
 CardTitle,
} from "@/components/ui/card";
import Image from "next/image";
import { Button } from "@/components/ui/button";
import { Input } from "@/components/ui/input";
import { login } from "@/lib/auth";
import { FormEvent, useState } from "react";
import { useRouter } from "next/navigation";
import { Label } from "./ui/label";
import { ActionResponse } from "@/types/action";
import { Login } from "@/lib/auth/config";
import SubmitButton from "./shared/submit-button";
import { Eye, Router } from "lucide-react";
import { useSettings } from "@/contexts/use-settings";
import { useTranslation } from "react-i18next";
import { toastActionResult } from "@/lib/utils";

const initialState: ActionResponse<Login> = {
 success: false,
 message: [],
};
export default function LoginForm() {
 const [passInputType, setPassInputType] = useState("password");
 const [serverState, setServerState] = useState(initialState);
 const [pending, setPending] = useState(false);
 const { syncWithDB } = useSettings();
 const router = useRouter();
 const { t } = useTranslation(["login-page", "common"]);

 async function handleSubmit(event: FormEvent<HTMLFormElement>) {
 event.preventDefault();
 setPending(true);
 // Create a FormData from the HTML form element
 const formData = new FormData(event.currentTarget);

 const result = await login(formData);
 setServerState(result);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 301 Maio 2025

 toastActionResult(result, t);
 if (result.success) {
 await syncWithDB(); // Fetch users settings from database on login
 router.replace("/");
 }
 setPending(false);
 }
 return (
 <main className="flex items-center justify-center w-screen h-screen p-3
">
 <form onSubmit={handleSubmit}>
 <Card className="mx-auto max-w-sm">
 <CardHeader>
 <div className="relative w-[60%] overflow-hidden mb-2">
 {/* Set a height for the parent */}
 <Image
 src="/etpzp_sms-logo.png"
 width={80}
 height={80}
 alt="Microsoft logo"
 // layout="fill" // This makes the image fill the parent co
ntainer
 // objectFit="cover" // This will crop the image to fill th
e container
 quality={100}
 />
 </div>
 <CardTitle className="text-2xl">{t("header")}</CardTitle>
 <CardDescription>{t("header_caption")}</CardDescription>
 </CardHeader>
 <CardContent className="flex flex-col gap-2">
 <div>
 <Label htmlFor="email">{t("email_label")}</Label>
 <Input
 name="email"
 id="email"
 type="email"
 defaultValue={serverState.inputs?.email}
 placeholder={t("email_placeholder")}
 aria-describedby="email"
 disabled={pending}
 />
 {serverState.errors?.email && (
 <p id="email-error" className="text-sm text-red-500">
 {t(serverState.errors.email[0])}
 </p>
)}
 </div>
 <div>
 <Label htmlFor="password">{t("password_label")}</Label>
 <div className="flex items-center gap-1 relative">
 <Input
 name="password"

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 302 Maio 2025

 id="password"
 type={passInputType}
 defaultValue={serverState.inputs?.password}
 aria-describedby="password"
 disabled={pending}
 />
 <Button
 className="absolute right-0 z-10"
 type="button"
 variant="none"
 onClick={() =>
 setPassInputType((prev) =>
 prev === "text" ? "password" : "text"
)
 }
 >
 <Eye className="w-4 h-4" />
 </Button>
 </div>
 {serverState.errors?.password && (
 <p id="password-error" className="text-sm text-red-500">
 {t(serverState.errors.password[0])}
 </p>
)}
 </div>
 {!serverState.success && (
 <p className="text-sm text-destructive text-center">
 {t(serverState.message[0])}
 </p>
)}
 <SubmitButton className="w-full">{t("button_submit")}</SubmitBu
tton>
 </CardContent>
 </Card>
 </form>
 </main>
);
}

/components/profile-pic.tsx

"use client";

import React from "react";
import { cn, getNameInitials } from "@/lib/utils";
import { UserRound } from "lucide-react";
import Skeleton from "react-loading-skeleton";
import { ThemeProperties } from "@/types/theme";

type ProfilePicProps = {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 303 Maio 2025

 size?: number;
 name?: string;
 colorObj?: ThemeProperties | undefined;
 loading?: boolean;
 className?: string;
} & React.HTMLAttributes<HTMLDivElement>;

export default function ProfilePic({
 size = 9,
 name,
 // Will be filled use the colorObj's properties if it is provided
 colorObj,
 loading,
 className,
 ...props
}: ProfilePicProps) {
 if (loading)
 return (
 <Skeleton
 width={36}
 height={36}
 circle
 containerClassName={cn("flex", className)}
 />
);

 return (
 <div
 className={cn(
 `flex justify-center items-center rounded-full`, // border border-m
uted-foreground - Don't like this
 className // add additional passed in classNames
)}
 // For some reason we need to use inline styles for this, as it seems
to get overridden
 style={{
 width: `${size * 4}px`,
 height: `${size * 4}px`,
 backgroundColor: `hsl(${colorObj?.primary})`,
 color: `hsl(${colorObj?.primaryForeground})`,
 }}
 {...props}
 >
 {name ? (
 <p className={cn("text-sm")}>{getNameInitials(name)}</p>
) : (
 <UserRound
 className="height-full text-accent-foreground"
 strokeWidth={1.14}
 />
)}
 </div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 304 Maio 2025

);
}

/components/app-layout.tsx

"use client";

import ResizablePanelWrapper from "@/components/resizable-panel-wrapper";
import NavPanel, { MobileNavPanel } from "@/components/nav-panel";
import { useTheme as useNextTheme } from "next-themes";
import { SkeletonTheme } from "react-loading-skeleton";
import { useLayout } from "@/contexts/use-layout";
import { useSettings } from "@/contexts/use-settings";
import TranslationsProvider from "@/contexts/translations-provider";
import AppLogo from "./logo";
import { useIsMobile } from "@/hooks/use-mobile";
import Account from "./shared/account";
import { useEffect } from "react";

type LayoutProps = Readonly<{
 children: React.ReactNode;
 resources: any;
 locale: string;
 namespaces: string[];
}>;

export default function AppLayout({
 children,
 resources,
 locale,
 namespaces,
}: LayoutProps) {
 const { theme } = useNextTheme();
 const { settings } = useSettings();
 const onMobile = useIsMobile();
 const { isFullscreen } = useLayout();

 useEffect(() => {
 // Check if there's a hash in the URL
 if (window.location.hash) {
 // Scroll to the anchor
 const anchor = document.querySelector(window.location.hash);
 if (anchor) {
 anchor.scrollIntoView({ behavior: "smooth" });
 }
 }
 }, []); // Empty dependency array to run only on mount

 return (
 <SkeletonTheme

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 305 Maio 2025

 // we are adjusting loading skeleton colors for dark mode - defaults
for light mode already look good
 baseColor={theme === "dark" ? "#2a2a2a" : undefined}
 highlightColor={theme === "dark" ? "#3a3a3a" : undefined}
 >
 {/* Modern layout bar here */}
 {settings.layout === "MODERN" && !isFullscreen && !onMobile && (
 <TranslationsProvider
 resources={resources}
 locale={locale}
 /* Currently account only uses `common` namespace */
 namespaces={["common"]}
 >
 <div className="w-full min-h-[var(--simple-header-height)] flex j
ustify-between items-center border-b px-2">
 <div className="flex items-center gap-2">
 <AppLogo isCollapsed={onMobile} />
 </div>
 <div className="">
 <Account profilePicPosition="RIGHT" />
 </div>
 </div>
 </TranslationsProvider>
)}
 <ResizablePanelWrapper>
 <TranslationsProvider
 /* Only wrap what's necessary with the TranslationsProvider */
 resources={resources}
 locale={locale}
 /* should be ["navigation", "modals", "common"] */
 namespaces={namespaces}
 >
 {/* error.tsx catchall file would get its translations from here,
if one existed in /app/[locale]/(root)/error.tsx */}
 <NavPanel /* resizableHandle is inside here */ />
 <MobileNavPanel /* open state is managed in useLayout context */
/>
 </TranslationsProvider>

 {children}
 </ResizablePanelWrapper>
 </SkeletonTheme>
);
}

/components/contact-display.tsx

"use client";

import { format } from "date-fns/format";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 306 Maio 2025

import { ArrowLeft, Edit, Trash2, X } from "lucide-react";
import { Button } from "@/components/ui/button";
import { Separator } from "@/components/ui/separator";
import {
 Tooltip,
 TooltipContent,
 TooltipTrigger,
} from "@/components/ui/tooltip";
import { useIsMobile } from "@/hooks/use-mobile";
import { cn, getNameInitials, toastActionResult } from "@/lib/utils";
import { CopyButton } from "./shared/copy-button";
import { deleteContact } from "@/lib/actions/contact.actions";
import { useModal } from "@/contexts/use-modal";
import EditContactModal from "./modals/edit-contact";
import { useRouter } from "next/navigation";
import { DBContact } from "@/types/contact";
import { saveDraft } from "@/lib/actions/message.actions";
import { useTranslation } from "react-i18next";
import ProfilePic from "./profile-pic";
import { PT_DATE_FORMAT } from "@/global.config";
import { ScrollArea } from "./ui/scroll-area";
import { useContacts } from "@/contexts/use-contacts";

export default function ContactDisplay({
 contact,
 reset,
}: {
 contact: DBContact | null;
 reset: () => void;
}) {
 const onMobile = useIsMobile();
 const router = useRouter();
 const { t } = useTranslation(["contacts-page", "common"]);
 const { setModal } = useModal();
 const { refetchContacts } = useContacts();

 const handleDelete = async () => {
 if (contact) {
 const result = await deleteContact(contact.id);
 toastActionResult(result, t);
 if (result.success) refetchContacts();
 }
 };
 const messageContact = async () => {
 if (contact) {
 const newDraft = await saveDraft(undefined, {
 body: "",
 recipients: [
 {
 phone: contact.phone,
 // This is a temporary solution. Maybe change the type later to
not be NewRecipient[]
 isValid: true,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 307 Maio 2025

 proneForDeletion: false,
 },
],
 });

 if (newDraft.success && newDraft.draftId) {
 router.push(`/new-message?message_id=${newDraft.draftId}`);
 } else {
 toastActionResult(newDraft, t);
 }
 }
 };
 return (
 <div className={cn("flex h-full flex-col")}>
 {contact && <EditContactModal contact={contact} />}
 <div className="flex items-center p-2 h-[var(--simple-header-height)]
border-b">
 <div className="flex items-center gap-2">
 {onMobile && (
 <Tooltip>
 <TooltipTrigger asChild>
 <Button variant="ghost" size="icon" onClick={() => reset()}
>
 <ArrowLeft className="h-4 w-4" />
 {t("common:go_back")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("common:go_back")}</TooltipContent>
 </Tooltip>
)}

 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"
 size="icon"
 disabled={!contact}
 onClick={handleDelete}
 >
 <Trash2 className="h-4 w-4" />

 {t("common:delete_permanently")}

 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("common:delete_permanently")}</TooltipConten
t>
 </Tooltip>

 <Tooltip>
 <TooltipTrigger asChild>
 <Button
 variant="ghost"

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 308 Maio 2025

 size="icon"
 onClick={() =>
 setModal((m) => ({
 ...m,
 contact: { ...m.contact, edit: true },
 }))
 }
 disabled={!contact}
 >
 <Edit className="h-4 w-4" />
 {t("common:edit")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("common:edit")}</TooltipContent>
 </Tooltip>
 </div>
 <div className="ml-auto flex items-center gap-2">
 {contact && (
 <Tooltip>
 <TooltipTrigger asChild>
 <Button variant="ghost" size="icon" onClick={() => reset()}
>
 <X className="h-4 w-4" />
 {t("common:close")}
 </Button>
 </TooltipTrigger>
 <TooltipContent>{t("common:close")}</TooltipContent>
 </Tooltip>
)}
 </div>
 </div>
 {/* End top bar */}
 {/* <Separator /> */}

 <ScrollArea>
 <div
 className={
 onMobile
 ? `h-[calc(100vh-var(--simple-header-height))]`
 : `h-[calc(100vh-var(--header-height))]`
 }
 >
 {contact ? (
 <div className="flex flex-1 flex-col">
 <div className="flex items-start p-4">
 <div className="flex items-center gap-4 text-sm">
 <ProfilePic
 name={contact.name}
 size={10}
 className="border"
 />
 <h2>{contact.name}</h2>
 </div>

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 309 Maio 2025

 {contact.created_at && (
 <div className="ml-auto text-xs text-muted-foreground">
 {`${t("common:created_on")} ${format(
 new Date(contact.created_at),
 PT_DATE_FORMAT
)}`}
 </div>
)}
 </div>
 <Separator />
 <div className="flex gap-4 justify-between items-center p-4 t
ext-sm">
 <p>{t("common:phone_number")}</p>
 <div className="flex">
 <CopyButton
 text={contact.phone}
 variant="none"
 className="pr-1"
 />
 <Button
 variant="link"
 className="p-0"
 onClick={messageContact}
 >
 {contact.phone}
 </Button>
 </div>
 </div>
 <Separator />
 <div className="flex gap-4 justify-between p-4 text-sm">
 <p>{t("common:description")}</p>

 {contact.description?.trim() ? (
 <p className="text-right">{contact.description}</p>
) : (
 <p className="italic text-right">
 {t("common:no_description")}
 </p>
)}
 </div>
 </div>
) : (
 <div className="p-8 text-center text-muted-foreground">
 {t("none_selected")}
 </div>
)}
 </div>
 </ScrollArea>
 </div>
);
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 310 Maio 2025

/components/send-button.tsx

"use client";

import { SetStateAction, useEffect, useState } from "react";
import { Button, buttonVariants } from "./ui/button";
import { ChevronDown, Clock, Loader2, Send } from "lucide-react";
import {
 DropdownMenu,
 DropdownMenuContent,
 DropdownMenuItem,
 DropdownMenuLabel,
 DropdownMenuSeparator,
 DropdownMenuTrigger,
} from "./ui/dropdown-menu";
import { cn } from "@/lib/utils";
import { useTranslation } from "react-i18next";
import { format } from "date-fns";
import { useNewMessage } from "@/contexts/use-new-message";
import { useModal } from "@/contexts/use-modal";
import { PT_DATE_FORMAT } from "@/global.config";

export default function SendButton({ loading }: { loading: boolean }) {
 const now = new Date();
 now.setMinutes(now.getMinutes() + 1); // Add one or two minutes margin so
that when the page loads slowly, the now date will appear to be in the past
, displaying send now on the button
 const { modal, setModal, scheduleDropdown, setScheduleDropdown } = useMod
al();
 const { message, setMessage } = useNewMessage();
 const { t } = useTranslation(["messages-page", "modals", "common"]);

 function tomorrowAt(hour: number) {
 // Create a new Date object for the current date
 const now = new Date();

 // Create a new Date object for tomorrow
 const tomorrow: Date = new Date(now);
 tomorrow.setDate(now.getDate() + 1);

 // Set the specified hour and default minutes to 0
 tomorrow.setHours(hour, 0, 0, 0);

 return tomorrow;
 }

 return (
 <div className="flex">
 <Button

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 311 Maio 2025

 type="submit"
 className="rounded-tr-none rounded-br-none border-primary-foregroun
d border-r"
 disabled={loading}
 >
 {loading ? (
 <Loader2 className="animate-spin" />
) : (
 <Send className="w-4 h-4" />
)}
 {message.scheduledDate > now
 ? `${t("submit_btn-scheduled", {
 time: "", // i18n messes up the output when passing it in lik
e this
 })} ${format(message.scheduledDate, PT_DATE_FORMAT)}`
 : t("submit_btn-normal")}
 </Button>
 <DropdownMenu open={scheduleDropdown} onOpenChange={setScheduleDropdo
wn}>
 <DropdownMenuTrigger
 className={cn("flex gap-3 items-center justify-start w-full")}
 asChild
 >
 <Button
 className={cn(
 "px-[1px] rounded-tl-none rounded-bl-none shadow-none",
 scheduleDropdown && "bg-primary/90"
)}
 type="button"
 disabled={loading}
 >
 <ChevronDown
 className={cn(
 "h-4 w-4 transition-transform duration-300",
 scheduleDropdown && "rotate-180"
)}
 />
 </Button>
 </DropdownMenuTrigger>
 <DropdownMenuContent align="end">
 <DropdownMenuLabel>
 <h6 className="font-bold">{t("schedule_dropdown-header")}</h6>
 <p className="text-muted-foreground font-normal">
 {t("schedule_dropdown-header_caption")}
 </p>
 </DropdownMenuLabel>
 <DropdownMenuSeparator />
 {message.scheduledDate > now && (
 <DropdownMenuItem
 onSelect={() => setMessage((m) => ({ ...m, scheduledDate: now
}))}
 >
 {t("schedule_dropdown-reset")}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 312 Maio 2025

 </DropdownMenuItem>
)}
 {message.scheduledDate.getTime() !== tomorrowAt(9).getTime() && (
 <DropdownMenuItem
 onSelect={() =>
 setMessage((m) => ({
 ...m,
 scheduledDate: tomorrowAt(9),
 }))
 }
 >
 {t("schedule_dropdown-tomorrow_morning")}
 </DropdownMenuItem>
)}
 {message.scheduledDate.getTime() !== tomorrowAt(15).getTime() &&
(
 <DropdownMenuItem
 onSelect={() =>
 setMessage((m) => ({
 ...m,
 scheduledDate: tomorrowAt(15),
 }))
 }
 >
 {t("schedule_dropdown-tomorrow_afternoon")}
 </DropdownMenuItem>
)}
 <DropdownMenuItem
 onSelect={() => setModal((m) => ({ ...m, schedule: true }))}
 >
 {t("schedule_dropdown-custom")}
 </DropdownMenuItem>
 </DropdownMenuContent>
 </DropdownMenu>
 </div>
);
}

/.dockerignore

Ignore the .env.docker file
.env.docker

Ignore other files and directories
node_modules
*.log

/.gitignore

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 313 Maio 2025

See https://help.github.com/articles/ignoring-files/ for more about ignor
ing files.

dependencies
/node_modules
/.pnp
.pnp.*
.yarn/*
!.yarn/patches
!.yarn/plugins
!.yarn/releases
!.yarn/versions

testing
/coverage

next.js
/.next/
/out/

production
/build

misc
.DS_Store
*.pem

debug
npm-debug.log*
yarn-debug.log*
yarn-error.log*

env files (can opt-in for committing if needed)
.env**

vercel
.vercel

typescript
*.tsbuildinfo
next-env.d.ts

Languages
/locales/
Example data
/lib/data/*

/package.json

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 314 Maio 2025

{
 "name": "etpzp-sms-app",
 "version": "0.1.0",
 "private": true,
 "scripts": {
 "dev": "i18nexus pull && next dev",
 "build": "i18nexus pull && next build",
 "start": "i18nexus pull && next start",
 "lint": "next lint",
 "dev-simple": "next dev"
 },
 "overrides": {
 "react-is": "^19.0.0-rc-69d4b800-20241021"
 },
 "dependencies": {
 "@hookform/resolvers": "^3.9.1",
 "@radix-ui/react-accordion": "^1.2.3",
 "@radix-ui/react-alert-dialog": "^1.1.6",
 "@radix-ui/react-avatar": "^1.1.1",
 "@radix-ui/react-checkbox": "^1.1.3",
 "@radix-ui/react-collapsible": "^1.1.1",
 "@radix-ui/react-dialog": "^1.1.2",
 "@radix-ui/react-dropdown-menu": "^2.1.2",
 "@radix-ui/react-label": "^2.1.0",
 "@radix-ui/react-popover": "^1.1.2",
 "@radix-ui/react-radio-group": "^1.2.2",
 "@radix-ui/react-scroll-area": "^1.2.1",
 "@radix-ui/react-select": "^2.1.2",
 "@radix-ui/react-separator": "^1.1.0",
 "@radix-ui/react-slot": "^1.1.0",
 "@radix-ui/react-switch": "^1.1.1",
 "@radix-ui/react-tabs": "^1.1.1",
 "@radix-ui/react-tooltip": "^1.1.4",
 "@svgr/webpack": "^8.1.0",
 "@types/pg": "^8.11.10",
 "activedirectory2": "^2.2.0",
 "class-variance-authority": "^0.7.0",
 "clsx": "^2.1.1",
 "cmdk": "1.0.0",
 "date-fns": "^4.1.0",
 "i18next": "^24.0.0",
 "i18next-resources-to-backend": "^1.2.1",
 "iron-session": "^8.0.4",
 "libphonenumber-js": "^1.11.17",
 "lucide-react": "^0.483.0",
 "next": "15.1.6",
 "next-i18n-router": "^5.5.1",
 "next-themes": "^0.4.3",
 "node": "^23.8.0",
 "pg": "^8.13.1",
 "react": "19.0.0",
 "react-day-picker": "8.10.1",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 315 Maio 2025

 "react-dom": "19.0.0",
 "react-hook-form": "^7.54.1",
 "react-i18next": "^15.1.1",
 "react-loading-skeleton": "^3.5.0",
 "react-resizable-panels": "^2.1.7",
 "recharts": "^2.15.1",
 "sonner": "^1.7.1",
 "tailwind-merge": "^2.5.4",
 "tailwindcss-animate": "^1.0.7",
 "zod": "^3.24.1"
 },
 "devDependencies": {
 "@tailwindcss/aspect-ratio": "^0.4.2",
 "@types/activedirectory2": "^1.2.6",
 "@types/node": "^20",
 "@types/react": "19.0.8",
 "@types/react-dom": "19.0.3",
 "@types/validator": "^13.12.2",
 "eslint": "^8",
 "eslint-config-next": "15.1.6",
 "i18nexus-cli": "^3.5.0",
 "postcss": "^8",
 "tailwindcss": "^3.4.1",
 "typescript": "^5"
 }
}

/hooks/use-mounted.ts

"use client";

import { useState, useEffect } from "react";

export default function useIsMounted() {
 const [isMounted, setIsMounted] = useState(false);

 useEffect(() => {
 setIsMounted(true);

 return () => {
 setIsMounted(true);
 };
 }, []);

 return isMounted;
}

/hooks/use-mobile.tsx

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 316 Maio 2025

import * as React from "react"

const MOBILE_BREAKPOINT = 768

export function useIsMobile() {
 const [isMobile, setIsMobile] = React.useState<boolean | undefined>(undef
ined)

 React.useEffect(() => {
 const mql = window.matchMedia(`(max-width: ${MOBILE_BREAKPOINT - 1}px)`
)
 const onChange = () => {
 setIsMobile(window.innerWidth < MOBILE_BREAKPOINT)
 }
 mql.addEventListener("change", onChange)
 setIsMobile(window.innerWidth < MOBILE_BREAKPOINT)
 return () => mql.removeEventListener("change", onChange)
 }, [])

 return !!isMobile
}

/hooks/use-session.ts

"use client";

import { SessionData } from "@/lib/auth/config";
import { getSessionOnClient } from "@/lib/auth/sessions";
import { useState, useEffect } from "react";

export function useSession() {
 const [session, setSession] = useState<SessionData | null>(null);
 const [loading, setLoading] = useState(true);

 useEffect(() => {
 async function fetchSession() {
 try {
 const data = await getSessionOnClient();

 setSession(data);
 } catch (error) {
 console.error("Failed to fetch session:", error);
 } finally {
 setLoading(false);
 }
 }

 fetchSession();

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 317 Maio 2025

 }, []);

 return { session, loading };
}

/hooks/use-debounce.ts

"use client";

import { useEffect, useState } from "react";

// You can pass in any value or a function and the time in milliseconds tha
t you want it to updated/debounced after
export default function useDebounce(value: any, delay: number) {
 const [debouncedValue, setDebouncedValue] = useState(value);

 useEffect(() => {
 const handler = setTimeout(() => {
 setDebouncedValue(value);
 }, delay);

 return () => {
 clearTimeout(handler);
 };
 }, [value, delay]);

 return debouncedValue;
}

/lib/theme.colors.ts

import { Theme, ThemeColors, ThemeProperties, Themes } from "@/types/theme"
;

export const themes: Themes = {
 Zinc: {
 light: {
 background: "0 0% 100%",
 foreground: "240 10% 3.9%",
 card: "0 0% 100%",
 cardForeground: "240 10% 3.9%",
 popover: "0 0% 100%",
 popoverForeground: "240 10% 3.9%",
 primary: "240 5.9% 10%",
 primaryForeground: "0 0% 98%",
 secondary: "240 4.8% 95.9%",
 secondaryForeground: "240 5.9% 10%",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 318 Maio 2025

 muted: "240 4.8% 95.9%",
 mutedForeground: "240 3.8% 46.1%",
 accent: "240 4.8% 95.9%",
 accentForeground: "240 5.9% 10%",
 destructive: "0 84.2% 60.2%",
 destructiveForeground: "0 0% 98%",
 border: "240 5.9% 90%",
 input: "240 5.9% 90%",
 ring: "240 5.9% 10%",
 radius: "0.5rem",
 },
 dark: {
 background: "240 10% 3.9%",
 foreground: "0 0% 98%",
 card: "24 9.8% 10%",
 cardForeground: "0 0% 98%",
 popover: "240 10% 3.9%",
 popoverForeground: "0 0% 98%",
 primary: "0 0% 98%",
 primaryForeground: "240 5.9% 10%",
 secondary: "240 3.7% 15.9%",
 secondaryForeground: "0 0% 98%",
 muted: "240 3.7% 15.9%",
 mutedForeground: "240 5% 64.9%",
 accent: "240 3.7% 15.9%",
 accentForeground: "0 0% 98%",
 destructive: "0 62.8% 30.6%",
 destructiveForeground: "0 0% 98%",
 border: "240 3.7% 15.9%",
 input: "240 3.7% 15.9%",
 ring: "240 4.9% 83.9%",
 radius: "0.5rem",
 },
 },
 Rose: {
 light: {
 background: "0 0% 100%",
 foreground: "240 10% 3.9%",
 card: "0 0% 100%",
 cardForeground: "240 10% 3.9%",
 popover: "0 0% 100%",
 popoverForeground: "240 10% 3.9%",
 primary: "346.8 77.2% 49.8%",
 primaryForeground: "355.7 100% 97.3%",
 secondary: "240 4.8% 95.9%",
 secondaryForeground: "240 5.9% 10%",
 muted: "240 4.8% 95.9%",
 mutedForeground: "240 3.8% 46.1%",
 accent: "240 4.8% 95.9%",
 accentForeground: "240 5.9% 10%",
 destructive: "0 84.2% 60.2%",
 destructiveForeground: "0 0% 98%",
 border: "240 5.9% 90%",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 319 Maio 2025

 input: "240 5.9% 90%",
 ring: "346.8 77.2% 49.8%",
 radius: "0.5rem",
 },
 dark: {
 background: "20 14.3% 4.1%",
 foreground: "0 0% 95%",
 card: "24 9.8% 10%",
 cardForeground: "0 0% 95%",
 popover: "0 0% 9%",
 popoverForeground: "0 0% 95%",
 primary: "346.8 77.2% 49.8%",
 primaryForeground: "355.7 100% 97.3%",
 secondary: "240 3.7% 15.9%",
 secondaryForeground: "0 0% 98%",
 muted: "0 0% 15%",
 mutedForeground: "240 5% 64.9%",
 accent: "12 6.5% 15.1%",
 accentForeground: "0 0% 98%",
 destructive: "0 62.8% 30.6%",
 destructiveForeground: "0 85.7% 97.3%",
 border: "240 3.7% 15.9%",
 input: "240 3.7% 15.9%",
 ring: "346.8 77.2% 49.8%",
 radius: "0.5rem",
 },
 },
 Blue: {
 light: {
 background: "0 0% 100%",
 foreground: "222.2 84% 4.9%",
 card: "0 0% 100%",
 cardForeground: "222.2 84% 4.9%",
 popover: "0 0% 100%",
 popoverForeground: "222.2 84% 4.9%",
 primary: "221.2 83.2% 53.3%",
 primaryForeground: "210 40% 98%",
 secondary: "210 40% 96.1%",
 secondaryForeground: "222.2 47.4% 11.2%",
 muted: "210 40% 96.1%",
 mutedForeground: "215.4 16.3% 46.9%",
 accent: "210 40% 96.1%",
 accentForeground: "222.2 47.4% 11.2%",
 destructive: "0 84.2% 60.2%",
 destructiveForeground: "210 40% 98%",
 border: "214.3 31.8% 91.4%",
 input: "214.3 31.8% 91.4%",
 ring: "221.2 83.2% 53.3%",
 radius: "0.5rem",
 },
 dark: {
 background: "222.2 84% 4.9%",
 foreground: "210 40% 98%",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 320 Maio 2025

 card: "24 9.8% 10%",
 cardForeground: "210 40% 98%",
 popover: "222.2 84% 4.9%",
 popoverForeground: "210 40% 98%",
 primary: "217.2 91.2% 59.8%",
 primaryForeground: "222.2 47.4% 11.2%",
 secondary: "217.2 32.6% 17.5%",
 secondaryForeground: "210 40% 98%",
 muted: "217.2 32.6% 17.5%",
 mutedForeground: "215 20.2% 65.1%",
 accent: "217.2 32.6% 17.5%",
 accentForeground: "210 40% 98%",
 destructive: "0 62.8% 30.6%",
 destructiveForeground: "210 40% 98%",
 border: "217.2 32.6% 17.5%",
 input: "217.2 32.6% 17.5%",
 ring: "224.3 76.3% 48%",
 radius: "0.5rem",
 },
 },
 Green: {
 light: {
 background: "0 0% 100%",
 foreground: "240 10% 3.9%",
 card: "0 0% 100%",
 cardForeground: "240 10% 3.9%",
 popover: "0 0% 100%",
 popoverForeground: "240 10% 3.9%",
 primary: "142.1 76.2% 36.3%",
 primaryForeground: "128 83% 97%",
 secondary: "240 4.8% 95.9%",
 secondaryForeground: "240 5.9% 10%",
 muted: "240 4.8% 95.9%",
 mutedForeground: "240 3.8% 46.1%",
 accent: "240 4.8% 95.9%",
 accentForeground: "240 5.9% 10%",
 destructive: "0 84.2% 60.2%",
 destructiveForeground: "0 0% 98%",
 border: "240 5.9% 90%",
 input: "240 5.9% 90%",
 ring: "142.1 76.2% 36.3%",
 radius: "0.5rem",
 },
 dark: {
 background: "20 14.3% 4.1%",
 foreground: "0 0% 95%",
 card: "24 9.8% 10%",
 cardForeground: "0 0% 95%",
 popover: "0 0% 9%",
 popoverForeground: "0 0% 95%",
 primary: "142.1 70.6% 45.3%",
 primaryForeground: "144.9 80.4% 10%",
 secondary: "240 3.7% 15.9%",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 321 Maio 2025

 secondaryForeground: "0 0% 98%",
 muted: "0 0% 15%",
 mutedForeground: "240 5% 64.9%",
 accent: "12 6.5% 15.1%",
 accentForeground: "0 0% 98%",
 destructive: "0 62.8% 30.6%",
 destructiveForeground: "0 85.7% 97.3%",
 border: "240 3.7% 15.9%",
 input: "240 3.7% 15.9%",
 ring: "142.4 71.8% 29.2%",
 radius: "0.5rem",
 },
 },
 Orange: {
 light: {
 background: "0 0% 100%",
 foreground: "20 14.3% 4.1%",
 card: "0 0% 100%",
 cardForeground: "20 14.3% 4.1%",
 popover: "0 0% 100%",
 popoverForeground: "20 14.3% 4.1%",
 primary: "24.6 95% 53.1%",
 primaryForeground: "60 9.1% 97.8%",
 secondary: "60 4.8% 95.9%",
 secondaryForeground: "24 9.8% 10%",
 muted: "60 4.8% 95.9%",
 mutedForeground: "25 5.3% 44.7%",
 accent: "60 4.8% 95.9%",
 accentForeground: "24 9.8% 10%",
 destructive: "0 84.2% 60.2%",
 destructiveForeground: "60 9.1% 97.8%",
 border: "20 5.9% 90%",
 input: "20 5.9% 90%",
 ring: "24.6 95% 53.1%",
 radius: "0.5rem",
 },
 dark: {
 background: "20 14.3% 4.1%",
 foreground: "60 9.1% 97.8%",
 card: "24 9.8% 10%",
 cardForeground: "60 9.1% 97.8%",
 popover: "20 14.3% 4.1%",
 popoverForeground: "60 9.1% 97.8%",
 primary: "20.5 90.2% 48.2%",
 primaryForeground: "60 9.1% 97.8%",
 secondary: "12 6.5% 15.1%",
 secondaryForeground: "60 9.1% 97.8%",
 muted: "12 6.5% 15.1%",
 mutedForeground: "24 5.4% 63.9%",
 accent: "12 6.5% 15.1%",
 accentForeground: "60 9.1% 97.8%",
 destructive: "0 72.2% 50.6%",
 destructiveForeground: "60 9.1% 97.8%",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 322 Maio 2025

 border: "12 6.5% 15.1%",
 input: "12 6.5% 15.1%",
 ring: "20.5 90.2% 48.2%",
 radius: "0.5rem",
 },
 },
 Yellow: {
 light: {
 background: "0 0% 100%",
 foreground: "48 14.3% 4.1%",
 card: "0 0% 100%",
 cardForeground: "48 14.3% 4.1%",
 popover: "0 0% 100%",
 popoverForeground: "48 14.3% 4.1%",
 primary: "51 100% 50%",
 primaryForeground: "0 0% 98%", // Maybe make this dark, or make the
primary color darker to increase contrast
 secondary: "60 4.8% 95.9%",
 secondaryForeground: "48 9.8% 10%",
 muted: "60 4.8% 95.9%",
 mutedForeground: "50 5.3% 44.7%",
 accent: "60 4.8% 95.9%",
 accentForeground: "48 9.8% 10%",
 destructive: "0 84.2% 60.2%",
 destructiveForeground: "60 9.1% 97.8%",
 border: "48 5.9% 90%",
 input: "48 5.9% 90%",
 ring: "51 100% 50%",
 radius: "0.5rem",
 },
 dark: {
 background: "48 14.3% 4.1%",
 foreground: "60 9.1% 97.8%",
 card: "48 9.8% 10%",
 cardForeground: "60 9.1% 97.8%",
 popover: "48 14.3% 4.1%",
 popoverForeground: "60 9.1% 97.8%",
 primary: "51 100% 50%",
 primaryForeground: "240 5.9% 10%",
 secondary: "48 6.5% 15.1%",
 secondaryForeground: "60 9.1% 97.8%",
 muted: "48 6.5% 15.1%",
 mutedForeground: "50 5.4% 63.9%",
 accent: "48 6.5% 15.1%",
 accentForeground: "60 9.1% 97.8%",
 destructive: "0 72.2% 50.6%",
 destructiveForeground: "60 9.1% 97.8%",
 border: "48 6.5% 15.1%",
 input: "48 6.5% 15.1%",
 ring: "51 100% 50%",
 radius: "0.5rem",
 },
 },

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 323 Maio 2025

};

// Function to get theme by index starting at 1, not 0
export function getThemeByIndex(
 index: number,
 themeMode: "light" | "dark" | undefined = "light"
) {
 const theme = themesArray.find((theme) => theme.index === index);

 return theme?.value[themeMode] as ThemeProperties | undefined; // Return
the theme value or undefined if not found
}

export default function setGlobalColorTheme(
 themeMode: "light" | "dark",
 colorIndex: number
) {
 const theme = getThemeByIndex(colorIndex, themeMode);
 if (theme === undefined)
 throw new Error("Theme not found. The theme color is probably invalid")
;
 for (const key in theme) {
 // Use type assertion to specify that key is a key of ThemeProperties
 document.documentElement.style.setProperty(
 `--${key}`,
 theme[key as keyof ThemeProperties]
);
 }
}

// Create a new array to hold the themes in a 1-based index format
export const themesArray = Object.keys(themes).map((key, index) => {
 return { index: index + 1, name: key, value: themes[key] };
});

export const PROFILE_COLOR_CSS_NAMES = [
 "salmon",
 "dodgerblue",
 "gold",
 "mediumorchid",
];

/lib/form.schemas.ts

import { z } from "zod";
import { parsePhoneNumberFromString } from "libphonenumber-js";
import { appearanceLayoutValues } from "@/types/user";
import { parseISO, isValid } from "date-fns";

const CustomString = (options?: { message: string }) => {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 324 Maio 2025

 return z.string({
 message: options?.message || "common:error-not_string",
 });
};
const CustomPhone = () => {
 return CustomString().refine(
 // this returns a boolean telling zod whether the phone data is valid o
r not
 (input: string) => {
 const parsedPhone = parsePhoneNumberFromString(input);

 return (parsedPhone && parsedPhone.isValid()) || false;
 },
 {
 message: "common:error-invalid_phone",
 }
);
};
// Our one source of truth is the form schema. When you create a new field,
add it here.
export const MessageSchema = z.object({
 sender: CustomString().optional(),
 // recipients are handled internally for more thorough error messages
 subject: CustomString().optional(),
 body: CustomString().min(1, "new-message-page:zod_error-body_empty"),
 secondsUntilSend: z
 .number({ message: "new-message-page:zod_error-invalid_schedule_date" }
)
 // .positive({ message: "new-message-page:zod_error-negative_schedule_d
ate" })
 .optional(),
});

export const LoginSchema = z.object({
 email: CustomString().email({
 message: "login-page:zod_error-invalid_email",
 }),
 password: CustomString(),
});

export const ContactSchema = z.object({
 // id: z.string(),
 name: z
 .string()
 .min(2, { message: "modals:zod_error-short_name" })
 .max(50, { message: "modals:zod_error-long_name" }),
 phone: CustomPhone(),
 description: CustomString()
 .max(255, { message: "modals:zod_error-long_contact_description" })
 .optional(),
});

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 325 Maio 2025

// Create a schema that handles each setting separately
export const UpdateSettingSchema = z.discriminatedUnion("name", [
 // For the language setting (“lang”) we expect a 2-character string (ISO 6
39-1 code)
 z.object({
 name: z.literal("lang"),
 value: z
 .string()
 .min(2, "Language code must be exactly 2 characters")
 .max(2, "Language code must be exactly 2 characters"),
 }),
 // For profile_color_id, convert the incoming string to a number and requ
ire an integer.
 z.object({
 name: z.literal("profile_color_id"),
 value: z.preprocess(
 (val) => Number(val),
 z
 .number({
 invalid_type_error: "Profile color id must be a number",
 })
 .int("Profile color id must be an integer")
),
 }),
 // For primary_color_id, use similar logic as profile_color_id.
 z.object({
 name: z.literal("primary_color_id"),
 value: z.preprocess(
 (val) => Number(val),
 z
 .number({
 invalid_type_error: "Primary color id must be a number",
 })
 .int("Primary color id must be an integer")
),
 }),
 // For display_name, require a non-empty string with a max length of 50 c
haracters.
 z.object({
 name: z.literal("display_name"),
 value: z
 .string()
 .nonempty("Display name cannot be empty")
 .max(50, "Display name cannot exceed 50 characters"),
 }),
 // For Application layout we have a string enum defined in a type file
 z.object({
 name: z.literal("appearance_layout"),
 value: z.enum(appearanceLayoutValues),
 }),
 // For dark_mode, convert the string "true"/"false" to a boolean.
 z.object({
 name: z.literal("dark_mode"),

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 326 Maio 2025

 value: z.preprocess((val) => {
 // Convert strings "true" and "false" to actual booleans.
 if (val === "dark") return true;
 if (val === "light") return false;
 return val;
 }, z.boolean({ invalid_type_error: "Dark mode must be a boolean value"
})),
 }),
]);

// Admin dashboard page schemas
export const zodISODate = z.string().refine(
 (date) => {
 // Check if the date is a valid ISO 8601 date string
 const parsedDate = parseISO(date);
 return isValid(parsedDate);
 },
 {
 message: "Invalid date format. Expected ISO 8601 format.",
 }
);

export const DateRangeSchema = z.object({
 startDate: zodISODate.optional(),
 endDate: zodISODate.optional(),
});

/lib/.DS_Store

Bud1% @� @� @� @E%DSDB`� @� @� @

/lib/auth/activedirectory/authenticate.ts

"use server";

import ActiveDirectory from "activedirectory2";
import { activeDirectoryConfig, SessionData } from "@/lib/auth/config";
import userExists from "./user";
import userInGroup from "./group";
import saveUser, { dummySaveUser } from "@/lib/actions/user.actions";
import type { DBUser } from "@/types/user";

export default async function authenticate({
 email,
 password,
}: {
 email: string;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 327 Maio 2025

 password: string;
}): Promise<SessionData & { errors: string[] }> {
 const ad = new ActiveDirectory(activeDirectoryConfig);

 // 1. Check if user even exists in the active directory server
 const exists = await userExists(ad, email, password);
 if (!exists.success) {
 return {
 isAuthenticated: false,
 isAdmin: false,
 errors: [exists.error ? exists.error : ""],
 };
 }
 // 2. Check if user is allowed to use the app
 const userGroup = "Utilizadores-SMS";
 const hasAppPermission = await userInGroup(ad, email, userGroup);

 // 3. Check if user has admin privileges
 const adminGroup = "Administradores-SMS";
 const hasAdminPermission = await userInGroup(ad, email, adminGroup);

 // 4. Sync all of this with the database
 const userResult = await saveUser(ad, email, hasAdminPermission.success);

 return {
 user: userResult.success ? userResult.data : undefined,
 isAuthenticated: hasAppPermission.success,
 isAdmin: hasAdminPermission.success,
 errors: [
 exists.error !== null
 ? exists.error
 : "An error occurred while checking if user exists",
 hasAppPermission.error !== null
 ? hasAppPermission.error
 : "An error occurred while checking if user is allowed to use the a
pp",
 hasAdminPermission.error !== null
 ? hasAdminPermission.error
 : "An error occurred while checking if user is an admin",
],
 };
}

export async function dummyAuthenticate({
 email,
 password,
}: {
 email: string;
 password: string;
}): Promise<SessionData> {
 const dummyUser: SessionData & { user: DBUser } = {
 user: {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 328 Maio 2025

 id: "1",
 email: "dummy@user.com",
 name: "Dummy User",
 first_name: "Dummy",
 last_name: "User",
 role: "ADMIN",

 lang: "pt",

 profile_color_id: 1,
 display_name: "Dummy User",

 primary_color_id: 1,
 dark_mode: false,
 appearance_layout: "MODERN",
 },
 isAuthenticated: true,
 isAdmin: true,
 };
 const userResult = await dummySaveUser(dummyUser.user as DBUser);

 return {
 user: userResult.success ? userResult.data : undefined,
 isAuthenticated: userResult.success,
 isAdmin: userResult.success,
 };
}

/lib/auth/activedirectory/group.ts

"use server";
import type ActiveDirectory from "activedirectory2";

// Check if user is apart of a specific group
export default async function userInGroup(
 ad: ActiveDirectory,
 username: string,
 group: string
): Promise<{ success: boolean; error: string | null }> {
 return new Promise((resolve) => {
 ad.isUserMemberOf(
 username,
 group,
 (err: object | null, isMember: boolean) => {
 if (err) {
 resolve({ success: false, error: JSON.stringify(err) });
 } else {
 resolve({ success: isMember, error: null });
 }
 }

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 329 Maio 2025

);
 });
}

/lib/auth/activedirectory/user.ts

"use server";
import type ActiveDirectory from "activedirectory2";

// Check if user even exists on the server
export default async function userExists(
 ad: ActiveDirectory,
 username: string,
 password: string
): Promise<{ success: boolean; error: string | null }> {
 return new Promise((resolve) => {
 ad.authenticate(
 username,
 password,
 (err: string | null, authenticated: boolean) => {
 if (err || !authenticated) {
 resolve({ success: false, error: err });
 } else {
 resolve({ success: authenticated, error: null });
 }
 }
);
 });
}

/lib/auth/index.ts

"use server";

import authenticate, {
 dummyAuthenticate,
} from "./activedirectory/authenticate";
import { createSession, getSession } from "./sessions";
import { LoginSchema } from "@/lib/form.schemas";
import { Login, SessionData } from "./config";
import { ActionResponse } from "@/types/action";

export async function login(
 formData: FormData
): Promise<ActionResponse<Login>> {
 // 1. Type validation
 const email = formData.get("email") as string;
 const password = formData.get("password") as string;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 330 Maio 2025

 const validatedData = LoginSchema.safeParse({ email, password });
 if (!validatedData.success) {
 return {
 success: false,
 message: ["common:fix_zod_errors"],
 inputs: { email, password },
 errors: validatedData.error.flatten().fieldErrors,
 };
 }

 // 2. Authenticate user using AD and save to db
 const user: SessionData = await dummyAuthenticate({
 email,
 password,
 });

 if (!user.isAuthenticated) {
 return {
 success: false,
 message: ["server-wrong_credentials"],
 inputs: { email, password },
 };
 }

 // 3. Create new session cookie
 await createSession(user);
 return {
 success: true,
 message: [
 "server-auth_success_header",
 "server-auth_success_header_caption",
],
 };
}

export async function logout() {
 try {
 const session = await getSession();
 session.destroy();
 return { success: true };
 } catch (error) {
 console.log("LOGOUT FAILED:", error);

 return { success: false };
 }
}

/lib/auth/config.ts

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 331 Maio 2025

import { User } from "@/types/user";
import { SessionOptions } from "iron-session";

export type SessionData = {
 user?: User;
 isAuthenticated: boolean;
 isAdmin: boolean;
};
export type Login = {
 email: string;
 password: string;
};
export const defaultSession: SessionData = {
 isAuthenticated: false,
 isAdmin: false,
};

// Iron session config object
export const sessionOptions: SessionOptions = {
 cookieName: "my-etpzp-app-session", // anything you want
 password: process.env.SESSION_SECRET!, // TypeScript non-null assertion o
perator

 // Optional fields
 ttl: 60 * 60 * 24, // cookie expiration from now in seconds (we want 24h)
 cookieOptions: {
 // prevent client side js from accessing the cookie
 httpOnly: true,
 // Secure only works in `https` environments. So if the environment is
`https`, it'll return true.
 secure: process.env.NODE_ENV === "production",
 },
};

export const activeDirectoryConfig = {
 url: process.env.AD_URL!,
 baseDN: process.env.AD_BASE_DN!,
 username: process.env.AD_EMAIL!, // we store emails in the username field
 password: process.env.AD_PASSWORD!,
};

/lib/auth/sessions.ts

"use server";

import { getIronSession } from "iron-session";
import { cookies } from "next/headers";
import { SessionData, sessionOptions } from "@/lib/auth/config";
import { NextRequest, NextResponse } from "next/server";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 332 Maio 2025

// helper function for getting the current session
export async function getSession(req?: NextRequest, res?: NextResponse) {
 const session =
 req && res
 ? await getIronSession<SessionData>(req, res, sessionOptions)
 : await getIronSession<SessionData>(await cookies(), sessionOptions);

 // For security, you can double-check the user's existence in the databas
e or AD server, but this slows down the app.
 return session;
}

export async function createSession(user: SessionData) {
 const session = await getSession();

 // Store user data in the cookie by mapping over each of the object's pro
perty
 Object.entries(user).forEach(([key, value]) => {
 if (!(key in session)) {
 (session as any)[key] = value;
 }
 });

 await session.save();
}

export async function getSessionOnClient(): Promise<SessionData> {
 const { user, isAuthenticated, isAdmin } = await getIronSession<SessionDa
ta>(
 await cookies(),
 sessionOptions
);

 return {
 user,
 isAuthenticated,
 isAdmin,
 };
}

/lib/utils.ts

import { DBContact } from "./../types/contact";
import parsePhoneNumber, {
 CountryCode,
 parsePhoneNumberFromString,
} from "libphonenumber-js";
import { clsx, type ClassValue } from "clsx";
import { twMerge } from "tailwind-merge";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 333 Maio 2025

import {
 DBRecipient,
 FetchedRecipient,
 NewRecipient,
 RankedRecipient,
 WithContact,
} from "@/types/recipient";
import { DBMessage } from "@/types";
import { ActionResponse } from "@/types/action";
import { toast } from "sonner";
import { enUS, pt, de } from "date-fns/locale";

export function cn(...inputs: ClassValue[]) {
 return twMerge(clsx(inputs));
}

export function sleep(ms: number) {
 return new Promise((resolve) => setTimeout(resolve, ms));
}

export function generateUniqueId() {
 return "xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx".replace(/[xy]/g, function (
c) {
 const r = (Math.random() * 16) | 0;
 const v = c === "x" ? r : (r & 0x3) | 0x8;
 return v.toString(16);
 });
}

export function validatePhoneNumber(phone: string): NewRecipient {
 const countryCode: CountryCode = "PT";

 const phoneNumber = parsePhoneNumber(phone, countryCode);

 let properties: {
 isValid: boolean;
 formattedPhone?: string;
 error?: {
 type: "error" | "warning";
 message: string;
 };
 } = {
 isValid: false,
 formattedPhone: phoneNumber?.formatInternational(),
 };

 if (phoneNumber?.isValid()) {
 if (phoneNumber.country === countryCode) {
 properties = {
 isValid: true,
 };
 } else {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 334 Maio 2025

 properties.isValid = true;
 properties.error = {
 type: "warning",
 message: "tooltip-not_portuguese_number",
 };
 }
 } else {
 properties.isValid = false;
 properties.error = {
 type: "error",
 message: "tooltip-invalid_phone_number",
 };
 }
 return { ...properties, phone, proneForDeletion: false };
}

export function searchMessages(
 messages: DBMessage[],
 searchTerm: string,
 currentPage?: number
) {
 // Convert searchTerm to lowercase for case-insensitive comparison
 const lowerCaseSearchTerm = searchTerm.toLowerCase();

 // Filter messages based on userId and search term
 const filteredMessages = messages.filter(
 (message) =>
 message.subject?.toLowerCase().includes(lowerCaseSearchTerm) ||
 message.body.toLowerCase().includes(lowerCaseSearchTerm) ||
 message.status.toLowerCase() === lowerCaseSearchTerm // Assuming stat
us is also part of the search
);

 return filteredMessages;
}

export function searchContacts(
 contacts: DBContact[],
 searchTerm: string | null,
 currentPage?: number
) {
 if (!searchTerm) return contacts;
 // Convert searchTerm to lowercase for case-insensitive comparison
 const lowerCaseSearchTerm = searchTerm.toLowerCase().trim();

 // Filter contacts based on userId and search term
 const filteredContacts = contacts.filter(
 (contact) =>
 (contact.name &&
 contact.name.toLowerCase().includes(lowerCaseSearchTerm)) ||
 contact.phone.toLowerCase().includes(lowerCaseSearchTerm)
);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 335 Maio 2025

 return filteredContacts;
}

export function formatPhone(phone: string): string | undefined {
 const parsedPhone = parsePhoneNumberFromString(phone);
 if (parsedPhone && parsedPhone.isValid()) {
 return parsedPhone.number;
 } else {
 return undefined;
 }
}

export function getNameInitials(fullName: string | null | undefined) {
 // Split the full name into parts
 if (!fullName) return "";

 const nameParts = fullName.trim().split(/\s+/);

 // Get the first letter of the first name
 const firstInitial = nameParts[0][0].toUpperCase();

 // If there's only one name, return just that initial
 if (nameParts.length === 1) {
 return firstInitial;
 }

 // Get the first letter of the last name
 const lastInitial = nameParts[nameParts.length - 1][0].toUpperCase();

 // Return the initials
 return firstInitial + lastInitial;
}

// Convert contact -> recipient, because `addRecipient` function expects a
recipient type of NewRecipient not of contact type.
export function convertToRecipient(contact: DBContact): NewRecipient {
 const { id, name, phone, description } = contact;
 const validatedRecipient = validatePhoneNumber(phone);
 return {
 ...validatedRecipient,
 contact: {
 id,
 name,
 phone,
 description,
 },
 };
}
export function getUniques(
 currentRecipients: NewRecipient[],
 newRecipients: WithContact[]

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 336 Maio 2025

): WithContact[] {
 return newRecipients.filter(
 (recipient) => !currentRecipients.some((r) => r.phone === recipient.pho
ne)
);
}

export function toastActionResult(
 result: ActionResponse<any>,
 translate?: (translationKey: string) => string
) {
 if (!Array.isArray(result.message) || !result.message)
 throw new Error("Toast message must be an array of strings.");
 if (!result.message.length)
 return console.log("FAILED TOAST_ACTION_RESULT: message array is empty"
);

 // thankfully, this doesn't throw an error
 if (translate) {
 if (result.success) {
 toast.success(translate(result.message[0]), {
 description: translate(result.message[1]),
 });
 } else {
 toast.error(translate(result.message[0]), {
 description: translate(result.message[1]),
 });
 }
 } else {
 if (result.success) {
 toast.success(result.message[0], { description: result.message[1] });
 } else {
 toast.error(result.message[0], { description: result.message[1] });
 }
 }
}

export function capitalize(string: string) {
 return string.charAt(0).toUpperCase() + string.slice(1);
}

export function getDateFnsLocale(i18nLocale: string) {
 let dateFnsLocale;
 switch (i18nLocale) {
 case "pt":
 dateFnsLocale = pt;
 break;
 case "en":
 dateFnsLocale = enUS;
 break;
 case "de":
 dateFnsLocale = de;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 337 Maio 2025

 break;
 default:
 dateFnsLocale = pt;
 }
 if (!dateFnsLocale) throw new Error("Invalid locale passed in");
 return dateFnsLocale;
}

export function matchContactsToRecipients(
 rawRecipients: DBRecipient[],
 contacts: DBContact[]
) {
 // Return recipients if no data to filter
 if (!rawRecipients.length || !contacts.length)
 return rawRecipients as WithContact[];

 return rawRecipients.map((recipient) => ({
 ...recipient,
 contact: contacts.find((contact) => contact.phone === recipient.phone),
 })) as WithContact[];
}

export function rankRecipients(data: FetchedRecipient[]): RankedRecipient[]
{
 // Step 1: Create a unique array of recipients with their usage count
 const oneWeekAgo = new Date();
 oneWeekAgo.setDate(oneWeekAgo.getDate() - 7);

 const processedData: RankedRecipient[] = []; // Initialize an array for p
rocessed recipients
 const recipientMap = new Map<string, RankedRecipient>(); // Use a map to
track unique recipients

 data.forEach((recipient) => {
 // Filter out invalid data before processing to avoid unnecessary work.
 const { isValid } = validatePhoneNumber(recipient.phone);
 if (!isValid) {
 // Exit the current iteration if the recipient is invalid
 return;
 }

 // Check if the recipient already exists in the map
 if (!recipientMap.has(recipient.phone)) {
 recipientMap.set(recipient.phone, {
 id: recipient.id,
 phone: recipient.phone,
 usageCount: 0, // Initialize usage count
 });
 }

 // Increment usage count if the last_used date is within the last week
 if (new Date(recipient.last_used) >= oneWeekAgo) {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 338 Maio 2025

 recipientMap.get(recipient.phone)!.usageCount++; // Increment usage c
ount
 }
 });

 // Convert the map values to an array
 processedData.push(...recipientMap.values());

 // Step 2: Sort the recipients based on usage count
 return processedData.sort((a, b) => {
 // Sort by usage count (descending)
 return b.usageCount - a.usageCount;
 });
}

// Shuffle the array using Fisher-Yates algorithm
export function shuffleArray(arr: any[]) {
 for (let i = arr.length - 1; i > 0; i--) {
 const j = Math.floor(Math.random() * (i + 1));
 [arr[i], arr[j]] = [arr[j], arr[i]]; // Swap elements
 }
}

export function getPercentageChange(newValue: number, oldValue: number) {
 if (oldValue === 0) {
 // Old value is zero so we will have a 100% change if the newValue is n
ot zero
 return newValue === 0 ? 0 : newValue > 0 ? 100 : -100;
 }
 return Math.floor(((newValue - oldValue) / oldValue) * 100);
}

export function extractFirstWord(sentence: string) {
 // Split the sentence into words
 const words = sentence.split(" ");
 // Return the first word if it exists, otherwise return null
 return words.length > 0 ? words[0] : null;
}

export function getScrollAreaHeightStyles(additionalHeightPx: number) {
 return `h-[calc(100vh - var(--simple-header-height) - ${additionalHeightP
x}px)] md:h-[calc(100vh-var(--header-height)-${additionalHeightPx}px)]`;
}

/lib/actions/message.create.ts

"use server";

import db from "@/lib/db";
import { MessageSchema } from "../form.schemas";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 339 Maio 2025

import { Message } from "@/types";
import { getSession } from "../auth/sessions";
import { formatPhone } from "../utils";
import { NewRecipient } from "@/types/recipient";
import { ActionResponse } from "@/types/action";
import { revalidatePath } from "next/cache";

export async function sendMessage(
 existingDraftId: string | null,
 data: Message
): Promise<
 ActionResponse<Message> & {
 sendDate?: Date;
 invalidRecipients?: NewRecipient[];
 clearForm?: boolean;
 }
> {
 // 1. Check authentication
 const { isAuthenticated, user } = await getSession();
 const userId = user?.id;
 if (!isAuthenticated || !userId) {
 return {
 success: false,
 message: ["common:error-authentication"],
 };
 }

 // 2. Validate field types
 const validatedData = MessageSchema.safeParse(data);
 if (!validatedData.success) {
 return {
 success: false,
 message: ["common:fix_zod_errors"],
 errors: validatedData.error.flatten().fieldErrors,
 };
 }

 // 3. Validate recipients - these are not part of the zod schema as I nee
d to the validation myself
 if (!data.recipients.length) {
 return {
 success: false,
 message: ["new-message-page:server-no_recipients_error"],
 };
 }

 const { validRecipients, invalidRecipients } = analyzeRawRecipients(
 data.recipients
);
 // The recipient error handling is not handled in the zod validation, so
we do validate them ourselves
 if (!validRecipients.length) {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 340 Maio 2025

 return {
 success: false,
 message: [`new-message-page:server-invalid_phone_numbers_error`],
 invalidRecipients,
 };
 }

 let scheduledUnixSeconds: number = 0;
 if (
 validatedData.data.secondsUntilSend &&
 validatedData.data.secondsUntilSend > 2
) {
 // JavaScript's Date object uses milliseconds, so we divide by 1000 to
the timestamp into seconds.
 scheduledUnixSeconds =
 Date.now() / 1000 + validatedData.data.secondsUntilSend;
 }

 const isScheduled =
 !!validatedData.data.secondsUntilSend &&
 validatedData.data.secondsUntilSend > 2; // api requires a minimum of 2
seconds in the future
 try {
 const payload = {
 // This shit can only be one full word with no special characters or
spaces
 sender: /**validatedData.data.sender */ "ETPZP", // Hardcode this for
now

 message: validatedData.data.body, // this can be any string

 recipients: validRecipients.map(({ phone }) => ({
 msisdn: phone,
 })),

 destaddr: "DISPLAY", // Flash SMS

 // The API is case-sensitive - `sendtime` has to be spelled exactly l
ike this
 sendtime: isScheduled ? scheduledUnixSeconds : undefined, // Insert t
he UNIX timestamp if the message is scheduled
 };

 const res = await fetch(`${process.env.GATEWAYAPI_URL}/rest/mtsms`, {
 method: "POST",
 headers: {
 Authorization: `Token ${process.env.GATEWAYAPI_TOKEN}`,
 "Content-Type": "application/json",
 },
 body: JSON.stringify(payload),
 });
 const resJson = await res.json();

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 341 Maio 2025

 // -------- BEGIN DATABASE LOGIC -------- //
 if (typeof existingDraftId === "undefined" || !existingDraftId) {
 // Insert new message and recipients
 await db(
 `
 WITH insert_message AS (
 INSERT INTO message (
 subject,
 body,
 status,
 send_time,
 sms_reference_id,
 api_error_code,
 api_error_details_json,
 cost,
 cost_currency,
 user_id
)
 VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9 $10)
 RETURNING id
)
 INSERT INTO recipient (message_id, phone, index)
 SELECT
 insert_message.id,
 unnest($11::text[]) as phone,
 unnest($12::int[]) as index
 FROM insert_message;
 `,
 [
 // Message data
 validatedData.data.subject, // subject
 validatedData.data.body, // body
 res.ok // status
 ? scheduledUnixSeconds
 ? "SCHEDULED"
 : "SENT"
 : "FAILED",
 scheduledUnixSeconds // sendtime
 ? new Date(scheduledUnixSeconds * 1000)
 : new Date(Date.now()),
 resJson?.ids?.length ? resJson?.ids[0] : null, // sms_reference_i
d

 // Api errors
 res.ok ? null : res.status, // api_error_code
 res.ok ? null : JSON.stringify(resJson), // api_error_details_jso
n

 resJson.usage.total_cost,
 resJson.usage.currency,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 342 Maio 2025

 userId, // user_id

 // Recipients
 validRecipients.map((recipient) => recipient.phone), // phone num
ber array
 validRecipients.map((_, index) => index),
]
);
 } else {
 // 1. Update message data
 const result = await db(
 `
 UPDATE message
 SET subject = $1,
 body = $2,
 status = $3,
 send_time = $4,
 sms_reference_id = $5,
 api_error_code = $6,
 api_error_details_json = $7,
 cost = $8,
 cost_currency = $9
 WHERE user_id = $10 AND id = $11
 RETURNING id;
 `,
 [
 // Message data
 validatedData.data.subject, // subject
 validatedData.data.body, // body
 res.ok // status
 ? scheduledUnixSeconds
 ? "SCHEDULED"
 : "SENT"
 : "FAILED",
 scheduledUnixSeconds // sendtime
 ? new Date(scheduledUnixSeconds * 1000)
 : new Date(Date.now()),
 resJson?.ids?.length ? resJson?.ids[0] : null, // sms_reference_i
d

 // Api errors
 res.ok ? null : res.status, // api_error_code
 res.ok ? null : JSON.stringify(resJson), // api_error_details_jso
n

 resJson.usage.total_cost,
 resJson.usage.currency,

 // Other
 userId, // user_id
 existingDraftId, // id of the database draft to update
]

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 343 Maio 2025

);

 // In case update did not match any rows - invalid message id
 if (result.rowCount === 0) {
 throw new Error("Invalid message id provided");
 }

 // 2. Delete old recipients
 await db(`DELETE FROM recipient WHERE message_id = $1`, [
 existingDraftId,
]);
 // 3. Then insert new recipients
 await db(
 `
 INSERT INTO recipient (message_id, phone, index)
 SELECT $1,
 unnest($2::text[]),
 unnest($3::int[])
 `, // check if for this query I can use VALUES instead of SELECT
 [
 existingDraftId,
 validRecipients.map((r) => r.phone),
 validRecipients.map((_, index) => index),
]
);
 }
 // -------- END DATABASE LOGIC -------- //

 // Update the amount indicators in the nav panel
 revalidatePath("/new-message");

 if (!res.ok) {
 return {
 success: false,
 message: ["server-some_api_error"],
 clearForm: true,
 };
 }

 return {
 success: true,
 message: [
 isScheduled
 ? "new-message-page:server-schedule_success"
 : "new-message-page:server-send_success",
],
 sendDate: isScheduled ? new Date(scheduledUnixSeconds * 1000) : undef
ined,
 clearForm: true,
 };
 } catch (error) {
 console.log("Error got caught in catch block:", error);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 344 Maio 2025

 return {
 success: false,
 message: ["new-message-page:server-unknown_error"],
 };
 }
}

function analyzeRawRecipients(recipients: NewRecipient[]) {
 const validRecipients: NewRecipient[] = [];
 const invalidRecipients: NewRecipient[] = [];

 recipients.forEach((recipient) => {
 const parsedPhone = formatPhone(recipient.phone);
 if (parsedPhone) {
 validRecipients.push({
 ...recipient,
 phone: parsedPhone as string,
 });
 } else {
 invalidRecipients.push(recipient);
 }
 });

 return { validRecipients, invalidRecipients };
}

/lib/actions/_testing/responses

// a console.log(res) successful response will give something like this
const successResponse = /**Response */ {
 status: 200,
 statusText: "OK",
 headers: /**Headers */ {
 "content-length": "88",
 "content-type": "application/json",
 date: "Sun, 22 Dec 2024 09:17:28 GMT",
 "strict-transport-security": "max-age=31536000",
 "x-server": "GatewayAPI",
 },
 body: /**ReadableStream */ {
 locked: false,
 state: "readable",
 supportsBYOB: true,
 },
 bodyUsed: false,
 ok: true,
 redirected: false,
 type: "basic",
 url: "process.env.GATEWAYAPI_URL/rest/mtsms",

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 345 Maio 2025

};

export const errorResponse = /**Response */ {
 status: 422,
 statusText: "Unprocessable Entity",
 headers: /**Headers */ {
 "content-length": "83",
 "content-type": "application/json",
 date: "Sun, 22 Dec 2024 09:10:28 GMT",
 "strict-transport-security": "max-age=31536000",
 "x-server": "GatewayAPI",
 },
 body: /**ReadableStream */ {
 locked: false,
 state: "readable",
 supportsBYOB: true,
 },
 bodyUsed: false,
 ok: false,
 redirected: false,
 type: "basic",
 url: "process.env.GATEWAYAPI_URL/rest/mtsms",
};

const errorResponse2 = /**Response */ {
 status: 403,
 statusText: "Forbidden",
 headers: /**Headers */ {
 "content-length": "122",
 "content-type": "application/json",
 date: "Sun, 22 Dec 2024 09:26:43 GMT",
 "strict-transport-security": "max-age=31536000",
 "x-server": "GatewayAPI",
 },
 body: /**ReadableStream */ {
 locked: false,
 state: "readable",
 supportsBYOB: true,
 },
 bodyUsed: false,
 ok: false,
 redirected: false,
 type: "basic",
 url: "process.env.GATEWAYAPI_URL/rest/mtsms",
};

/lib/actions/_testing/default-response.js

export const SuccessResponse = {
 status: 200,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 346 Maio 2025

 statusText: "OK",
 headers: {
 "content-length": "89",
 "content-type": "application/json",
 date: "Sun, 02 Feb 2025 13:03:24 GMT",
 "strict-transport-security": "max-age=31536000",
 "x-server": "GatewayAPI",
 },
 body: { locked: false, state: "readable", supportsBYOB: true },
 bodyUsed: false,
 ok: true,
 redirected: false,
 type: "basic",
 url: "process.env.GATEWAYAPI_URL/rest/mtsms",
};

export const SuccessResponseJson = {
 ids: [4382703917],
 usage: { countries: { DE: 1 }, currency: "EUR", total_cost: 0.0642 },
};

/**
 * Cancel scheduled responses
 Response {
 status: 410,
 statusText: 'Gone',
 headers: Headers {
 'content-length': '3',
 'content-type': 'application/json',
 date: 'Wed, 05 Feb 2025 12:10:48 GMT',
 'strict-transport-security': 'max-age=31536000',
 'x-server': 'GatewayAPI'
 },
 body: ReadableStream { locked: false, state: 'readable', supportsBYOB: tr
ue },
 bodyUsed: false,
 ok: false,
 redirected: false,
 type: 'basic',
 url: 'process.env.GATEWAYAPI_URL/rest/mtsms/4382980628'
}
 */

/lib/actions/message.actions.ts

"use server";

import {
 DraftActionResponse,
 ActionResponse,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 347 Maio 2025

 DataActionResponse,
} from "@/types/action";
import { getSession } from "../auth/sessions";
import db from "../db";
import { revalidatePath } from "next/cache";
import { DBMessage, Message } from "@/types";
import { sleep } from "../utils";

export async function toggleTrash(
 id: string,
 inTrash: boolean
): Promise<ActionResponse<null>> {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 await db(
 `
 UPDATE message
 SET in_trash = $1
 WHERE user_id = $2 AND id = $3;
 `,
 [inTrash, userId, id]
);

 revalidatePath("/failed"); // we need this

 // Don't know why it works without the following lines. We need to test
this in production and if necessary, uncomment these lines
 // revalidatePath("/sent");
 // revalidatePath("/trash");

 return {
 success: true,
 message: [
 inTrash
 ? "messages-page:server-move_trash_success"
 : "messages-page:server-restore_success",
],
 };
 } catch (error) {
 return {
 success: false,
 message: [
 inTrash
 ? "messages-page:server-move_trash_unknown_error"
 : "messages-page:server-restore_unknown_error",
],
 };
 }
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 348 Maio 2025

export async function deleteMessage(
 id: string,
 pathname?: string
): Promise<ActionResponse<null>> {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 await db(`DELETE FROM message WHERE user_id = $1 AND id = $2`, [
 userId,
 id,
]);

 if (pathname) revalidatePath(pathname);

 return {
 success: true,
 message: ["common:server-delete_message_success"],
 };
 } catch (error) {
 return {
 success: false,
 message: ["common:server-delete_message_unknown_error"],
 };
 }
}

export async function cancelCurrentlyScheduled(
 sms_reference_id: number
): Promise<DataActionResponse<DBMessage | undefined>> {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");

 const res = await fetch(
 `${process.env.GATEWAYAPI_URL}/rest/mtsms/${sms_reference_id}`,
 {
 method: "DELETE",
 headers: {
 Authorization: `Token ${process.env.GATEWAYAPI_TOKEN}`,
 "Content-Type": "application/json",
 },
 }
);

 if (!res.ok) {
 return {
 success: false,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 349 Maio 2025

 message: [`api_error_${res.status}`],
 };
 }

 // TEST_PRODUCTION: This did not work with the 2 WHERE conditions on th
e dev server on Windows
 const result = await db(
 `
 UPDATE message
 SET status = 'FAILED', api_error_code = 409
 WHERE user_id = $1 AND sms_reference_id = $2;
 `,
 [userId, sms_reference_id]
);

 revalidatePath("/scheduled");
 return {
 success: true,
 message: ["messages-page:server-cancel_scheduled_success"],
 data: result.rows[0],
 };
 } catch (error) {
 console.log(error);

 return {
 success: false,
 message: ["messages-page:server-cancel_scheduled_unknown_error"],
 data: undefined,
 };
 }
}

export async function saveDraft(
 draftId: string | undefined,
 data: Message,
 pathname?: string
): Promise<DraftActionResponse<string>> {
 const session = await getSession();
 const userId = session?.user?.id;
 let draft;

 try {
 if (!userId) throw new Error("Invalid user id.");

 if (draftId) {
 // 1. Delete old recipients first
 await db(`DELETE FROM recipient WHERE message_id = $1`, [draftId]);

 // 2. Insert the new recipients after that
 // We are await these separately so that we can be sure that there ar
e no duplicate recipients
 draft = await db(

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 350 Maio 2025

 `
 WITH insert_message AS (
 UPDATE message SET subject = $3, body = $4, sender = $5 WHERE
id = $2 AND user_id = $1
 RETURNING id
),
 insert_recipients AS (
 INSERT INTO recipient (message_id, phone, index)
 SELECT
 insert_message.id,
 unnest($6::text[]) as phone,
 unnest($7::int[]) as index
 FROM insert_message
)
 SELECT * FROM insert_message
 `,
 [
 userId,
 draftId,
 data.subject,
 data.body,
 data.sender,

 // Recipients
 data.recipients.map((recipient) => recipient.phone), // phone num
ber array
 data.recipients.map((_, index) => index), // for the ordering of
the recipient
]
);
 } else {
 // Create new draft
 draft = await db(
 `
 WITH insert_message AS (
 INSERT INTO message (user_id, subject, body, sender, status)
 VALUES ($1, $2, $3, $4, $5)
 RETURNING id
),
 insert_recipients AS (
 INSERT INTO recipient (message_id, phone, index)
 SELECT
 insert_message.id,
 unnest($6::text[]) as phone,
 unnest($7::int[]) as index
 FROM insert_message
)
 SELECT id FROM insert_message
 `,
 [
 userId,
 data.subject,
 data.body,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 351 Maio 2025

 data.sender,
 "DRAFTED",

 // Recipients
 data.recipients.map((recipient) => recipient.phone), // phone num
ber array
 data.recipients.map((_, index) => index), // for persisting the u
ser specified recipient order
]
);
 }

 if (pathname) revalidatePath(pathname);

 return {
 success: true,
 message: ["common:server-save_draft_success"],
 draftId: draftId || draft.rows[0].id,
 };
 } catch (error) {
 return {
 success: false,
 message: ["common:server-save_draft_unknown_error"],
 };
 }
}

/lib/actions/contact.actions.ts

"use server";
// !!If you are using the contacts context, refetch contacts on client afte
r each server action instead of revalidating!!
import db from "../db";
import { ContactSchema } from "../form.schemas";
import { DBContact } from "@/types/contact";
import { getSession } from "../auth/sessions";
import { formatPhone } from "../utils";
import { revalidatePath } from "next/cache";
import { DatabaseError } from "pg";
import { ActionResponse, CreateContactResponse } from "@/types/action";
import { z } from "zod";

// Binding pathname is unnecessary since we re-fetch the context, and conta
cts won't be re-fetched on revalidation.
export async function createContact(
 _: CreateContactResponse | null,
 formData: FormData
): Promise<CreateContactResponse> {
 const session = await getSession();
 const userId = session?.user?.id;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 352 Maio 2025

 const rawData = {
 name: formData.get("name") as string,
 phone: formData.get("phone") as string,
 description: formData.get("description") as string,
 };
 const validatedData = ContactSchema.safeParse(rawData);
 if (!validatedData.success) {
 return {
 success: false,
 message: ["common:fix_zod_errors"],
 errors: validatedData.error.flatten().fieldErrors,
 inputs: rawData,
 };
 }

 try {
 if (!userId) throw new Error("Invalid user id.");

 const { name, phone, description } = validatedData.data;
 const validatedPhone = formatPhone(phone);
 if (!validatedPhone)
 throw new Error("Phone number is unexpectedly invalid!");

 const result = await db(
 `INSERT INTO contact (user_id, name, phone, description) VALUES ($1,
$2, $3, $4) RETURNING *`,
 [userId, name, validatedPhone, description || null]
);
 console.log(result.rows[0]);

 return {
 success: true,
 message: ["modals:create_contact-success"],
 data: result.rows[0],
 };
 } catch (error) {
 let message = "";
 if (error instanceof DatabaseError && error.code === "23505") {
 // check if it is a duplicate key error by comparing it with the erro
r code
 message = "modals:zod_error-duplicate_phone";
 } else {
 message = "modals:create_contact-unknown_error";
 }

 return {
 success: false,
 message: [message],
 inputs: rawData,
 };
 }

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 353 Maio 2025

}

export async function updateContact(
 id: string,
 _: ActionResponse<DBContact> | null,
 formData: FormData
): Promise<ActionResponse<z.infer<typeof ContactSchema>>> {
 const session = await getSession();
 const userId = session?.user?.id;

 const rawData = {
 name: formData.get("name") as string,
 phone: formData.get("phone") as string,
 description: formData.get("description") as string,
 };
 const validatedData = ContactSchema.safeParse(rawData);
 if (!validatedData.success) {
 return {
 success: false,
 message: ["common:fix_zod_errors"],
 errors: validatedData.error.flatten().fieldErrors,
 inputs: rawData,
 };
 }
 try {
 if (!userId) throw new Error("Invalid user id.");

 const { name, phone, description } = validatedData.data;
 const validatedPhone = formatPhone(phone);

 await db(
 "UPDATE contact SET name = $1, phone = $2, description = $3 WHERE use
r_id = $4 AND id = $5",
 [name, validatedPhone, description || null, userId, id]
);

 return { success: true, message: ["modals:edit_contact-success"] };
 } catch (error) {
 let message;
 if (error instanceof DatabaseError && error.code === "23505") {
 // check if it is a duplicate key error by comparing it with the erro
r code
 message = "modals:zod_error-duplicate_phone";
 } else {
 message = "modals:create_contact-unknown_error";
 }

 return {
 success: false,
 message: [message],
 inputs: rawData,
 };

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 354 Maio 2025

 }
}

export async function deleteContact(
 id: string
): Promise<ActionResponse<undefined>> {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 await db("DELETE FROM contact WHERE user_id = $1 AND id = $2", [
 userId,
 id,
]);

 return {
 success: true,
 message: ["contacts-page:server-delete_success"],
 };
 } catch (error) {
 return {
 success: false,
 message: ["contacts-page:server-delete_unknown_error"],
 };
 }
}

/lib/actions/user.actions.ts

"use server";

import type { DBUser, SettingName, User } from "@/types/user";
import db from "../db";
import ActiveDirectory from "activedirectory2";
import { z } from "zod";
import { UpdateSettingSchema } from "../form.schemas";
import {
 ActionResponse,
 DataActionResponse,
 UpdateSettingResponse,
} from "@/types/action";
import { getSession } from "../auth/sessions";
import { validSettingNames } from "@/types/user";

// These are guaranteed properties when you find the user using A.D.
type userResult = {
 displayName: string; // display name

 givenName: string; // first name

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 355 Maio 2025

 sn: string; // surname

 cn: string; // full name
};

export default async function saveUser(
 ad: ActiveDirectory,
 email: string,
 isAdmin: boolean
): Promise<DataActionResponse<User>> {
 try {
 const selectResult = await db(
 "SELECT * FROM public.user WHERE email = $1;",
 [email]
);
 if (selectResult.rows.length) {
 return {
 success: true,
 message: ["Authentication successful!", "User already exists"],
 data: selectResult.rows[0],
 };
 } else {
 // User has never signed up before

 return new Promise((resolve) => {
 ad.findUser(email, async (err, user: any) => {
 if (err || !user) {
 resolve({ success: false, message: ["User not found."] });
 return;
 }

 const { cn, displayName, givenName, sn } = user;
 try {
 const insertResult = await db(
 "INSERT INTO public.user (email, name, role, first_name, last
_name, display_name) VALUES ($1, $2, $3, $4, $5, $6) RETURNING *;",
 [
 email, // email
 cn, // complete name
 isAdmin ? "ADMIN" : "USER",
 givenName, // first name
 sn, // surname
 displayName,
]
);

 resolve({
 success: true,
 message: ["Authentication successful!", "New user created"],
 data: insertResult.rows[0],
 });
 } catch (error) {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 356 Maio 2025

 resolve({
 success: false,
 message: ["Error occurred", "Failed to create user in databas
e."],
 });
 }
 });
 });
 }
 } catch (error) {
 return {
 success: false,
 message: ["Error occurred", "Failed to create or fetch user."],
 };
 }
}

export async function dummySaveUser(
 user: DBUser
): Promise<DataActionResponse<User>> {
 try {
 const selectResult = await db(
 "SELECT * FROM public.user WHERE email = $1;",
 [user.email]
);
 if (selectResult.rows.length) {
 return {
 success: true,
 message: ["Authentication successful!", "User already exists"],
 data: selectResult.rows[0],
 };
 } else {
 // User has never signed up before
 try {
 const insertResult = await db(
 "INSERT INTO public.user (email, name, role, first_name, last_nam
e, display_name) VALUES ($1, $2, $3, $4, $5, $6) RETURNING id, name, email,
role, first_name, last_name;",
 [
 user.email,
 user.name,
 user.role,
 user.first_name,
 user.last_name,
 `${user.first_name} ${user.last_name}`,
]
);

 return {
 success: true,
 message: ["Authentication successful!", "New user created"],
 data: insertResult.rows[0],
 };

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 357 Maio 2025

 } catch (error) {
 return {
 success: false,
 message: ["Error occurred", "Failed to create user in database."]
,
 };
 }
 }
 } catch (error) {
 console.log("Dummy save user error:", error);

 return {
 success: false,
 message: ["Error occurred", "Failed to create or fetch user."],
 };
 }
}

// Settings page calls this function to update one setting at a time
export async function updateSetting(
 formData: FormData
): Promise<UpdateSettingResponse> {
 const session = await getSession();
 const userId = session?.user?.id;

 // Extract raw data from the form
 const rawData = {
 name: formData.get("name") as SettingName,
 value: formData.get("value") as string,
 };

 if (!validSettingNames.includes(rawData.name)) {
 return {
 success: false,
 error: "Invalid setting",
 input: rawData.value,
 };
 }
 try {
 if (!userId) throw new Error("Invalid user id.");
 // Try to validate and parse the raw data.
 const parsedData = UpdateSettingSchema.parse(rawData);

 // If validation passed, you can proceed to update the database accordi
ngly.
 const { rows } = await db(
 `UPDATE public.user SET ${parsedData.name} = $2, updated_at = NOW() W
HERE id = $1 RETURNING *;`,
 [userId, parsedData.value]
);

 return {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 358 Maio 2025

 success: true,
 input: rawData.value,
 data: rows[0][parsedData.name],
 };
 } catch (error) {
 // If the error is produced by zod, extract and send back the error det
ails.
 if (error instanceof z.ZodError) {
 const { fieldErrors } = error.flatten();

 // One option: join all errors from all fields
 const errorString = Object.values(fieldErrors)
 .flat()
 .filter(Boolean)
 .join(", ");
 return {
 success: false,
 error: errorString,
 input: rawData.value,
 };
 }

 // For any other kind of error, return a generic error message.
 return {
 success: false,
 input: rawData.value,
 error: "Something went wrong while saving this input",
 };
 }
}

/lib/db/general.ts

"use server";

import { AmountIndicators } from "@/types";
import { getSession } from "../auth/sessions";
import db from ".";
import { UserSettings } from "@/types/user";

export async function fetchUserSettings() {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 const { rows } = await db(
 `
 SELECT lang, profile_color_id, display_name, dark_mode, primary_color
_id, appearance_layout

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 359 Maio 2025

 FROM public.user WHERE id = $1;
 `,
 [userId]
);
 return rows[0] as UserSettings;
 } catch (error) {}
}

export async function fetchAmountIndicators() {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 // We need to do two separate queries, because I got issues when trying
to merge it into one. Maybe come back to this later and create one query to
all of them.
 const messageCount = await db(
 `
 SELECT
 COALESCE(SUM(CASE
 WHEN
 user_id = $1 AND
 in_trash = false AND
 status NOT IN ('FAILED', 'DRAFTED') AND
 send_time <= NOW()
 THEN 1 END), 0)::INTEGER AS sent,
 COALESCE(SUM(CASE
 WHEN
 user_id = $1 AND
 in_trash = false AND
 status NOT IN ('FAILED', 'DRAFTED') AND
 send_time > NOW()
 THEN 1 END), 0)::INTEGER AS scheduled,
 COALESCE(SUM(CASE WHEN status = 'FAILED' AND in_trash = false T
HEN 1 END), 0)::INTEGER AS failed,
 COALESCE(SUM(CASE WHEN status = 'DRAFTED' AND in_trash = false
THEN 1 END), 0)::INTEGER AS drafts,
 COALESCE(SUM(CASE WHEN in_trash = true THEN 1 END), 0)::INTEGER
AS trash
 FROM
 message
 WHERE
 user_id = $1;
 `,
 [userId]
);
 const contactsCount = await db(
 `
 SELECT
 CAST(COUNT(c.id) AS INTEGER)
 FROM
 contact c

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 360 Maio 2025

 WHERE
 c.user_id = $1;
 `,
 [userId]
);

 return {
 ...messageCount.rows[0],
 contacts: contactsCount.rows[0].count,
 } as AmountIndicators;
 } catch (error) {}
}

/lib/db/contact.ts

"use server";

import { DBContact } from "@/types/contact";
import db from ".";
import { getSession } from "../auth/sessions";

export async function fetchContacts() {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 const result = await db(
 `
 SELECT * FROM contact
 WHERE user_id = $1
 `,
 [userId]
);

 return result.rows as DBContact[];
 } catch (error) {}
}

/lib/db/seed.sql

-- Create user table
CREATE TABLE "user" (
 id SERIAL PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 email VARCHAR(255) UNIQUE NOT NULL,
 role VARCHAR(20) CHECK (role IN ('USER', 'ADMIN')) NOT NULL,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 361 Maio 2025

 created_at TIMESTAMP NOT NULL DEFAULT NOW(),
 updated_at TIMESTAMP NOT NULL DEFAULT NOW(),
 first_name VARCHAR(50) NOT NULL,
 last_name VARCHAR(50) NOT NULL,
 -- User settings:
 -- All have defaults except display name, which defaults to the user's
AD name when they first sign up.
 lang VARCHAR(2) NOT NULL DEFAULT 'pt', -- ISO 639-1 language code
 profile_color_id SMALLINT NOT NULL DEFAULT 2,
 display_name VARCHAR(50) NOT NULL,
 primary_color_id SMALLINT NOT NULL DEFAULT 1,
 appearance_layout VARCHAR(20) CHECK (appearance_layout IN ('MODERN', 'S
IMPLE')) NOT NULL DEFAULT 'MODERN',
 dark_mode BOOLEAN NOT NULL DEFAULT false
);

-- Create message table
CREATE TABLE "message" (
 id SERIAL PRIMARY KEY,
 user_id INTEGER NOT NULL REFERENCES "user"(id) ON DELETE CASCADE,
 sender VARCHAR(255),
 subject VARCHAR(255),
 body TEXT NOT NULL,
 created_at TIMESTAMP NOT NULL DEFAULT NOW(),
 send_time TIMESTAMP DEFAULT NOW() NOT NULL, -- can be null if the messa
ge is a draft
 sms_reference_id BIGINT, -- can be null if the message is not scheduled
, failed, or a draft
 status VARCHAR(20) NOT NULL CHECK (status IN ('SENT', 'SCHEDULED', 'FAI
LED', 'DRAFTED')), -- scheduled messages will remain with status "SCHEDULED
", even when their delivery date is reached
 in_trash BOOLEAN NOT NULL DEFAULT false,
 api_error_code SMALLINT, -- This is the http status code which is saved
when an error occurs
 api_error_details_json TEXT,
 cost NUMERIC(6, 4), -- 6 total digits, 4 digits after the decimal
 cost_currency VARCHAR(10) -- assumed to be in EUR
);

-- Create contacts table
CREATE TABLE "contact" (
 id SERIAL PRIMARY KEY,
 user_id INTEGER NOT NULL REFERENCES "user"(id) ON DELETE CASCADE,
 name VARCHAR(255) NOT NULL,
 phone VARCHAR(50) NOT NULL,
 description VARCHAR(255),
 created_at TIMESTAMP NOT NULL DEFAULT NOW(),
 updated_at TIMESTAMP NOT NULL DEFAULT NOW(),
 UNIQUE (user_id, phone) -- The same phone number may exist between diff
erent user, but there cannot be contacts with the same phone number for one
user.
);

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 362 Maio 2025

-- Create recipient table
CREATE TABLE recipient (
 id SERIAL PRIMARY KEY,
 message_id INTEGER REFERENCES message(id) ON DELETE CASCADE,
 phone VARCHAR(50) NOT NULL, -- Store phone numbers as VARCHAR to accomm
odate various formats
 index SMALLINT NOT NULL, -- This is the used for persisting the order o
f the recipients of a message
 UNIQUE (message_id, phone) -- Ensure a phone number can only be added o
nce per message. This is not an actual field in the table, but it will make
sure that there are no recipients with duplicate links
);

-- Insert a scheduled message for testing:
-- INSERT INTO "message" (
-- user_id,
-- sender,
-- subject,
-- body,
-- send_time,
-- status,
-- in_trash,
-- api_error_code,
-- api_error_details_json
--) VALUES (
-- 1,
-- 'john.doe@example.com',
-- 'Meeting Reminder at 2pm',
-- 'Don"t forget about the meeting tomorrow at 14 AM.',
-- NOW(),
-- 'SENT',
-- false,
-- NULL,
-- NULL
--);

/lib/db/Dockerfile

FROM postgres:17.4-alpine3.21

COPY seed.sql /docker-entrypoint-initdb.d/

/lib/db/dashboard.ts

import { getSession } from "../auth/sessions";
import db from ".";
import { DBUser } from "@/types/user";
import { format } from "date-fns";

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 363 Maio 2025

import { CountryStat } from "@/app/[locale]/dashboard/page";
import { ISO8601_DATE_FORMAT as API_DATE_FORMAT } from "@/global.config";
import { LightDBMessage } from "@/types/dashboard";
import { DateRangeSchema } from "../form.schemas";

export async function fetchMessagesInDateRange(input: {
 startDate: string;
 endDate: string;
}) {
 const session = await getSession();

 try {
 if (!session?.isAdmin || !session?.isAuthenticated)
 throw new Error("User is not an admin or not authenticated.");

 // Validate input using Zod
 const validatedDates = DateRangeSchema.parse(input);
 const { startDate, endDate } = validatedDates;

 const result = await db(
 `
 SELECT id, user_id, send_time, cost FROM message m
 WHERE
 m.in_trash = false AND
 m.status NOT IN ('FAILED', 'DRAFTED') AND
 m.send_time BETWEEN $1 AND $2
 ORDER BY send_time ASC;
 `,
 [startDate, endDate]
);

 return result.rows as LightDBMessage[];
 } catch (error) {}
}

export async function fetchUsers() {
 const session = await getSession();

 try {
 if (!session?.isAdmin || !session?.isAuthenticated)
 throw new Error("User is not an admin or not authenticated.");
 const result = await db(`SELECT * FROM public.user;`);

 return result.rows as DBUser[];
 } catch (error) {}
}

export async function fetchCountryStats(input: {
 startDate: string;
 endDate: string;
}): Promise<CountryStat[] | undefined> {
 if (!input.startDate) return undefined;

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 364 Maio 2025

 const session = await getSession();

 try {
 if (!session?.isAdmin || !session?.isAuthenticated)
 throw new Error("User is not an admin or not authenticated.");

 // Validate input using Zod
 const validatedDates = DateRangeSchema.safeParse(input);
 if (!validatedDates.success || validatedDates.data.startDate == undefin
ed)
 throw new Error("Invalid input.");
 const { startDate, endDate } = validatedDates.data;

 const res = await fetch(`${process.env.GATEWAYAPI_URL}/api/usage/labels
`, {
 method: "POST",
 headers: {
 Authorization: `Token ${process.env.GATEWAYAPI_TOKEN}`,
 Accept: "application/json, text/javascript",
 "Content-Type": "application/json",
 },
 body: JSON.stringify({
 from: format(startDate, API_DATE_FORMAT),
 to: format(endDate || new Date(), API_DATE_FORMAT),
 }),
 });
 if (!res.ok) {
 throw new Error("Network response was not ok");
 }
 const resJson = await res.json();

 return resJson
 .filter((country: { label: string | null }) => country.label === null
)
 .map(
 (item: {
 amount: number;
 cost: number;
 country: string;
 currency: string;
 label: null;
 }) => ({
 country: item.country,
 cost: item.cost,
 amount: item.amount,
 })
);
 } catch (error) {
 console.log(error);
 }
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 365 Maio 2025

/lib/db/_seed-data.sql

INSERT INTO "user" (name, email, role, created_at, updated_at, first_name,
last_name, lang, profile_color_id, display_name, dark_mode, primary_color_i
d)
VALUES
 ('Alice Johnson', 'alice@example.com', 'USER', NOW(), NOW(), 'Alice', '
Johnson', 'en', 1, 'Alice J.', false, 1),
 ('Bob Smith', 'bob@example.com', 'USER', NOW(), NOW(), 'Bob', 'Smith',
'en', 1, 'Bob S.', false, 1),
 ('Charlie Brown', 'charlie@example.com', 'ADMIN', NOW(), NOW(), 'Charli
e', 'Brown', 'en', 1, 'Charlie B.', false, 1),
 ('David Wilson', 'david@example.com', 'USER', NOW(), NOW(), 'David', 'W
ilson', 'pt', 1, 'David W.', false, 1),
 ('Eve Davis', 'eve@example.com', 'ADMIN', NOW(), NOW(), 'Eve', 'Davis',
'pt', 1, 'Eve D.', true, 1),
 ('Frank Miller', 'frank@example.com', 'USER', NOW(), NOW(), 'Frank', 'M
iller', 'en', 1, 'Frank M.', false, 1),
 ('Grace Lee', 'grace@example.com', 'USER', NOW(), NOW(), 'Grace', 'Lee'
, 'en', 1, 'Grace L.', false, 1),
 ('Hank Green', 'hank@example.com', 'USER', NOW(), NOW(), 'Hank', 'Green
', 'pt', 1, 'Hank G.', true, 1),
 ('Irene Taylor', 'irene@example.com', 'ADMIN', NOW(), NOW(), 'Irene', '
Taylor', 'en', 1, 'Irene T.', false, 1),
 ('Jack White', 'jack@example.com', 'USER', NOW(), NOW(), 'Jack', 'White
', 'pt', 1, 'Jack W.', false, 1);

/lib/db/message.ts

"use server";

import db from ".";
import { DBMessage, StatusEnums } from "@/types";
import { getSession } from "../auth/sessions";
import { NewRecipient } from "@/types/recipient";

export async function fetchMessagesByStatus(status: StatusEnums) {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 const result = await db(
 `
 SELECT m.*,
 COALESCE(
 json_agg(
 json_build_object(
 'id', r.id,

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 366 Maio 2025

 'phone', r.phone
) ORDER BY r.phone -- Order by phone number numerically
) FILTER (WHERE r.id IS NOT NULL), '[]'::json
) AS recipients
 FROM message m
 LEFT JOIN recipient r ON m.id = r.message_id
 WHERE m.user_id = $1 AND m.status = $2 AND m.in_trash = false
 GROUP BY m.id
 ORDER BY m.created_at DESC;
 `,
 [userId, status]
);

 return result.rows as DBMessage[];
 } catch (error) {}
}

export async function fetchTrashedMessages() {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 const result = await db(
 `
 SELECT m.*,
 COALESCE(
 json_agg(
 json_build_object(
 'id', r.id,
 'phone', r.phone
) ORDER BY r.phone -- Order by phone number numerically
) FILTER (WHERE r.id IS NOT NULL), '[]'::json
) AS recipients
 FROM message m
 LEFT JOIN recipient r ON m.id = r.message_id
 WHERE m.user_id = $1 AND m.in_trash = true
 GROUP BY m.id
 ORDER BY m.created_at DESC;
 `,
 [userId]
);

 return result.rows as DBMessage[];
 } catch (error) {}
}

export async function fetchSentIn(time: "FUTURE" | "PAST") {
 const session = await getSession();
 const userId = session?.user?.id;

 try {

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 367 Maio 2025

 if (!userId) throw new Error("Invalid user id.");
 const result = await db(
 `
 SELECT m.*,
 COALESCE(
 json_agg(
 json_build_object(
 'id', r.id,
 'phone', r.phone
) ORDER BY r.phone -- Order by phone number numerically
) FILTER (WHERE r.id IS NOT NULL), '[]'::json
) AS recipients
 FROM message m
 LEFT JOIN recipient r ON m.id = r.message_id
 WHERE
 m.user_id = $1 AND
 m.in_trash = false AND
 m.status NOT IN ('FAILED', 'DRAFTED') AND
 m.send_time ${time === "PAST" ? "<=" : ">"} NOW()
 GROUP BY m.id
 ORDER BY m.send_time ${time === "FUTURE" ? "ASC" : "DESC"};
 `,
 [userId]
);

 return result.rows as DBMessage[];
 } catch (error) {}
}

export async function fetchDraft(id?: string) {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!id) throw new Error("Invalid draft ID");
 if (!userId) throw new Error("Invalid user id");

 const result = await db(
 `
 SELECT m.*,
 COALESCE(
 json_agg(
 json_build_object(
 'id', r.id,
 'phone', r.phone
) ORDER BY r.index -- This determines in which order the
recipient chips are on new-message
) FILTER (WHERE r.id IS NOT NULL), '[]'::json
) AS recipients
 FROM message m
 LEFT JOIN recipient r ON m.id = r.message_id
 WHERE m.user_id = $1 AND m.id = $2 AND (m.status = 'DRAFTED' OR m.s

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 368 Maio 2025

tatus = 'FAILED') -- Add the ability to edit FAILED messages from the new-m
essage-page later on
 GROUP BY m.id;
 `,
 [userId, id]
);

 return result.rows[0] as DBMessage & { recipients: NewRecipient[] };
 } catch (error) {}
}

/lib/db/recipients.ts

"use server";

import db from ".";
import { getSession } from "../auth/sessions";
import { DBRecipient } from "@/types/recipient";

export async function fetchRecipients() {
 const session = await getSession();
 const userId = session?.user?.id;

 try {
 if (!userId) throw new Error("Invalid user id.");
 const { rows } = await db(
 `
 SELECT
 r.id,
 r.phone,
 m.created_at AS last_used
 FROM recipient r
 JOIN message m ON r.message_id = m.id
 WHERE m.user_id = $1;
 `,
 [userId]
);

 return rows as (DBRecipient & { last_used: Date })[];
 } catch (error) {}
}

/lib/db/index.ts

import { Pool, QueryResult } from "pg";

const pool = new Pool({

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 369 Maio 2025

 host: process.env.POSTGRES_HOST,
 port: Number(process.env.POSTGRES_PORT),
 user: process.env.POSTGRES_USER,
 password: process.env.POSTGRES_PASSWORD,
 database: process.env.POSTGRES_DB,
});

async function db(query: string, params?: any[]): Promise<QueryResult> {
 const client = await pool.connect();
 try {
 const res = await client.query(query, params);
 return res;
 } catch (err) {
 console.error("Database query error", err);
 throw err; // Rethrow the error for handling in the calling function
 } finally {
 client.release(); // Always release the client back to the pool
 }
}

export default db;

// For testing database connections
// db("SELECT $1::text as message", ["Hello world!"])
// .then(() => console.log("Connected to Postgres!"))
// .catch((err) => console.error("Error connecting to Postgres!", err));

/components.json

{
 "$schema": "https://ui.shadcn.com/schema.json",
 "style": "new-york",
 "rsc": true,
 "tsx": true,
 "tailwind": {
 "config": "tailwind.config.ts",
 "css": "app/globals.css",
 "baseColor": "slate",
 "cssVariables": false,
 "prefix": ""
 },
 "aliases": {
 "components": "@/components",
 "utils": "@/lib/utils",
 "ui": "@/components/ui",
 "lib": "@/lib",
 "hooks": "@/hooks"
 },
 "iconLibrary": "lucide"
}

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 370 Maio 2025

/tsconfig.json

{
 "compilerOptions": {
 "target": "ES2017",
 "lib": ["dom", "dom.iterable", "esnext"],
 "allowJs": true,
 "skipLibCheck": true,
 "strict": true,
 "noEmit": true,
 "esModuleInterop": true,
 "module": "esnext",
 "moduleResolution": "bundler",
 "resolveJsonModule": true,
 "isolatedModules": true,
 "jsx": "preserve",
 "incremental": true,

 // added manually:
 "allowImportingTsExtensions": true,

 "plugins": [
 {
 "name": "next"
 }
],
 "paths": {
 "@/*": ["./*"]
 }
 },
 "include": [
 "next-env.d.ts",
 "**/*.ts",
 "**/*.tsx",
 ".next/types/**/*.ts",
 "app/[locale]/login/page.tsx",
 "app/[locale]/(app)/(other)/new-message/not-found.js",
 "app/[locale]/(root)/(message-layout)/error.tsx"
],
 "exclude": ["node_modules"]
}

/nginx.conf

NOTE: Nginx doesn't read from this file, I am just committing to have the
config available when I need it
Main context (this is the global configuration)

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 371 Maio 2025

worker_processes 1;

events {
 worker_connections 1024;
}

http {
 include mime.types;

 # Optional server block for HTTP to HTTPS redirection
 server {
 listen 80;
 server_name localhost;

 # Redirect all HTTP requests to HTTPS
 return 301 https://\$host\$request_uri;
 }

 # Main server block
 server {
 listen 443 ssl; # Listen on port 443 for HTTPS
 server_name localhost;

 # Here are my self signed certs. In actual production you would let
these be signed by a organization
 ssl_certificate /Users/<your_user>/nginx-certs/nginx-selfsigned.crt
;
 ssl_certificate_key /Users/<your_user>/nginx-certs/nginx-selfsigned
.key;

 # Proxying requests to the Docker container (assuming it is running
on port 3000)
 location / {
 # Tell nginx to act as a reverse proxy to forward requests to t
he node servers
 proxy_pass http://localhost:3000;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Forwarded-Host $host;
 proxy_set_header X-Forwarded-Port $server_port;
 proxy_set_header Cookie $http_cookie; # Forward cookies
 }
 }
}

/.env.example

APP_NAME="ETPZP SMS"

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 372 Maio 2025

Translations
I18NEXUS_API_KEY="<nexus_key>"

Active Directory (AD)
AD_URL="ldap://<ip>"
AD_BASE_DN="dc=<dc_name>,dc=<dc_type>"
AD_EMAIL="<ad_email>"
AD_PASSWORD="<secret_password>"

GATEWAYAPI Api
GATEWAYAPI_URL="https://gatewayapi.com"
GATEWAYAPI_TOKEN="<smsapi_token>"

postgres database
POSTGRES_USER="<dbuser>"
POSTGRES_PASSWORD="<secret_password>"
POSTGRES_HOST="<database.server.com>"
POSTGRES_PORT="<3211>"
POSTGRES_DB="<mydb>"

Auth encryption key
SESSION_SECRET="<secret_password>"

/eslint.config.mjs

export default tseslint.config({
 rules: {
 // Note: you must disable the base rule as it can report incorrect erro
rs
 // "no-unused-vars": "on",

 },
});

/.eslintrc.json

{
 "extends": ["next/core-web-vitals", "next/typescript"]
}

/next.config.ts

 Sistema de envio de SMS com interface web

Luigi Matteo Girke 373 Maio 2025

import type { NextConfig } from "next";
// import path from 'path';

const nextConfig: NextConfig = {
 // Recommended: this will reduce output
 // Docker image size by 80%+
 output: "standalone",
 // Optional: bring your own cache handler
 // cacheHandler: path.resolve('./cache-handler.mjs'),
 // cacheMaxMemorySize: 0, // Disable default in-memory caching
 // images: {
 // // Optional: use a different optimization service
 // // loader: 'custom',
 // // loaderFile: './image-loader.ts',
 // //
 // // We're defaulting to optimizing images with
 // // Sharp, which is built-into `next start`
 // remotePatterns: [
 // {
 // protocol: "https",
 // hostname: "images.unsplash.com",
 // port: "",
 // pathname: "/**",
 // search: "",
 // },
 //],
 // },
 // Nginx will do gzip compression. We disable
 // compression here so we can prevent buffering
 // streaming responses
 compress: false,
 // Optional: override the default (1 year) `stale-while-revalidate`
 // header time for static pages
 // swrDelta: 3600 // seconds

 // Add the ability to dynamically alter the props of local SVGs
 webpack(config) {
 config.module.rules.push({
 test: /\.svg$/,
 use: ['@svgr/webpack'],
 });
 return config;
 },

};

export default nextConfig;

